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Abstract Cognitive load has previously been found to have a
positive effect on strategy selection in repeated risky choice.
Specifically, whereas inferior probability matching often pre-
vails under single-task conditions, optimal probability
maximizing sometimes dominates when a concurrent task
competes for cognitive resources. We examined the extent to
which this seemingly beneficial effect of increased task de-
mands hinges on the effort required to implement each of the
choice strategies. Probability maximizing typically involves a
simple repeated response to a single option, whereas probabil-
ity matching requires choice proportions to be tracked care-
fully throughout a sequential choice task. Here, we flipped this
pattern by introducing a manipulation that made the imple-
mentation of maximizing more taxing and, at the same time,
allowed decision makers to probability match via a simple
repeated response to a single option. The results from two
experiments showed that increasing the implementation effort
of probability maximizing resulted in decreased adoption rates
of this strategy. This was the case both when decision makers
simultaneously learned about the outcome probabilities and
responded to a dual task (Exp. 1) and when these two aspects
were procedurally separated in two distinct stages (Exp. 2).
We conclude that the effort involved in implementing a choice
strategy is a key factor in shaping repeated choice under
uncertainty. Moreover, highlighting the importance of

implementation effort casts new light on the sometimes
surprising and inconsistent effects of cognitive load that have
previously been reported in the literature.
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Solving complex problems requires effort, time, and re-
sources. Conventional wisdom suggests that the more difficult
the problem at hand, the more effort must be invested to
achieve success: Proverbially, Rome was not built in a day,
and there is no gain without pain. Paradoxically, however,
people’s performance on simple choice tasks—which seem
to be surprisingly challenging to begin with—can apparently
be boosted by increasing the task demands.

Consider the simple task of choosing between two options
that offer the same payoff with unequal odds (e.g., with p = .70
and 1 − p = .30). For example, imagine you are to choose
between two casino slot machines: Slot machine A will pay
out $10 with a probability of .70, and slot machine B will also
pay out $10, but with a probability of .30. Which slot machine
would you prefer to play? It is easy to see that a rational
decision maker should select the alternative with the higher
payoff probability (slot machine A) to maximize her chances
of success. The same holds when she faces this choice repeat-
edly, provided that the outcome probabilities remain station-
ary and are serially independent. Thus, in repeated risky
choice, a simple reward-maximizing strategy is to always se-
lect the more probable option—that is, to probability
maximize. Yet many people faced with this task apply a more
complicated strategy that involves aligning their choice fre-
quencies to the relative probabilities of the outcomes. In the
slot machine example, this means switching repeatedly be-
tween the options and playing machine A 70 % of the time
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and machine B 30 % of the time. The expected payoffs of this
strategy—called probability matching—are much lower (for a
review, see Vulkan, 2000).

Surprisingly, under some conditions, people maximize
more (and match less) when the overall task difficulty is in-
creased, for example, by the introduction of a concurrent ver-
bal memory task that competes for cognitive resources
(Wolford, Newman, Miller, & Wig, 2004). Yet this finding is
surprising only if one assumes that people really believe the
structure of the sequential choice task to be simple and the
outcome sequence to be random. If they do not believe that the
outcomes are statistically independent—which seems a rea-
sonable assumption, in light of everyday experiences of re-
peated events (see, e.g., Ayton & Fischer, 2004)—they might
attempt to outperform the static maximizing strategy by find-
ing a predictable pattern in the outcome sequence (Gaissmaier
& Schooler, 2008; Peterson & Ulehla, 1965). Because any
predictable pattern mustmatch the outcome frequencies, prob-
ability matching would occur as a by-product of such an elab-
orate search, rather than as a strategy per se. By this account,
probability matching represents an ecologically rational re-
sponse associated with the search for patterns. Wolford et al.
(2004) argued that the assumption that people search for pat-
terns in outcome sequences is in line with the reduced
probability matching rates observed when cognitive resources
are taxed. That is, occupying the cognitive resources needed
for vigilant pattern search would undercut such normally oc-
curring search behavior, and thus reduce probability
matching.

Other findings also support the pattern search account of
probability matching. Gaissmaier and Schooler (2008) dem-
onstrated that participants who probability matched in the ab-
sence of a fixed pattern in the outcome sequence were more
likely to detect patterns introduced at a later stage. Unturbe
and Corominas (2007) found that the complexity of the rules
that participants reported to have followed during a sequential
choice task was inversely related to probability maximizing
behavior (see also McMahon & Scheel, 2010). Moreover,
allowing participants to conclusively infer that the outcome-
generating process is random—and thereby encouraging them
to accept the true absence of patterns in the outcome se-
quence—reduces probability matching (Morse & Runquist,
1960; Peterson &Ulehla, 1965).

However, not all researchers agree with this pattern search
interpretation of probability matching. In fact, probability
matching has classically been viewed as a simple mistake that
violates the assumptions of traditional (as opposed to ecolog-
ical) rational choice theory (Vulkan, 2000). Recent research
adopting this view has argued that people make this mistake
because cognitive constraints motivate them to fall back on
cognitively simpler heuristic choice strategies (e.g., Koehler &
James, 2009, 2014; Kogler & Kühberger, 2007; West &
Stanovich, 2003) or because limitations associated with the

task environment—for instance, lack of financial incentives
or insufficient outcome feedback—prevent them from learn-
ing how best to respond (Newell & Rakow, 2007; Shanks,
Tunney, &McCarthy, 2002). According to this account, prob-
ability matching is simply a cognitive error that arises from
cognitive constraints of the decision maker and/or from struc-
tural inadequacies of the choice environment.

Findings from dual-task paradigms (e.g., Wolford et al.,
2004) appear to be at odds with this Bsimple-mistake^ inter-
pretation of probability matching, however. If people match
by mistake because their cognitive capacity is limited, why
would they match less when cognitive resources are further
taxed under dual-task conditions? One explanation for this
apparent inconsistency relates to differences in the effort in-
volved in implementing probability matching and maximizing
(see Koehler & James, 2014). To implement a probability
matching strategy, decision makers need to track their choice
proportions throughout sequential choice tasks—an effort that
can be assumed to involve cognitive mechanisms similar to
those that would be required by a concurrent verbal memory
task. Probability maximizing, on the other hand, involves only
a simple repeated response to the same option and requires
less effort to implement. Thus, a concurrent task might reduce
the adoption of probability matching simply because it im-
pedes people’s ability or willingness to track their own choices
(rather than patterns in the outcome sequence), and conse-
quently drives them to default to choosing the same option
repeatedly (i.e., to probability maximize).

Thus, the observation of reduced probability matching un-
der cognitive load does not necessarily discriminate between
the Bsophisticated pattern search^ and Bsimple-mistake^ ac-
counts of probability matching. Moreover, the potentially piv-
otal role of strategy implementation effort has remained large-
ly unexplored, which may explain the inconsistent findings on
the effects of cognitive load in these settings. Specifically,
some studies have demonstrated that probability matching de-
creases under cognitive load (Wolford et al., 2004), whereas
others have failed to find differences in probability matching
rates under dual- versus single-task conditions (Otto, Taylor,
& Markman, 2011).

We aimed to close this gap in the literature by evaluating
the role that strategy implementation effort plays in moderat-
ing the effects of cognitive load on sequential choice. To this
end, we introduced a manipulation that reversed the typical
experimental situation, by making the implementation of
probability maximizing more taxing and, at the same time,
allowing decision makers to probability match via a simple
repeated response to a single option. Specifically, we manip-
ulated the allocation of choice options to physical response
options, so that repeatedly choosing the same physical option
resulted in either probability matching or probability maxi-
mizing (see the Method section of Exp. 1 for details). By
applying this manipulation in dual-task paradigms, we tested
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whether cognitive load causes people to repeatedly choose the
same physical option rather than the maximizing option. Our
two experiments explored the significance of strategy imple-
mentation effort when decision makers learn about outcome
probabilities and respond to a dual task simultaneously (Exp.
1) or in two procedurally separated stages (Exp. 2).

Experiment 1

Method

Participants One hundred (51 female, 49 male) undergradu-
ate students from the University of New South Wales with a
mean age of 19.63 years (SD = 2.56 years) participated in this
experiment in exchange for course credit. These figures ex-
clude one additional participant who strongly favored the in-
frequent event throughout (indicating misinterpretation of the
task) and whose data were therefore disregarded. In addition
to course credit, participants could earn a performance-based
monetary payoff. Earnings ranged fromAU$4.55 to AU$10.95
(AU$1 ≈ US$0.96 at the time of the experiment).

Design and procedure All participants completed a
computer-based repeated binary choice task over 500 trials.
We factorially crossed two between-subjects factors: the effort
involved in implementing a probability maximizing strategy
during the choice task (high vs. low) and the presence of an
interleaved concurrent working memory load task (present vs.
absent). The concurrent task was a 3-back memory task that
asked participants to memorize the three numbers last seen on
the screen. We randomly assigned 25 participants to each of
the four resulting experimental conditions. Participants could
earn performance-based payoffs in both the choice and the
memory task (if present), which were paid in cash at the end
of the experiment. Participants were instructed to earn as
much money as possible and to treat both tasks as equally
important. After every block of 100 choice trials, participants
received feedback on their accuracy and earnings in both
tasks, and the main instructions were reiterated for the subse-
quent block. There was no practice period before the main
task, and participants were not informed in advance about
the total number of trials.

Following the choice (and concurrent memory) task(s), all
participants were asked to complete a short questionnaire
assessing their understanding of the underlying probability
structure and their strategy use during the choice task (see
the Appendix for details). Specifically, they were asked to
estimate the outcome probabilities for each choice alternative
and to consider two prediction strategies for ten hypothetical
choice trials: (a) choosing the dominant color for all ten trials
(i.e., probability maximizing) and (b) choosing the dominant
color for seven out of ten trials (i.e., probability matching).

Note that the labels Bprobability maximizing^ and
Bprobability matching^ were not used in the questionnaire.
Participants were then instructed to indicate which strategy,
(a) or (b), their choices most closely resembled (1) early and
(2) late in the experiment, and which strategy, (a) or (b), they
(3) expected to earn them more money and (4)would use if
they were to play the game again (see Koehler & James, 2010,
for similar post-task strategy evaluation questions).1

Choice task The choice task was adapted fromWolford et al.
(2004) and involved repeated binary decisions over 500
choice trials. Each trial started with the presentation of either
a fixation cross (working memory load absent) or a digit be-
tween 0 and 9 (working memory load present) in the center of
the computer screen. Figure 1A illustrates the task screen
shown to participants in the working memory load conditions.
The presentation of the fixation cross/digit served as a cue for
participants to predict which of two colored squares—either a
red or a green square—would appear next. The green square
appeared in 70 % of trials, and the red square in the remaining
30 % (randomized across participants for red and green ma-
jority outcomes). Participants were informed that the sequence
of red and green squares was random. Each of the colored
squares was mapped to a different location on the screen—
either above or below the fixation cross/digit (again, random-
ized across participants)—and participants made their predic-
tions by pressing the up or down arrow key on the computer
keyboard. This color–key mapping was shown on the screen
throughout the task, as is illustrated in Fig. 1A. Participants
earned two cents for each correct color prediction, and they
were encouraged to attempt to earn as much money as possi-
ble. Following each choice, either a red or a green square
appeared on the screen (in the location indicated by the col-
or–key mapping), participants received verbal feedback about
the accuracy of their prediction, and earnings were updated on
the screen (see Fig. 1A). The next trial then started with either
the fixation cross or a new digit. The primary dependent mea-
sure was participants’ proportions of choices of the more
probable—that is, dominant—color outcome.

The implementation effort of probability maximizing was
manipulated by modifying the allocation of response keys to
predicting a red or a green square, so that repeatedly choosing
the same physical keyboard key resulted in either probability
matching or maximizing. In the low maximizing effort condi-
tions, the color–key allocation remained the same throughout
the task, and solely pressing the key corresponding to the
majority outcome resulted in probability maximizing, as is

1 The questionnaire also included the Cognitive Reflection Test
(Frederick, 2005), the Berlin Numeracy Test (Cokely, Galesic, Schulz,
Ghazal, & Garcia-Retamero, 2012), and measures of self-reported math-
ematical ability and education. Since none of these measures were
notably related to our dependent variables, they are not considered
further.
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shown in Fig. 1B. For example, solely pressing the up
arrow key to predict that a green square would appear im-
plemented a probability maximizing strategy for green ma-
jority outcomes. In the high maximizing effort conditions,
the color–key allocation remained the same on 70 % of
trials, but flipped on the other 30 %, which matches the
frequencies with which the two colors appeared. The
switch was shown in the mapping illustration displayed
on the screen. Now, solely pressing the key mostly corre-
sponding to the majority outcome resulted in probability
matching, as is shown in Fig. 1C. For example, a partici-
pant solely pressing the up arrow key throughout the task
would predict a green square to appear on 70 % of trials
and a red square to appear on 30 % of trials, and would
thus implement a matching strategy for green majority
outcomes. Consequently, implementation of probability
maximizing was made more difficult. Throughout the arti-
cle, we refer to these two conditions as fixed color–key
mapping (in which probability maximizing was easy to

implement) and varied color–key mapping (in which prob-
ability maximizing was difficult to implement).

Working memory task The memory task, which was interwo-
ven with the choice task, required participants in the working
memory load conditions to remember the last three numbers
shown on the screen. Numbers between 0 and 9 were randomly
selected and displayed in the center of the screen at the start of
each choice task trial, as is illustrated in Fig. 1A. Once partici-
pants had made a choice (there was no time limit), the number
was replaced by a fixation cross, followed by feedback on the
outcome and earnings. At the start of the next trial, a new digit
appeared. Participants were asked to maintain the last three num-
bers in memory, updating the set of numbers remembered with
the appearance of each new digit. At four times at random inter-
vals during each block of 100 choice trials, participants were
tested and asked to recall the last three numbers they had seen
as accurately as possible. Each correctly recalled digit raised
participants’ earnings from the choice task by 5 %.

Fig. 1 Illustration of the experimental task screen (panel A) and the
strategy implementation effort manipulation (panels B–C). Participants
in the working memory load conditions saw a digit in the center of the
screen, the current payoff on the left-hand side (updated after each
choice), and the current color–key mapping on the right-hand side. In
the actual experiment, this mapping illustration was colored (one key
was red, the other green), and there was no verbal label. For
participants in the no load conditions, the task screen looked identical,
except that the digit was replaced by a fixation cross and the instructions
to remember the last three digits were omitted. The mapping of response
keys to colors was manipulated so that repeatedly selecting the same
physical keyboard key resulted in either probability maximizing (panel

B) or probability matching (panel C). In the fixed color–key mapping
conditions, the color–key allocation remained the same throughout the
task, and solely pressing the up arrow key to predict that a green square
would appear above the fixation cross implemented probability
maximizing for green majority outcomes. In the varied color–key
mapping conditions, the color–key allocation remained the same on
70 % of trials, but flipped on the other 30 % (matching the outcome
frequencies), so that solely pressing the up arrow key implemented
probability matching for green majority outcomes. For half of the
participants, the majority outcome was a green square; for the other
half, it was a red square
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Results

For all parametric inferential statistics, we conducted Bayesian
analyses in addition to using conventional methods of hypoth-
esis testing. On the basis of the default Bayesian analyses of
variance (ANOVAs) suggested by Rouder, Morey, Speckman,
and Province (2012) and the default Bayesian t tests suggested
by Rouder, Speckman, Sun, Morey, and Iverson (2009), we
report Bayes factors (BF) that quantify the strength of evidence
in favor of the presence of an effect.2

Choice task performance The proportions of participants’
dominant color choices for each block of 100 trials, shown
in Fig. 2, were subjected to a 2 (working memory
load)× 2 (mapping) × 5 (block) mixed model ANOVA. The
main effect of learning across trial blocks was significant,
F(2.65, 254.17) = 58.77, p< .001, ηp

2 = .380, BF = 5.76 ×
1034, and is illustrated by the upward trajectory of all group
lines in Fig. 2.3 We found a main effect of mapping, F(1, 96) =
10.29, p = .002, ηp

2 = .097, BF = 17.84; participants who
experienced fixed color–key mappings chose the dominant
color more frequently (M = .78 across blocks of 100 trials)
than did those who experienced varied color–key mappings
(M = .70 across blocks of 100 trials). Additionally, the map-
ping effect significantly interacted with the within-subjects
Block factor, F(2.65, 254.17) = 3.43, p = .022, ηp

2 = .034,
BF = 2.49; the learning slopes of participants in the varied
color–key mapping conditions remained flatter across blocks
than did those of participants in the fixed color–key mapping
conditions (see Fig. 2). Participants under working memory
load had a slight tendency to select the dominant color less
often (M = .72 across blocks of 100 trials) than did nonloaded
participants (M = .76 across blocks of 100 trials); however,
neither the main effect of working memory load, F(1, 96) =
2.40, p = .125, ηp

2 = .024, BF = 0.73, nor any of the

interactions with this factor reached statistical significance
(all ps≥ .184, all BFs≤ 0.65).

Turning to the individual-level responses, Fig. 3 displays
the full range of participants’ proportions of dominant color
choices in each trial block and for all conditions. To assess
strategy selection in individual participants toward the end of
learning, we classified participants’ response proportions in
the final trial block as either probability maximizing or prob-
ability matching. Participants who selected the dominant color
on no less than 95 % of trials in the last block were defined as
probability maximizers; participants who allocated their
choices within 5 % of the average reward probability of the
more probable option (.70 ± .05) were defined as probability
matchers (see, e.g., Schulze, van Ravenzwaaij, & Newell,
2015). We carried out three-way chi-square tests to evaluate
whether the adoption of probability maximizing and probabil-
ity matching in the final trial block was associated with the
color–key mapping manipulation, contingent on working
memory load condition. Under working memory load, partic-
ipants who experienced varied color–key mappings were 7.67
times less likely to probability maximize in the final trial block
than were participants who experienced fixed color–key map-
pings, χ2(1) = 7.02, p = .008. For nonloaded participants, we
found no association between maximizing and color–key

2 All Bayesian analyses were carried out in R. For the Bayesian ANOVAs
and t tests, we used the anovaBF and ttestBF functions included in the
BayesFactor package (version 0.9.9; Morey & Rouder, 2014) with their
respective default settings, with one exception: For the anovaBF function,
the number of Monte Carlo samples used to estimate BFs was increased
to 50,000. For the Bayesian ANOVAs, we computed BFs by comparing
the performance of a model including the relevant effect with that of one
omitting (only) that effect. All models were constructed hierarchically,
such that the presence of an interaction term always involved the presence
of all lower-order interactions and main effects involving the components
of that higher-order interaction. Follow-up simple effects were analyzed
by carrying out Bayesian t tests. For the Bayesian t tests, BFs in favor of
the alternative hypothesis are reported. A BF of 10, for instance, suggests
that the data are ten times more likely to have occurred under the model
assuming the relevant effect than under a model omitting this effect,
whereas a BF of 0.10 indicates that the data are ten times more likely to
have occurred under the model omitting the relevant effect than under a
model including it.

Fig. 2 Mean (± standard errors) proportions of participants’ dominant
color choices in each block of 100 choice trials in Experiment 1 by
working memory (WM) load and mapping condition. The dashed line
at .70 indicates probability matching

3 For all conventional ANOVAs, the degrees of freedom were corrected
using the Greenhouse and Geisser (1959) coefficient when the sphericity
assumption had been violated.
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mapping condition during the final trial block; in fact, the
same number of participants (seven out of 25) were classified
as probability maximizers in both mapping conditions.4 There
was no relationship between the mapping manipulation and
the use of probability matching in the final trial block, either
for participants under working memory load, χ2(1) = 0.10, p =
.747, or for nonloaded participants, χ2(1) = 0.14, p = .713.

Moreover, as Fig. 3 highlights, less than 30 % of the par-
ticipants in each condition were characterized as probability
matchers by the final trial block. Critically, this included par-
ticipants who experienced varied color–key mappings under
working memory load, and whose average response

proportion converged on probability matching by Block 5.
The full range of individual choice proportions shown in
Fig. 3 indicates that, in this condition, the proportion of prob-
ability matchers (28 %) equaled the proportion of participants
selecting colors at random (.50 ± .05 choices to either option)
in the final trial block. Across all other conditions, only two
other participants responded randomly in the last block.

Working memory task and questionnaire responses The
proportion of correctly remembered numbers in the working
memory load task for each block of the choice task (see
Table 1) was subjected to a 2 (mapping) × 5 (block)
mixed model ANOVA. Memory task performance varied sig-
nificantly across choice task blocks, with lower accuracy
scores during both early and late blocks, although the
Bayesian evidence was somewhat ambiguous, F(2.69,
129.24) = 3.09, p = .035, ηp

2 = .060, BF = 1.53. Participants
who experienced varied color–key mappings were slightly
less accurate on the memory task (M = .88 across blocks) than
were participants who experienced fixed color–key mappings
(M = .92 across blocks). However, neither the main effect of
color–key mapping nor the mapping by block interaction was

Fig. 3 Individual participants’ proportions of dominant color choices for
each working memory (WM) load and mapping condition during each
block of 100 choice trials in Experiment 1. Each white circle/black
diamond represents the choice proportion of one participant in the
fixed/varied mapping condition, respectively, in a specific trial block.

The violins around the circles/diamonds are density estimates for the
distributions of participants’ responses in each condition and trial block;
black lines represent the means across participants. The dashed lines at
.70 indicate probability matching

4 When we analyzed the adoption rates of probability maximizing con-
tingent on color–key mapping, we found no significant association be-
tween working memory load condition and maximizing during the final
block for participants who experienced varied color–key mappings, χ2(1)
= 3.39, p = .066, or for participants who experienced fixed color–key
mappings, χ2(1) = 0.80, p = .370. That is, although we observed the same
qualitative trend in strategy selection under fixed color–key mappings as
was reported byWolford et al. (2004)—ten maximizers under load versus
seven maximizers without load—the effect was less pronounced and did
not reach statistical significance. We also note that we had 2.5 times more
participants per condition (25 vs. 10) than did Wolford et al.
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statistically significant. In fact, the Bayesian analysis provided
evidence in favor of the absence of an interaction; F(1, 48) =
1.41, p = .241, ηp

2 = .029, BF = 0.49, for the main effect of
mapping, and F(2.69, 129.24) = 0.24, p = .847, ηp

2 = .005, BF
= 0.04, for the mapping by block interaction.

The data from the post-task questionnaire indicated that
participants’ outcome probability estimates were least accu-
rate when they experienced varied color–key mappings under
working memory load (averaging at Ms = .62 and .37 for the
two choice alternatives). By contrast, the mean probability
estimates in all other conditions deviated no more than .03
points from the programmed outcome probabilities (.70 and
.30). A 2 (working memory load) ×2 (mapping) ANOVA on
the absolute distance between the probability estimates for
both choice alternatives revealed a significant main effect of
mapping, F(1, 96) = 8.38, p = .005, ηp

2 = .080, BF = 8.52; the
participants who experienced varied color–key mappings dur-
ing the choice task discriminated less well between the two
values (Mdiff = .32) than did the participants who experienced
fixed color–key mappings (Mdiff = .42), judging them to be
closer together than they actually were. This suggests that
probability learning progressed less accurately when partici-
pants experienced varied color–key mappings. No other ef-
fects in this analysis were significant; in fact, the Bayesian
analyses provided evidence in favor of the absence of these
effects (all ps ≥ .169, all BFs ≤ 0.28).

A similar pattern of results was observed for participants’
strategy endorsements. We carried out three-way chi-square
tests to evaluate the association between endorsements of
maximizing on three survey items (which strategy was used
late in the experiment, which was expected to yield the highest
payoff, and which would be used again) and color–key map-
ping, contingent on working memory load condition, as is
summarized in Table 2. Under working memory load, relative
to participants who had experienced fixed color–key map-
pings, participants who had experienced varied color–key
mappings were 4.33 times less likely to identify probability
maximizing as the strategy that would earn themmore money,
and 3.69 times less likely to say they would use maximizing in
future games. No such relationship was found for self-

reported strategy use toward the end of learning (Blate in the
experiment^) or under single-task conditions (see Table 2).

Discussion

Experiment 1 showed that increasing the effort involved in
implementing probability maximizing led to decreased adop-
tion rates of this strategy. This effect was most severe when
participants’ cognitive resources were taxed by a concurrent
working memory task. These findings suggest that the cogni-
tive effort of attending to a concurrent task does not
(paradoxically) cause people to choose the maximizing option
more readily per se (as was suggested by Wolford et al., 2004).
If that were the case, we would expect to have seen increased
probability maximizing in the presence of a concurrent task,
regardless of the mapping manipulation. The fact that we did
not indicates that other factors, such as the effort involved in
implementing a strategy, moderate people’s engagement in
probability matching and maximizing under cognitive load. A
potential caveat to this conclusion needs to be considered, how-
ever. The effect of implementation effort on strategy selection
may have been confounded by impaired probability learning
when color–key mappings varied under working memory load.
Participants in this experimental condition estimated the out-
come probabilities least accurately: Many responded at random
during the choice task, and half failed to recognize probability
maximizing as the superior strategy afterward. In Experiment 2
we addressed this issue and aimed to rule out impaired proba-
bility learning as a possible confound by separating probability
learning and the imposition of cognitive load.

Increasing the implementation effort of probability maxi-
mizing by varying color–key mappings also simplified the
implementation of probability matching. This is because the

Table 1 Performance on the memory task: Mean proportions (and
standard deviations) of correctly remembered numbers in each block of
100 choice trials

Color–Key Mapping

Varied Fixed

Block 1 .85 (.16) .87 (.16)

Block 2 .92 (.17) .96 (.08)

Block 3 .89 (.21) .92 (.11)

Block 4 .89 (.20) .96 (.09)

Block 5 .88 (.22) .91 (.15)

Table 2 Mean proportions of endorsements of probability maximizing
as the strategy used toward the end of the experiment, the strategy with
the highest expected payoff, and the strategy that would be used again;
associations between maximizing endorsements and color–key mapping,
contingent on working memory (WM) load condition

Survey Item Varied
Mapping

Fixed
Mapping

Statistics

WM Load M M χ2 p Odds Ratio

Self-reported

Load .52 .72 2.12 .145 0.42

No load .80 .68 0.94 .333 1.88

Highest pay

Load .48 .80 5.56 .018 0.23

No load .76 .76 0.00 1.00 1.00

Play again

Load .52 .80 4.37 .037 0.27

No load .76 .68 0.40 .529 1.49

For all chi-square tests, df = 1. Significant differences are shown in bold
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color–key allocation changed with probabilities that matched
the outcome frequencies. Therefore, exclusively selecting the
key mostly corresponding to the majority outcome would
have resulted in Beasy^ probability matching. Unlike proba-
bility maximizing, however, matching can be implemented in
various ways over a long sequence of choices, and it is
unlikely that the programmed color–key mapping changes
strictly corresponded to participants’ concepts of a
probability matched outcome sequence. Thus, it is not surpris-
ing that the majority of participants who probability matched
when experiencing varied color–key mappings under working
memory load did so by implementing their own representa-
tions of this strategy, whereas only one participant implement-
ed probability matching by pressing a single key repeatedly
throughout multiple blocks.

Experiment 2

Because the results of Experiment 1 suggested a possible con-
found in the mapping manipulation—namely, impaired proba-
bility learning when color–key mappings varied under working
memory load—we designed a second experiment to address
this issue. Experiment 2 replicated the basic task design of
Experiment 1, but separated learning about outcome probabil-
ities from responding under cognitive load versus no load by
dividing the task into two distinct parts. Through this procedur-
al change, we aimed to isolate the effects of implementation
effort on strategy selection from those on probability learning.

Method

Participants One hundred (73 female, 27 male) undergradu-
ate students from the University of New South Wales, with a
mean age of 19.20 years (SD = 1.73 years), participated in this
experiment in exchange for course credit. Additionally, par-
ticipants could earn a performance-based monetary payoff.
Earnings ranged from AU$2.10 to AU$5.60 (AU$1 ≈
US$0.90 at the time of the experiment).

Design and procedureWe again factorially crossed the effort
involved in implementing probability maximizing during a
sequential choice task with the presence/absence of a concur-
rent working memory load task, and randomly assigned 25
participants to each condition. The sequential choice task,
the implementation effort manipulation (fixed vs. varied col-
or–key mapping), and the 3-back working memory task were
identical to those aspects of Experiment 1, with the following
exceptions. The choice task was shortened to 200 trials, the
concurrent memory task was introduced midway through the
choice task, and the provision of outcome feedback was ma-
nipulated between two distinct parts of the task (see, e.g.,
Newell & Rakow, 2007). Part 1 was completed under

single-task conditions by all participants. During this part,
outcome feedback was available following each choice (as
in Exp. 1), and participants were able to learn the outcome
probabilities via trial-by-trial feedback, while experiencing
either fixed or varied color–key mappings. In Part 2, the map-
ping manipulation remained in place, and the concurrent 3-
back working memory task was introduced for half of the
participants (load vs. no load factor). Additionally, outcome
feedback was removed for all participants, but instructions
between the parts repeatedly emphasized that the outcome
frequencies would remain exactly the same as in Part 1.

To separate these two parts more plausibly into distinct
learning and decision-making stages, we did not remunerate
choices in Part 1 (but provided outcome feedback). In contrast,
accurate choices in Part 2 were rewarded with five cents (but no
outcome feedback was given until all choices had been com-
pleted). Accuracy on the concurrent memory task again raised
earnings from the choice task, as was described for Experiment
1. Note that, in order to keep the overall payoffs comparable
between experiments, we increased the earnings per accurate
choice from two to five cents (since the total number of poten-
tially remunerated choice trials was reduced to 100).

Results

Choice task performance Figure 4 shows participants’mean
proportions of dominant color choices in each part of the
choice task and for all experimental conditions. In Part 1, we
found a significant effect of mapping on dominant color
choices, t(98) = −2.83, p = .006, BF = 6.81; participants
who learned under fixed color–key mappings chose the dom-
inant color more frequently than did participants who experi-
enced varied color–key mappings (Fig. 4A). This mapping
effect persisted into Part 2, F(1, 96) = 9.37, p = .003, ηp

2 =
.089, BF = 12.12; in the absence of outcome feedback, partic-
ipants in the fixed mapping conditions again selected the dom-
inant color more often (M = .77 across load conditions) than
did those who experienced varied mappings (M = .68 across
load conditions; see Fig. 4B). We found no significant effect
of working memory load; in fact, the Bayesian analysis pro-
vided evidence in favor of the absence of an effect, F(1, 96) =
0.94, p = .335, ηp

2 = .010, BF = 0.32. There was also no
significant mapping by load interaction, F(1, 96) = 1.90, p =
.172, ηp

2 = .019, BF = 0.62. Figure 4B shows a slight trend
toward higher maximizing rates in loaded relative to
nonloaded participants who experienced fixed color–key
mappings; however, this simple effect of working memory
load at the fixed mapping factor level was not significant,
F(1, 96) = 2.75, p = .100, ηp

2 = .028, BF = 0.93.
Figure 4 plots the distributions of individual participants’

choice proportions alongside the group averages, and we
again categorized participants as probability matchers (.70 ±
.05 dominant color choices) or probability maximizers (≥.95
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dominant color choices) on the basis of these individual re-
sponse proportions in Part 2 (i.e., during the final 100 trials of
Exp. 2).We used chi-square analyses to assess the relationship
between the mapping manipulation and the adoption of prob-
ability maximizing and matching in Part 2, contingent on
working memory load condition. Under working memory
load, participants who experienced varied color–key map-
pings were 6.47 times less likely to probability maximize in
Part 2 than were participants who experienced fixed color–key
mappings, χ2(1) = 5.71, p = .017. For nonloaded participants,
we observed no association between maximizing and color–
key mapping in Part 2: The same numbers of participants
(three out of 25) probability maximized in both mapping con-
ditions. We again found no relationship between the mapping
manipulation and the adoption of probability matching in Part
2 for either loaded participants, χ2(1) = 0.50, p = .480, or
nonloaded participants, χ2(1) = 0.44, p = .508.

Working memory task and questionnaire responses In
Part 2, the proportions of correctly remembered digits in the
working memory task again did not differ between color–key
mapping conditions; in fact, the Bayesian analysis provided ev-
idence in favor of the null hypothesis, t(48) =−0.09, p = .930,BF
= 0.28. On average, participants who experienced varied color–
key mappings correctly recalled 91 % of the probed digits; those
who experienced fixed mappings remembered 92 %.

Although all participants learned the outcome probabilities
in the absence of working memory load (Part 1 of the choice
task), introducing load in Part 2 of the choice task may nev-
ertheless have affected the subsequent probability estimates in
the questionnaire. We therefore subjected the absolute dis-
tance between probability estimates for both choice alterna-
tives to a 2 (mapping) × 2 (load) ANOVA. We found a signif-
icant main effect of mapping, although the Bayesian evidence

was ambiguous, F(1, 96) = 4.67, p = .033, ηp
2 = .046, BF =

1.68; participants who experienced varied color–key map-
pings discriminated less well between the two values (Mdiff

= .29) than did participants who had experienced fixed color–
key mappings (Mdiff = .38), judging them to be closer together
than they actually were. That is, outcome probability estimates
were slightly less accurate in the varied color–key mapping
conditions (Ms = .65 and .35) than in the fixed color–key
mapping conditions (Ms = .69 and .31, for the respective
choice alternatives across load conditions).We found no effect
of working memory load; in fact, the Bayesian analysis pro-
vided evidence in favor of the absence of an effect, F(1, 96) =
0.15, p = .695, ηp

2 = .002, BF = 0.23. There was also no
interaction between the load and mapping factors, F(1, 96) =
1.30, p = .257, ηp

2 = .013, BF = 0.49.
Table 3 summarizes the association between participants’

endorsements of probability maximizing on each of three
post-task questionnaire items and the color–key mappings
they experienced in the choice task, contingent on working
memory load condition. In contrast to Experiment 1, the fixed
color–key mapping was not related to more frequent endorse-
ments of probability maximizing as the strategy that would
earn more money and should be used in future games, regard-
less of working memory load. Self-reported strategy use, on
the other hand, accurately reflected the observed choice be-
havior; participants who had experienced varied color–key
mappings were less likely to report that their choices in Part
2 resembled probability maximizing, irrespective of working
memory load condition.

Discussion

Experiment 2 separated learning about the outcome probabil-
ities from decision making under cognitive load, while again

Fig. 4 Choice behavior when outcome feedback was present in
Part 1 (A) and absent in Part 2 (B) of Experiment 2. Bar graphs plot the
mean ± standard error proportions of dominant color choices, averaged
across participants in each experimental part and condition. The small

white circles/black diamonds plot the dominant color choice
proportions of individual participants in the fixed/varied mapping
conditions, respectively, of both experimental parts. The dashed lines at
.70 indicate probability matching
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manipulating the effort required to implement probability
maximizing. The general pattern of results replicated our find-
ings from Experiment 1. Part 1 of the choice task showed that
varying the mapping of physical response keys to choice op-
tions slowed probability learning, thus supporting the caveat
that the mapping manipulation affected learning as well as the
effort needed to implement probability maximizing. However,
varied color–key mapping by no means abolished probability
learning. Although slightly less accurate than under fixed col-
or–key mappings, the probability estimates did not resemble
random guesses, and probability maximizing was identified as
the optimal response by similar proportions of participants in
both mapping conditions after the choice task. More critically,
Part 2 of the choice task demonstrated that the detrimental
effect of varied color–key mappings on maximizing persisted
in the absence of learning opportunities and was unaffected by
the introduction of working memory load. Thus, we replicated
the main results from Experiment 1, showing that increasing
the effort involved in implementing probability maximizing
leads to decreased adoption rates of this strategy, whereas the
additional effort of attending to a concurrent memory task did
not substantially affect responding, irrespective of strategy
implementation effort.

General discussion

Why does people’s poor performance on simple choice prob-
lems in single-task settings sometimes improve when dual-task
demands are added? We have shown that repeated binary
choice under cognitive load is significantly influenced by the
effort involved in implementing adequate versus suboptimal
strategies. Whereas the optimal solution, probability

maximizing, is typically implemented via a simple repeated
motor response, the more common but inadequate response,
probability matching, requires more effort. In our study, in-
creasing the effort required to implement probability maximiz-
ing in dual-task settings markedly reduced the adoption of this
strategy. That is, when the mapping of choice options to phys-
ical response keys changed during the task, and simply repeat-
ing the same motor response no longer resulted in optimal
maximizing, it was harder for participants to choose optimally.
This was the case both when they simultaneously learned about
the outcome probabilities and dealt with a dual task (Exp. 1)
and when these two task demands were procedurally separated
(Exp. 2). These results indicate that at least some people might
maximize fortuitously rather than intentionally when a concur-
rent task is introduced, and cast new light on the paradoxical
finding that increased task demands sometimes boost sequen-
tial choice performance (see Wolford et al., 2004). Moreover,
by including strategy implementation effort as a main variable
in our design, we found no general effects of cognitive load on
choice behavior. That is, although we observed qualitative
patterns in strategy selection similar to those reported by
Wolford et al. (2004) in our control conditions—in which
strategy implementation effort remained confounded with
optimal responding (i.e., fixed color–key mapping)—these
small load effects remained marginal at best.

We are not the first to fail to find effects of cognitive load on
sequential binary choice (see also Otto et al., 2011). The incon-
sistency of findings may indicate that the link between cogni-
tive load and probability maximizing is not particularly robust,
but hinges on the specifics of the experimental setup, such as
the difficulty of the concurrent task or the outcome probabilities
in the choice task (Otto et al., 2011). In our experiments, for
instance, we used less discriminable outcome probabilities than
were used in previous studies that had reported load effects
(70 %:30 % vs., e.g., 75 %:25 % in Wolford et al., 2004).
Therefore, it is important to consider methodological alterna-
tives that tax cognitive capacity by other means than imposing
cognitive load. McMahon and Scheel (2010), for instance, de-
pleted participants’ blood glucose levels—a manipulation as-
sumed to tax cognitive processing by limiting the metabolic
supply available to the brain (e.g., Donohoe & Benton,
1999)—and found that depleted participants maximized more
than control participants did. However, this effect may also be
related to the differences in the effort required to implement the
strategies of probability matching and probability maximizing,
a possibility that has not yet been examined in conjunction with
the manipulation of blood glucose levels.

Setting aside for a moment the robustness of the link be-
tween taxed cognitive resources and probability maximizing,
our results call into question the interpretation of this effect as
support for the pattern search hypothesis of probability
matching (e.g., McMahon & Scheel, 2010; Wolford et al.,
2004). Specifically, we have shown that people tend to

Table 3 Mean proportions of endorsements of probability maximizing
as the strategy used in Part 2, the strategy with the highest expected
payoff, and the strategy that would be used again; associations between
maximizing endorsements and color–key mapping, contingent on
working memory (WM) load condition

Survey Item Varied
Mapping

Fixed
Mapping

Statistics

WM Load M M χ2 p Odds Ratio

Self-reported

Load .28 .68 8.01 .005 0.18

No load .32 .64 5.13 .024 0.26

Highest pay

Load .60 .72 0.80 .370 0.58

No load .60 .80 2.38 .123 0.38

Play again

Load .56 .68 0.76 .382 0.60

No load .72 .68 0.10 .758 1.21

For all chi-square tests df = 1. Significant differences are shown in bold
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probability maximize less when the implementation of this
strategy is made difficult by the manipulation of the color–
key allocation. Likewise, it is possible that people might aban-
don intended probability matching when its implementation is
made difficult by the introduction of cognitive load. In other
words, taxed cognitive resources may limit people’s ability to
track their own choices, rather than their ability to track pat-
terns in the outcome sequence. Moreover, in replication of
previous findings (Newell & Rakow, 2007), Experiment 2
demonstrated that even in the absence of any outcome feed-
back—and thus any opportunity to seek and test patterns in
the outcome sequence—a substantial subset of participants
continued to choose suboptimally, regardless of cognitive
load. Because pattern search was not feasible under these con-
ditions, the observed responses were likely generated by a
different cognitive process.

It is important to stress, however, that the aim of our study
was not to rule out that people sometimes search for patterns
in outcome sequences or that this search behavior can contrib-
ute to probability matching. On the contrary, we subscribe to a
multifaceted view of probability matching and believe that our
findings contribute to a growing body of empirical research
suggesting that a conglomerate of processes (rather than a
single mechanism) underlie the matching phenomenon (for a
review advocating this perspective, see Koehler & James,
2014). Gaissmaier and Schooler (2008), for instance, showed
that some participants matched by following a simple Bwin–
stay lose–shift^ heuristic, whereas others seemed tomatch as a
by- product of a more elaborate quest to identify outcome
patterns. Similarly, Otto et al. (2011) found that probability
matching can arise from a simple cognitive strategy that con-
siders only the most recent outcome, or from integrating a
longer window of past outcomes.

Manipulating strategy implementation effort affected not
only choice, but also learning about task characteristics such
as outcome probabilities. This result is not surprising, because
the varied color–key mapping manipulation essentially bur-
dened participants with an additional task feature to absorb
during the experiment. This additional requirement affected
learning most noticeably under cognitive load. In other words,
the more people needed to learn, the slower their learning
progressed and the less adequate their choices became.
Thus, the overarching outcome of this work is an inverse
relationship between how much needs to be managed during
a task and how well people cope with these demands. This
conclusion backs recent criticism of the notion that human
cognition could benefit from explicit cognitive effort being
withdrawn in favor of implicit processing (Newell, 2015).
Specifically, some researchers have claimed that category
learning and multi-attribute decisions may improve when de-
liberative thought is occupied or distracted, so that superior
implicit processes can stir human cognition to better outcomes
(Dijksterhuis, 2004; Filoteo, Lauritzen, & Maddox, 2010).

Reevaluating the recent research on this claim, Newell con-
cluded that the empirical evidence for advantageous effects of
unconscious or implicit thought on category learning and de-
cision making has been overstated, and that engaging in ef-
fortful deliberation is often very useful in these situations.

Similarly, we have shown here that poor performance on a
singular sequential choice task does not (sometimes) miracu-
lously improve because a concurrent memory task is added.
Rather, we have argued that a concurrent task increases overall
difficulty and drives people to use simpler strategies. The opti-
mal solution in typical sequential choice tasks is, incidentally,
also the simplest to carry out. Varying the mapping of physical
response keys to choice options removed the implementation
advantage of maximizing and reduced people’s engagement in
this strategy. Moreover, adding this attention-demanding task
feature to an already challenging dual-task–probability-learn-
ing mix likely pushed some participants to give up on the task
entirely and to respond randomly in Experiment 1 (see Fig. 3).
Procedurally separating learning about the outcome probabili-
ties from choice under cognitive load noticeably alleviated this
Btriple burden^ in Experiment 2, but it is worthwhile to
consider alternatives to probability learning paradigms when
multiple concurrent demands are of interest.

Recent research has applied more descriptive versions of
repeated choice problems that disclose the relevant outcome
probabilities (and sometimes the outcome-generating process)
to participants prior to the task—for example, by asking par-
ticipants to predict the outcomes of repeated rolls of a fair die
(Gal & Baron, 1996; James & Koehler, 2011; Newell &
Rakow, 2007; Peterson&Ulehla, 1965). Probability matching
is typically observed in both variants, but it tends to occur less
when the probabilities are known from the start (Fantino &
Esfandiari, 2002) and/or when the generating process can be
identified as random (Morse & Runquist, 1960; Peterson &
Ulehla, 1965). Instead of examining choice in a two-stage
probability learning paradigm like the one used in
Experiment 2, an alternative approach might be to apply a
descriptive version of the problem to fully relieve participants
from the onus of having to learn about outcome probabilities.
Currently, we know of no research that has examined the
effects of taxed cognitive resources on choice behavior within
such descriptive paradigms.5

We conclude that the effort involved in implementing a
choice strategy is a key factor in shaping sequential

5 In light of previous findings, however, we would expect that such par-
adigms run the risk of ceiling effects in probability maximizing, and thus
diminish the potential for finding effects of cognitive load or strategy
implementation effort on sequential choice. Preliminary experiments
using a Bdice paradigm^ that were run in the same participant pool with
similar sample sizes and identical independent variables corroborated this
expectation. When the outcome probabilities were stated at the start, a
pattern of choice trends emerged similar to those reported for
Experiments 1 and 2; however, the effect of implementation effort dimin-
ished strongly (although, again, no effect of cognitive load was detected).
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choice—one that deserves careful consideration when
interpreting previously reported effects of cognitive load in
this context (e.g., Otto et al., 2011; Wolford et al., 2004).
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was supported by Australian Research Council grants to B.R.N.
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Appendix

The wording of the post-task questionnaire items was modi-
fied to account for the randomization of the dominant color
outcome across participants. Here, we reproduce the question-
naire for participants for whom the red square represented the
dominant color outcome. Also note that because Experiment 2
was split into two parts—and outcome feedback was provided
only in Part 1—the wording of the questionnaire items was
modified slightly, as indicated in square brackets.

Post-task questionnaire

1. Think back on your last 100 predictions. [Think back to
the first part of the experiment.] What do you think were
the chances of:

A. A red square appearing on the screen?
B. A green square appearing on the screen?

(Please estimate in percentages, e.g., if the respec-
tive colored square appeared on every trial, type
100 %.)

2. Think back on the number of times you predicted that a
red square would appear on the screen during the exper-
iment. Please estimate in percentages, e.g., if you predict-
ed a red square would appear on every trial, type 100 %.

A. Early in [In the first part of] the experiment, over the
first few trials?

B. At the end [In the second part] of the experiment,
over the last few trials?

C. If you were to play this game again (on how many
trials would you choose red)?

3. Imagine you could give the next person participating in
the experiment advice on how to earn as much money as
possible. What would you say to them? This is an open
response, so feel free to type in whatever you feel is rel-
evant. Use the keyboard to type in your response in the
box below this question.

4. Consider the following two prediction strategies for 10
successive trials of the choice task you just completed:

1) Predicting red for all 10 choice trials. 2) Predicting
red for 7 choice trials and green for 3 choice trials.

A. Early in the experiment [Early in the first part of the
experiment], over the first few trials, which strategy,
1 or 2, did your predictions most closely resemble?

B. At the end of the experiment [At the end of the sec-
ond part of the experiment], over the last few trials,
which strategy, 1 or 2, did your predictions most
closely resemble?

C. Which strategy, 1 or 2, would you expect to earn you
more money?

D. Which strategy, 1 or 2, would you use if you were to
play this game again?
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