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Abstract
When human and non-human animals learn sequences, they manage to implicitly extract statistical regularities through 
associative learning mechanisms. In two experiments conducted with a non-human primate species (Guinea baboons, Papio 
papio), we addressed simple questions on the learning of simple AB associations appearing in longer noisy sequences. Using 
a serial reaction time task, we manipulated the position of AB within the sequence, such that it could be either fixed (by 
appearing always at the beginning, middle, or end of a four-element sequence; Experiment 1) or variable (Experiment 2). 
We also tested the effect of sequence length in Experiment 2 by comparing the performance on AB when it was presented 
at a variable position within a sequence of four or five elements. The slope of RTs from A to B was taken for each condition 
as a measurement of learning rate. While all conditions differed significantly from a no-regularity baseline, we found strong 
evidence that the learning rate did not differ between the conditions. These results indicate that regularity extraction is not 
impacted by the position of the regularity within a sequence and by the length of the sequence. These data provide novel 
general empirical constraints for modeling associative mechanisms in sequence learning.
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Introduction

A key building block of our cognitive lives is the ability to 
detect regularities between two events A and B that cooc-
cur frequently in the environment. By repeatedly process-
ing and encoding these AB regularities, we progressively 
manage to predict or expect B when A is appearing. These 
fundamental statistical learning abilities help us learn and 
execute complex sequences of information more rapidly and 
fluidly (Christiansen, 2019; Frost et al., 2019; Perruchet & 
Pacton, 2006).

Several computational models have been proposed 
to describe the mechanisms supporting these statistical 

learning abilities (e.g., Elman, 1990; Endress & Johnson, 
2021; Frank, Goldwater, Griffiths, & Tenenbaum, 2010; 
French et  al., 2011; Giroux & Rey, 2009; Perruchet & 
Vinter, 1998; Pothos, 2007; Tovar, Westermann, & Torres, 
2018, Tovar & Westermann, 2023). Most of these models 
were developed to account for human data collected on arti-
ficial language learning tasks such as the one initially intro-
duced in the seminal study by Saffran, Aslin, and Newport 
(1996). In this task, participants were exposed to languages 
generally composed of four to six trisyllabic artificial words 
that were concatenated without any pause between words. 
After being exposed to this language for several minutes, 
participants were able to discriminate words from other tri-
syllabic nonword sequences indicating that they extracted 
the underlying statistical information.

This crucial ability has also been studied in non-human 
primates like tamarins (e.g., Hauser et al., 2001), macaques 
(e.g., Wilson et al., 2015), chimpanzees (e.g., Sonnweber 
et al., 2015; Watson et al., 2020) and baboons (e.g., Malas-
sis et al., 2018; Minier et al., 2016; Rey et al., 2019, 2022; 
Tosatto et al., 2022), suggesting that regularity extraction is 
supported by common associative learning mechanisms across 
these species (Rey et al., 2019). The advantage of studying 
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these mechanisms in non-human primates is the absence of 
any interference related to language recoding processes that 
may blur the study of associative learning mechanisms.

Previous studies with Guinea baboons (Papio papio) have 
revealed several general properties of these associative mecha-
nisms. These studies used a visuo-motor pointing task derived 
from the serial reaction time task (Nissen & Bullemer, 1987) 
in which baboons were expected to touch a moving target on 
a touch screen that could appear on nine possible positions on 
an evenly spaced three-by-three grid. It was found that when 
baboons were repeatedly exposed to regularities composed of 
three successive positions ABC, RTs on the third position of 
the regular triplet (i.e., C) were found to decrease faster than 
RTs on the second position (i.e., B) (Minier et al., 2016). 
Using sequences of three positions, it has also been reported 
that baboons were able to learn second-order regularities when 
first-order regularities were inconsistent (Rey et al., 2022). With 
longer sequences composed of nine positions, it has been shown 
that baboons are segmenting these long sequences into chunks 
of 3–4 positions, revealing fundamental limits of associative 
learning mechanisms (Tosatto et al., 2022).

Most of the studies conducted in human and non-human 
primates investigated their ability to extract statistical infor-
mation about regularities composed of at least three adjacent 
ABC elements (i.e., trisyllabic words in artificial language 
learning tasks or triplets in visuo-motor pointing tasks). Par-
adoxically, less is known about much-simpler associations, 
like the repeated cooccurrence of AB regularities. Notably, 
there are three simple questions regarding these simple regu-
larities for which we do not have empirical responses that 
may inform models of statistical learning.

The first question is related to the position of the AB regular-
ity within a longer sequence. If AB always occurs at a specific 
ordinal position in a sequence, does it make a difference to 
extract that regularity when it occurs at the beginning, in the 
middle, or at the end of the sequence? Studies on short-term 
memory have identified several types of serial position effects 
indicating that the position of information in a sequence matters 
(e.g., Oberauer et al., 2018). Similarly, in the study of read-
ing processes, crowding effects indicate that information situ-
ated inside a sequence receives more interference compared to 
information situated at the beginning or the end (e.g., Grainger, 
2022). The extraction of an AB regularity may therefore depend 
on the ordinal position of the regularity with regularities situ-
ated inside the sequence being potentially harder to extract than 
the ones situated at the beginning or the end.

The second question concerns a different case in which 
the AB regularity is not always occurring at the same posi-
tion but may appear at all possible positions in a sequence. 
Here the question is whether the extraction of these regu-
larities is easier or more difficult than regularities appearing 
always at the same position in the sequence. The variable 
position of the regularity may slow down its extraction or the 

fixed position may instead facilitate its extraction because of 
the potential encoding of the ordinal position of the regular-
ity that may provide an additional processing cue.

The third question concerns the length of the sequence 
in which the regularity is occurring. If the length of the 
sequence increases then the amount of information also 
increases and this modifies the signal-to-noise ratio since 
the signal (i.e., the regularity) is not embedded in the same 
amount of “noise”. We may therefore expect harder extrac-
tion of an AB regularity when it appears in longer sequences.

Therefore, our goal in the present study was to expand further 
our knowledge about the general properties of associative mech-
anisms in sequence learning and to address these three rather 
simple questions on the extraction of simple AB regularities. 
To answer these questions, we have conducted two experiments 
with Guinea baboons (Papio papio) and with the serial point-
ing task that has been extensively used to study their ability to 
extract regularities (e.g., Minier et al., 2016; Rey et al., 2022; 
Tosatto et al., 2022). As mentioned before, the advantage of 
testing non-human primates is the absence of possible recoding 
strategies that are related to the language faculty and that are of 
course absent in these species, leading to more direct investiga-
tions of the underlying associative learning mechanisms.

In the first experiment, baboons were exposed to sequences 
composed of a fixed length of four elements. An AB regular-
ity systematically appeared at the same position within the 
sequence on each trial. The sequence of four positions was 
therefore composed of the AB regularity and two additional 
random elements (X) that were drawn from the seven remain-
ing possible positions. Three conditions were tested: AB was 
either presented first, followed by the two random elements 
(ABXX condition), after two random elements (XXAB con-
dition) or between the two random elements (XABX condi-
tion). Baboons were repeatedly administered one of the three 
conditions at a time each for 500 trials in order to compare 
the learning rates of AB in each condition. If the position of 
the regularity in the sequence had an effect on its learning, we 
expect differences in the decrease in RTs for the predicted B 
position as a function of its position in the sequence.

In a second experiment, we tested if the learning of an AB 
regularity would vary as a function of the sequence’s length. 
Baboons were either exposed to four-element sequences 
composed of the AB regularity and two random elements 
or to five-element sequences composed of the AB regularity 
and three random elements. Here, contrary to Experiment 
1, AB was not associated to a specific position within the 
longer sequence and could appear at any position on each 
trial. We can therefore contrast the learning rates obtained 
in Experiment 1 in which AB appeared at a fixed position in 
sequences of four elements with the learning of AB when it 
appeared randomly at any position in the sequences of four 
(in Experiment 2). We can also contrast the learning rate of 
AB when it appeared in sequences of four or five elements.
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Experiment 1

Method

Participants

We tested 20 Guinea baboons (Papio papio, 16 females, age 
range 2.92–25 years) living in a social group at the CNRS 
primate facility in Rousset, France. The baboons were mem-
bers of a social group of 25 individuals living in a 700-m2 out-
door enclosure containing climbing structures connected to 
two indoor experimental areas containing the test equipment. 
Water was provided ad libitum during the test, and the monkeys 
received their normal food ration of fruits every day at 5:00 PM.

Apparatus

The baboons had free access to 14 Automated Learning 
Devices for Monkeys (ALDM, Fagot & Bonté, 2010; Fagot 
& Paleressompoulle, 2009) equipped with tactile screens 
and a food dispenser. Whenever a monkey entered a test 
chamber, it was identified by its microchip, and the system 
was prompted to resume the trial list at the place at which the 
subject left it at its previous visit. The experiment was con-
trolled by E-Prime 2.0 (Psychology Software Tools, Pitts-
burgh, PA, USA) (Psychology Software Tools, Inc., 2016).

Materials and procedure

To initiate a trial, the baboon had to touch a yellow cross 
presented at the bottom of the screen. After the baboon 
touched it, the yellow cross disappeared, and nine white 
crosses were displayed, with one of them being replaced by 
the target, a red circle. When the target circle was touched, 
it disappeared and was immediately replaced by the cross. 
The next position in the sequence was then replaced by a 
second red target circle until the end of the sequence was 
reached. When the baboon successfully completed the 
sequence of touches, it was automatically delivered a reward 
(grains of dry wheat). If the baboon touched an incorrect 
location or failed to complete the trial within 5000 ms, a 
green screen was displayed for 3000 ms to indicate the trial 
had been failed.

The task began with a familiarization phase during 
which baboons were presented with random sequences 
of four positions. For each touch, the response time (RT) 
between the appearance of the circle and the baboon’s 
touch was recorded (Fig. 1). After 500 random trials, the 
baboon passed to the first block of experimental trials. 
They each saw three blocks of 500 trials each, one experi-
mental condition being assigned to each block.

In all three conditions, each trial was composed of four 
touches: two forming the AB regularity which appeared on 

every trial (in the same position in the sequence), and two 
that were drawn uniformly from the seven positions not 
used in the regularity. For example, if the regularity was 
5-1, these two positions would appear in the same order, 
adjacent to one another, on every trial, and 5 or 1 would 
not appear again in the sequence.

The position of the regularity in the sequence varied across 
the three experimental conditions: it appeared in the first 
position (ABXX), the second position (XABX), or the third 
position (XXAB). The order of the conditions was counter-
balanced across baboons. To avoid learning effect across con-
ditions, each baboon had a different regularity for each con-
dition. These regularities were matched for difficulty using 
the baseline RTs collected during a previous task where the 
baboons were presented with 1000 random sequences com-
posed of six touches. RTs for that task were averaged across 
all trials for each transition from one position to the next in 
the sequence. A baseline measure for all possible transitions 
from one position to another was obtained, yielding a 9 × 9 
matrix of mean transition times (calculated over the entire 
group of monkeys, see Appendix A).

Three AB regularities were then assigned to each 
baboon with the following constraints. For each baboon, 
the three pairs could not have baseline RTs with a differ-
ence of greater than 10 ms. No position could be used 
twice in the three pairs for a given baboon (i.e., if a baboon 
was assigned the pair 5-1, neither 5 nor 1 could appear in 
any other pair). The three pairs used for each baboon are 
presented in Appendix B.

To measure the learning rate across repetitions of the 
AB regularity, we computed the slope of the regression 
line fitted to the RTs for the transition time from A to B 
(i.e., the RT on B) over the course of the 500 trials in each 
condition. Figure 2 provides an example of this procedure 
for one baboon and one experimental condition.

Analysis

We adopted a two-step trimming procedure. First, we 
excluded raw RTs greater than 800 ms. Second, RTs fall-
ing more than 2.5 standard deviations away from each 
baboon’s mean for a given block of 100 trials were sub-
sequently excluded (9.88% of data excluded)1. With the 
remaining data, we performed two main analyses which 

1 Inspection of the response times distribution revealed that a major-
ity of responses were produced around 500 ms. A smaller group of 
RTs appeared around 1000 ms and was likely due to situations in 
which baboon’s response was not recorded by the computer, because 
their hands were dirty. In this situation, they had to touch the screen 
again, and longer RTs were recorded (that are on average twice longer 
compared to the first responses). This is why we have adopted this 
two-step trimming procedure.
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produced convergent results. The first analyses were 
Bayesian repeated-measures ANOVA and the procedure 
is explained in the next section. The second analyses were 
linear mixed-effects regression analyses and they are 
reported in Appendix D.

Bayesian repeated‑measures ANOVA For each baboon, the 
slope was taken of the linear regression fit to the RTs for the 
transition from A to B over the 500 trials for each condi-
tion (ABXX, XABX, XXAB). For the baseline, we took the 
slope of the 500 random trials in the first block. This was 

Fig. 1  Schematic of a single trial in Experiment 1

Fig. 2  Example of experimental RTs with corresponding regression lines in the random (training) and XABX conditions (for the B element in an 
AB pair) for a single baboon
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done by taking the mean of all four touches in each trial, 
rendering one RT value per trial, and calculating the slope 
over all of these. The slopes were estimated using the mldi-
vide function in the pracma package in R (Borchers, 2022). 
Once the slopes had been extracted, they were submitted to 
a Bayesian repeated-measures ANOVA with condition as 
the within-subjects factor, followed by post hoc pairwise 
Bayesian t-tests. We carried out another Bayesian repeated-
measures ANOVA without the random baseline condition 
to examine whether there was any detectable difference 
between conditions. All Bayesian testing was carried out 
in the BayesFactor package for R (Morey & Rouder, 2021). 
We report Bayes factors (BF), which quantify the odds of 
the null hypothesis tested (difference of means = 0) com-
pared with the alternative hypothesis (difference of means 
> 0). For example, a BF of 5 in favor of a given hypothesis 
means that given the evidence, that hypothesis is five times 
more likely than the alternative. BFs of 1 to 3 are considered 
weak evidence, BFs > 3 positive evidence, BFs > 20 strong 

evidence, and BFs > 150 very strong evidence (Raftery, 
1995). Such Bayesian testing has the advantage of being 
able to present evidence for either the  H1 (BF) or the  H0 by 
taking the inverse of the Bayes factor (1/BF).

Results

Based on the results of the Bayesian comparison, there is 
decisive evidence that learning took place in all three of 
the regularity conditions relative to the random trials (BF 
= 97.18 ± 0.4%, Fig. 3). When the random condition was 
excluded, there was positive evidence for the null, i.e.: that 
there is no difference between the slopes in the regularity 
conditions (1/BF = 7.24 ± 0.77%)2. Each condition had a 
much steeper negative slope (arithmetic mean = – 0.091, 

Fig. 3  Results of Experiment 1. A Regression lines for the experimental conditions averaged over all participants. B Posterior distributions for 
slopes in the Random and three positional conditions. Horizontal bars show 95% of posterior estimates

2 By taking the inverse of the Bayes factor (1/BF), we can examine 
the evidence for the null hypothesis (μ1= μ2).
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– 0.086, and – 0.090 respectively; posterior maximum like-
lihood estimation (MLE), [95% credible interval (CI)] = 
– 0.021 [– .047, 0.005], – 0.015 [– 0.041, 0.011], and – 0.019 
[– 0.045, 0.007] respectively) than the random condition 
(m = – 0.004; MLE = 0.05 [0.026, 0.083]). There is strong 
evidence that each of the conditions is different from the 
random baseline (indicating that learning took place; ABXX 
= 11.40 ± 0%, XABX = 15.05 ± 0%, XXAB = 126.07 ± 
0%). We find, however, that the conditions do not differ from 
one another. We find that there is positive evidence for the 
null hypothesis between all of our learning conditions (1/
BF; ABXX vs. XABX = 4.10 ± 0.02%, ABXX vs. XABX 
= 4.29 ± 0.02%, XABX vs. XXAB = 4.20 ± 0.02%).

Discussion

In this first experiment, we found that the position of a simple 
AB regularity in a four-element sequence did not significantly 
impact the rate at which it is extracted. There was neither an 
advantage to having the regularity appear at the beginning or 
end of the trial, nor was there a crowding effect for the middle 
position, when A and B always appeared at the same positions.

These results suggest that the extraction of an AB regu-
larity that is repeated on every trial at the same position in 
a sequence is not dependent upon its relative position in the 
sequence. The presence of random positions before or after 
the AB regularity does not impact its learning. The present 
data therefore provide a novel general property concerning 
associative learning mechanisms in sequences: the position 
of the regularity in the sequence does not matter.

If this general property is correct then changing the posi-
tion of the regularity from trial to trial should not have an 
effect on the learning rate of the regularity. This was tested in 
Experiment 2 by using sequences of four elements including 
an AB regularity that appeared randomly at any possible posi-
tion in the sequence on every trial. To test if the length of the 
sequence would impact the learning rate of the AB regularity, 
the same procedure was used with a sequence of five elements. 
Increasing the number of random elements within each trial 
may increase the interference produced by these random ele-
ments and slow down the extraction of the AB regularity.

Experiment 2

Method

Participants and apparatus

Twenty Guinea baboons (Papio papio, 13 females, age 
range, 4.42–25.25 years) completed this experiment. Sixteen 
of these also completed Experiment 1. The general task and 
apparatus used was the same as in Experiment 1.

Materials and procedure

The trial format was the same as in Experiment 1, with the 
exception that two sequence lengths (4 and 5) were presented 
to the baboons in two different blocks of 500 trials (the order 
of the blocks was counterbalanced across baboons). For each 
sequence length, baboons first saw 200 random trials for (re)
familiarization with the task, followed by the 500 experi-
mental trials. Whether the trial was four or five touches, the 
general format was the same. It contained a single two-ele-
ment regularity (AB) and either two or three other random 
touches (X) drawn uniformly from the positions not used in 
the regularity, as it was the case in Experiment 1.

To avoid learning effects across conditions, each baboon 
had different regularities for the two sequence lengths and 
also different regularities from the ones they received in 
Experiment 1. These regularities were matched for diffi-
culty based on the average RTs collected across the baboons 
during the random trials phase of Experiment 1. Two pairs 
were assigned to each baboon with the same constraints as 
in Experiment 1 and the list of pairs is presented in Appen-
dix C.

In contrast to Experiment 1, instead of a given regularity 
appearing at the same position in each trial, the regularity 
appeared in a random position of the sequence on each trial. 
This was done first by evenly distributing the regularity over 
the three or four possible positions in the trial (i.e., ABXX, 
XABX, XXAB in the four-touch condition and ABXXX, 
XABXX, XXABX, XXXAB in the five-touch condition). 
This balanced list of trials was then shuffled such that the 
regularity could not appear in the same position for more 
than four trials in a row.

Analysis

We used the same exclusion criteria as in Experiment 1: 
Raw RTs greater than 800 ms were immediately excluded. 
RTs falling more than 2.5 standard deviations away from 
each baboon’s mean were subsequently excluded (18.55% 
of data excluded). Given the results of Experiment 1 (i.e., 
no significant differences between learning conditions), we 
aggregated across the three conditions from Experiment 1 
and treated them as a single “Fixed position” condition in 
our analysis here.

Bayesian repeated‑measures ANOVA For each baboon, the 
slope was taken of the linear regression fit to the RTs for 
the transition from A to B over the trials in each condi-
tion (Fixed position from Experiment 1, Variable position 
– length 4, Variable position – length 5). For the baseline, we 
used the slope of the RTs from the 500 random trials in the 
first block of Experiment 1. The slopes were estimated using 
the mldivide function in the pracma package in R (Borchers, 
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2022). Once the slopes had been extracted, they were sub-
mitted to a Bayesian repeated-measures ANOVA with con-
dition as the within-subjects factor, followed by post-hoc 
pairwise Bayesian t-tests. We carried out another Bayesian 
repeated-measures ANOVA without the random baseline 
condition to examine whether there was any detectable dif-
ference between conditions. All testing was carried out in 
the BayesFactor package for R (Morey & Rouder, 2021).

Results

As in Experiment 1, we found strong evidence that the means 
of all of our conditions were not equal in our omnibus test 
including the random baseline (BF = 733.61 ± 0.4%; Fig. 4). 
Each condition had a much steeper negative slope3 (arith-
metic  mfix = – 0.090,  mvar4 = – 0.072, and  mvar5 = – 0.061; 
 MLEfix = – 0.028 [– 0.049, – 0.007],  MLEvar4 = – 0.015 

[– 0.035, 0.005],  MLEvar5 = – 0.005 [– 0.025, 0.015]) than 
the random condition (m = – 0.004; MLE = 0.047 [0.025, 
0.069]). When we conducted our test without the random 
baseline, we instead found positive evidence for  H0: the con-
ditions do not differ in learning rate (1/BF = 3.42 ± 0.61%). 
In the pairwise tests, we found strong evidence that each of 
the learning conditions (Fixed, Variable-4, and Variable-5) 
differed from the baseline (BF = 104.56 ± 0%, 111.27 ± 0%, 
and 53.94 ± 0%, respectively). In the pairwise tests between 
the learning conditions, we found evidence that the two 
length-four conditions do not differ (1/BF = 3.79 ± 0%), as 
well as that the two variable position conditions do not differ 
(1/BF = 3.94 ± 0.02%). The evidence for the relationship 
between the Fixed condition and the Variable-5 condition is 
weak, but in the direction of no difference between the condi-
tions (1/BF = 2.04 ± 0%).

We note that the points included in the AB regularity 
occur at a much higher frequency (every trial) than the 
random points not included in the regularity (2/7 or 3/7 
probability to occur in a given trial). To ensure that the 

Fig. 4  Results of Experiment 2. A Regression lines for the experimental conditions averaged over all participants. Note that the Fixed condition 
represents the aggregate of the three experimental conditions from Experiment 1. B Posterior distributions for slopes in the Random and experi-
mental conditions. Horizontal bars show 95% of posterior estimates

3 Observed slopes for both experiments are plotted in Supplementary 
Figure 1.
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learning effects observed in the RTs from A to B were not 
simply a function of the higher frequency of B relative 
to the randomly distributed points, we also examined the 
RT on A which had an equal frequency of appearance as 
B but had no predictable transition information from any 
other point on the grid in the variable position conditions. 
We thus conducted another Bayesian repeated-measures 
ANOVA which included the random baseline condition 
and the learning slope from the RT on the first element 
in the regularity (A) for the variable position conditions 
in our analysis.

We found positive evidence for the null hypothesis in 
this analysis (i.e., the learning rate on A was the same as 
in the random baseline condition; 1/BF = 7.10 ± 0.54%). 
In follow-up pairwise testing, we found that the learning 
rate on A in the variable position conditions did not differ 
either from the random baseline (1/BF = 3.42 ± 0% and 
3.17 ± 0% for Var-4 and Var-5 against baseline, respec-
tively), or from each other (1/BF = 4.26 ± 0.02%). We also 
found strong evidence that the learning rate on A is differ-
ent from that on B in both of these conditions (BF = 91.77 
± 0% and 1685.68 ± 0%, respectively). We can interpret 
this as confirmation that the learning observed on B in the 
AB regularity is truly a function of its relationship to A, 
and not simply a question of relative frequency.

Discussion

In this second experiment, we first found that when the 
position of the regularity was variable from trial to trial, 
it was reliably extracted and, more importantly, the learn-
ing rate in this variable condition was similar to the fixed 
condition from Experiment 1. Second, increasing the 
length of the sequence (and therefore the number of ran-
dom elements) did not have an effect on the learning rate 
of the AB regularity.

These results confirm the general property obtained 
in Experiment 1: the position of the AB regularity in the 
sequence does not matter. Its repeated occurrence on every 
trial determines its learning independently of its position in 
the sequence. The manipulation of sequence length also sug-
gests another general property of associative learning mecha-
nisms: length does not seem to affect regularity extraction. 
However, this second claim is restricted to the sequence length 
we manipulated here. It remains possible that with a longer 
sequence, learning rate could be adversely impacted.

We also confirmed that the learning observed on B was 
not merely an effect of increased frequency relative to other 
positions, as it had exactly the same appearance frequency as 
A, but A was not learned, while B was. We thus provide new 
empirical evidence that there is no effect of these manipula-
tions on associative learning in this context.

General discussion

The present study was designed to investigate three simple 
questions about the extraction of simple AB regularities. The 
first question was about the role of the position of the regu-
larity in the sequence and more specifically, if there was a 
difference in the extraction of the regularity when it occurred 
systematically at the beginning, middle, or final position in a 
sequence composed of four elements. The second question 
concerned the fixed or variable position of the AB regu-
larity in the sequence and whether it influences regularity 
extraction. The third question was about the role of sequence 
length in the learning of the AB regularity.

First, in Experiment 1, AB was inserted at a fixed posi-
tion in a four-element sequence, either before, after or 
between two random elements. The AB dependency was 
progressively learned by baboons, but no differences were 
observed on the learning rates in these three conditions. This 
first result indicates that the absolute position of the depend-
ency relative to the noise does not affect the extraction of 
the dependency itself, suggesting the general property that, 
during serial learning, individuals learn the relationship 
between adjacent elements AB independently of the posi-
tion of the regularity within the sequence.

A second main result stems from Experiment 2 and the 
manipulation of the position of AB within the sequence. In 
this second experiment, the position of AB (before, after 
or between random elements) varied across trials and its 
position relative to the noise was not a reliable informa-
tion anymore. Under these conditions, the AB dependency 
was still extracted and learned by baboons, suggesting that 
coding for position was not necessary and that varying posi-
tions did not hinder learning. Furthermore, the learning rates 
between fixed and varying positions of AB were not differ-
ent, suggesting that, even in a fixed design, coding of ordinal 
positions either does not facilitate learning of a simple AB 
dependency, or did not even occur at all.

Our third main result deals with the position and amount 
of noise in the sequence. As already stated, in a 1:1 ratio of 
signal to noise (i.e., when there are two random elements 
and two regular elements AB), the position of the regularity 
relative to the noise did not impact the learning of AB. How-
ever, this absence of effect remained even with a decreased 
signal-to-noise ratio (i.e., three random elements), indicat-
ing how salient a simple AB dependency was in a random 
environment.

Taken together, these results provide relatively simple 
answers to the three questions addressed in these two experi-
ments and also provide novel empirical constraints for compu-
tational models of statistical learning. First, these data suggest 
that models probably don’t need to code for the ordinal posi-
tion of an AB regularity in a sequence and that learning occurs 



400 Learning & Behavior (2023) 51:392–401

1 3

with the same strength when the regularity is positioned at the 
beginning, middle, or final position in a sequence. Second, the 
absence of a difference in the extraction of a regularity appear-
ing in a fixed or variable position suggests a predominance of 
adjacency coding mechanisms over serial position coding ones 
during serial learning. Third, since the number of random ele-
ments in the sequence, and consequently the signal-to-noise 
ratio and length of the sequence, did not hinder learning, this 
suggests that the critical feature for extracting simple AB regu-
larities is mainly their repetition.

These results are generally consistent with chunking mod-
els of statistical learning (e.g., Perruchet & Vinter, 1998) for 
which regularity extraction is insensitive to the present set 
of manipulated variables (i.e., position, fixed or variable, 
sequence length).

The generality of these conclusions needs, however, to be 
confirmed by additional empirical evidence. Indeed, the varia-
tion in sequence length is relatively limited in the present study 
since we only compared learning for sequences of four and five 
elements. Increasing sequence length in Experiment 1 may pro-
duce some difference between the three fixed positions tested 
in this experiment. With longer sequences, the extraction of the 
AB regularity positioned in the middle of the sequence might 
be harder. Similarly, increasing sequence length in Experiment 
2 may slow down the extraction of the regularity. However, if 
the same learning dynamics of AB regularities is observed for 
longer sequences, then clearly, it will indicate that the main 
ingredients for computational models of statistical learning are 
1) repetition and 2) adjacency coding mechanisms.

In sum, the present set of results suggests that regular-
ity extraction for simple AB repeated associations is not 
influenced 1) by the position of the regularity within the 
sequence; 2) by its variable or fixed occurrence in the 
sequence; and 3) by the length of the sequence. Unless new 
data show otherwise, especially with longer sequences, these 
three results provide clear and general empirical constraints 
for current models of statistical learning.
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