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Abstract
Extensive research conducted in controlled laboratory settings has prompted an inquiry into how results can be generalized 
to real-world situations influenced by the subjects' actions. Virtual reality lends itself ideally to investigating complex situ-
ations but requires accurate classification of eye movements, especially when combining it with time-sensitive data such as 
EEG. We recorded eye-tracking data in virtual reality and classified it into gazes and saccades using a velocity-based clas-
sification algorithm, and we cut the continuous data into smaller segments to deal with varying noise levels, as introduced 
in the REMoDNav algorithm. Furthermore, we corrected for participants' translational movement in virtual reality. Various 
measures, including visual inspection, event durations, and the velocity and dispersion distributions before and after gaze 
onset, indicate that we can accurately classify the continuous, free-exploration data. Combining the classified eye-tracking 
with the EEG data, we generated fixation-onset event-related potentials (ERPs) and event-related spectral perturbations 
(ERSPs), providing further evidence for the quality of the eye-movement classification and timing of the onset of events. 
Finally, investigating the correlation between single trials and the average ERP and ERSP identified that fixation-onset 
ERSPs are less time sensitive, require fewer repetitions of the same behavior, and are potentially better suited to study EEG 
signatures in naturalistic settings. We modified, designed, and tested an algorithm that allows the combination of EEG and 
eye-tracking data recorded in virtual reality.

Keywords  Eye tracking · Saccade classification · Virtual reality · EEG · Fixation-onset event-related potential · Fixation-
onset event-related spectral perturbation

Introduction

Decades of research conducted in traditional laboratory set-
tings have raised the question of how real-world contexts 
and conditions may impact the validity and applicability of 
current results (e.g., Bohil et al., 2011; Makeig et al., 2009; 
Matusz et al., 2019; Shamay-Tsoory & Mendelsohn, 2019). 
Moving out of the lab and into real-world settings provides 

many challenges, such as low reproducibility and limited 
information on the collected data (Shamay-Tsoory & Men-
delsohn, 2019), that might make drawing conclusions dif-
ficult. The continuing strive to investigate human behavior 
beyond the classical lab setups, the challenge of real-world 
experiments, and a rise in new and better technology have 
led many researchers to utilize virtual reality (VR) to bridge 
this gap (Bell et al., 2020; Draschkow et al., 2022; Helbing 
et al., 2020, 2022; Llanes-Jurado et al., 2020). Virtual real-
ity allows for complex experiments with a high degree of 
freedom for the subject while maintaining high control and 
replicability, and providing knowledge about participants’ 
behavior (Bohil et al., 2011; Pan & Hamilton, 2018). As a 
result, virtual reality is a promising route to investigating 
behavior in situations of varying complexity.

Still, to fully utilize subjects’ free viewing and free explo-
ration behavior, methods like eye-movement classifications 
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must be employed in VR experiments. While much work 
has been invested in classifying eye movements in two-
dimensional (2D) environments, leading to well-defined, 
well-tested, and applied eye-tracking algorithms (Anders-
son et al., 2017), the literature still needs to reach this stage 
for three-dimensional (3D) environments like those present 
in VR studies. Recording eye-tracking data in the much-
used Unity3D VR environment additionally provides the 
challenge of a low and comparatively unstable sampling 
rate. However, good progress has been made recently. Eye-
tracking algorithms introduced for 3D free-viewing data can 
be grouped into velocity and dispersion-based algorithms 
(Duchowski, 2017; Llanes-Jurado et al., 2020), similar to 
2D algorithms. For example, Llanes-Jurado and colleagues 
(2020) proposed a dispersion-based algorithm suitable for 
3D data recorded in Unity3D. Similarly, Keshava and col-
leagues (2023) used a velocity-based algorithm adjusted to 
fit trial-based free-viewing data recorded in VR. For clas-
sifying continuous data with varying noise levels, making it 
difficult to detect small eye movements, Dar and colleagues 
(2021) offered the solution to split the recording into smaller 
segments based on high spikes of noisy velocity data. 
This velocity-based algorithm has yet to be tested for data 
recorded in VR. Furthermore, subjects’ eye and body move-
ments challenge the calculation of eye-movement velocities. 
Recording eye movements in 3D VR scenes while allowing 
for rotational or translational movements results in eye-in-
head movements or rotations of the eye in the world that do 
not directly correspond to movements of the optical image 
on the retina. Moreover, accounting and correction for sub-
jects’ movements are essential for reliably using velocity-
based eye-movement classification algorithms. Employing 
a velocity-based algorithm that can classify continuous data 
allows virtual reality studies employing free viewing and 
exploration behavior to be implemented and compared to 
the existing literature.

Additional complexity is added when recording EEG in 
free-viewing virtual reality studies. In traditional laboratory-
based setups, the timing of stimulus presentation, while the 
subject is fixating on a display, is under the precise control 
of the experimenter and can be used to align different tri-
als across long recordings. The absence of predefined tri-
als with repetitions of behavior makes drawing conclusions 
and subject comparisons difficult (Dar et al., 2021). In free-
viewing experiments, this challenge can be circumvented by 
defining event or fixation onsets as equivalent to trial onsets 
(Dimigen et al., 2011), requiring eye-tracking algorithms to 
capture these accurately and precisely. These allow for the 
analysis of fixation-onset event-related potentials (fERPs) 
and event-related spectral perturbations (fERSPs) (Dimigen 
et al., 2011; Gert et al., 2022), making eye-movement clas-
sification, including their precise timing, critical. Therefore, 
as they are better suited to determine the saccade offsets 

and gaze onsets (Nyström & Holmqvist, 2010), velocity-
based algorithms are preferred to be combined with time-
sensitive measures, such as EEG. Furthermore, the com-
plexities of measuring eye movements while exploring a 3D 
virtual environment interact to define the temporal onset of 
fixation events precisely. To our knowledge, an eye-tracking 
algorithm suitable to analyze fixation-onset ERP/ERSPs in 
free-viewing virtual reality experiments while accurately 
accounting for subject movement has yet to be implemented 
and tested.

In the present study, we aim to develop the procedures 
and validate recordings of EEGs and eye movements in VR 
to analyze fERPs and fERSPs. We created a virtual, 3D 
environment for our participants to explore while recording 
eye-tracking and EEG. Eye movements were classified using 
a velocity-based algorithm and an adaptively determined 
velocity threshold (Keshava et al., 2023; Voloh et al., 2020). 
Furthermore, we used a data-driven segmentation method 
to deal with long recordings without predefined trials (Dar 
et al., 2021). As our subjects could move freely within the 
virtual scene, we corrected their translational movements, 
ensuring a sound interpretation of eye-movement veloci-
ties. Note that our algorithm does not differentiate between 
different types of eye-stabilization movements but instead 
summarizes them as “gazes”. The output of our data classifi-
cation was tested via visual inspection and various measures, 
including event duration, temporal development of changes 
in velocities, and the comparison with hand-labeled data. We 
then used the gaze onsets as event and trial onset and inves-
tigated the quality of the EEG signal. Specifically, we inves-
tigated fERPs and fERSPs, the first of which, measuring 
evoked activity, requires a precise trial onset (Luck, 2014), 
and the second, while less time-sensitive, still relies on the 
onset of events (Cohen, 2014). Finally, we compared the 
EEG signature of each trial to the average fERP and fERSP 
signal. We observed a lower time sensitivity and a lower 
variance over trials for ERSPs compared to ERPs, indicating 
that fERSPs are potentially better suited for free viewing and 
exploration experiments. Overall, we can accurately deter-
mine saccade offset or gaze onset using the eye-tracking data 
recorded with Unity, which is suitable for analyzing fERPs 
and fERSPs.

Methods

Participants

Thirty-six subjects participated in this study. Of the 36 
recorded subjects, 17 had to be rejected for various reasons: 
seven due to noisy EEG signals (determined by the amount 
of data rejected), three subjects due to failure to accurately 
perform the eye-tracking validation, one subject due to an 
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inaccurate sampling rate, and four due to motion sickness. 
Two subjects were rejected as they failed to stay within the 
designated movement area, even after repeated reminders. 
After rejecting subjects, the final data analysis included 19 
subjects (ten females, zero divers, mean age = 21.737 ± 
1.408 years), predominantly students from the University of 
Osnabrück. All 19 subjects had normal or corrected-to-nor-
mal vision and gave written informed consent to participate 
in the study. Their participation was rewarded with monetary 
compensation or course credits. The ethics committee of the 
University of Osnabrück approved the study.

Experimental setup and procedure

The virtual environment was built using Unity3D (www.​
unity.​com) version 2019.4.21f1 using the built-in Universal 
Render Pipeline/Unlit and one central light source to illu-
minate the environment uniformly. The 3D city center-type 
environment comprised 118 houses, background objects 
such as trees or park benches, and different pedestrians (see 
Fig. 1; prefabs taken from Nezami et al., 2020). During the 
experiment, participants wore the HTC ViveProEye HMD 
(110° field of view, resolution 1,440 x 1,600 pixels per eye, 
refresh rate 90 Hz; https://​busin​ess.​vive.​com/​us/​produ​ct/​
vive-​pro-​eye-​office/) with the Eye-Tracking SDK SRanipal 
(v1.1.0.1; https://​devel​oper-​expre​ss.​vive.​com/​resou​rces/​
vive-​sense/​eye-​and-​facial-​track​ing-​sdk/). Movements were 

tracked using the HTC Vive Lighthouse 2.0 tracking system 
(https://​www.​vive.​com/​eu/​acces​sory/​base-​stati​on2/). Mov-
ing forward and backward within the virtual scene was made 
possible by using the HTC Vive controllers 2.0 (https://​
www.​vive.​com/​eu/​acces​sory/​contr​oller​2018/, sensory feed-
back disabled). The experiment was displayed at a constant 
frame rate of 90 Hz, recorded on an Alienware Aurora Ryzen 
computer (using a Windows 10 system, 64-bit, build-version 
19044; 6553 MB RAM) with an Nvidia RTX 3090 GPU 
(driver version 31.0.15.2698) and an AMD Ryzen 9 3900X 
12-Core CPU. Behavioral data, including eye-tracking 
data and participant movement, were saved using Unity’s 
‘FixedUpdate’ loop. EEG data were recorded using the 
OpenVIBE acquisition server, v2.2.0 (Renard et al., 2010; 
see EEG data acquisition and analysis for more details). 
This was done on a separate Dell Inc. Precision 5820 Tower 
computer using a Windows 10 system (64-bit, Build 19044), 
an Nvidia RTX 2080 Ti GPU (driver version 31.0.15.1694), 
and an Intel Xeon W-2133 CPU. EEG and behavioral data 
were aligned with LabStreamingLayer (LSL; https://​github.​
com/​sccn/​labst​reami​nglay​er). During the experiment, sub-
jects were seated on a wooden swivel chair that allowed 
them to turn 360° (see Fig. 1A). The EEG amplifier was 
placed in a wooden box on the back of the chair.

The experiment was designed as a free exploration 
study with minimal task instructions: Subjects should 
imagine waiting for a friend they plan to meet. They were 

Fig. 1   Experimental setup and the virtual reality scene. (A) Experi-
mental setup with the participant wearing an EEG cap and VR 
glasses. The participant is seated on a swivel chair with the amplifier 
placed in a wooden box on the back of the chair. (B) A scene of the 

virtual reality scene. (C) The bird's eye view of the central section 
of the city. The gray round dot in the middle is the horse statue, and 
the small squares on the lower half of the screen are the roofs of the 
houses seen in (B)

http://www.unity.com
http://www.unity.com
https://business.vive.com/us/product/vive-pro-eye-office/
https://business.vive.com/us/product/vive-pro-eye-office/
https://developer-express.vive.com/resources/vive-sense/eye-and-facial-tracking-sdk/
https://developer-express.vive.com/resources/vive-sense/eye-and-facial-tracking-sdk/
https://www.vive.com/eu/accessory/base-station2/
https://www.vive.com/eu/accessory/controller2018/
https://www.vive.com/eu/accessory/controller2018/
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
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consequently instructed to stay close by and not leave the 
beige pavement (see Fig. 1B and C). This was the only 
area where houses and other city-center-like structures sur-
rounded the subjects. Additionally, we gave the subjects 
explicit instructions to behave as close to real life as pos-
sible, with the exception of not rotating their heads up or 
down, as our pilot recordings revealed that this movement 
elicited noisy EEG data. Within the designated area, sub-
jects could move freely. The subjects’ movement consisted 
of small displacements, mimicking real-life walking move-
ments. After receiving the experimental instruction, subjects 
started with a five-point eye-tracking calibration and vali-
dation test, followed by a 1-min-long motion sickness test, 
completed in the same virtual city but in a separate street 
that could not be reached during the experiment. Only when 
passing these tests were subjects allowed to participate in the 
study. The experimental duration was 30 min, with 5-point 
validation and possible re-calibration break every 5 min.

Temporal alignment checks of data streams using 
LabStreamingLayer

As timestamps were recorded and sent to LabStream-
ingLayer via Unity3D and the OpenVIBE acquisition 
server, v2.2.0 (Renard et al., 2010), we implemented spe-
cific latency checks to control for timing differences that 
might influence our analysis. These tests were completed 
without subjects wearing the headsets before the actual 
data collection of the study began. For these tests, a plane 
switched in Unity once every 500 ms from black to white 
for precisely one frame before turning back to black. These 
switches between black and white were pushed to LSL via 
the Unity ‘FixedUpdate’ loop, using a fixed frame rate of 90 
Hz. A photodiode attached to the HMD, acting as the light 
sensor, captured the changes once they were visible and fed 
them directly into the EEG amplifier at a sampling rate of 
1,024 Hz. The input from the photodiode was measured via 
the OpenVIBE acquisition server (Renard et al., 2010). Six 
repetitions of these latency tests were performed, recording 
durations varying from 7.32 to 65.80 min (median = 20.49 
min; interquartile range (IQR) = 12.9–20.64 min). These 
latency tests were performed four times in the virtual envi-
ronment used for recording and twice in a 2D environment 
built explicitly for latency tests (for the analysis, see Vidal 
De Palol & Nolte, 2020). The recorded latencies are the 
differences between the measured timestamps of Unity and 
EEG over time and across recordings. These steps can be 
used to assess the quality of the temporal alignment of the 
different recorded streams.

A linear drift between the time stamps recorded by the 
OpenVibe acquisition server (Renard et al., 2010) and Unity 
occurred during the recordings. The absolute difference 
between EEG and Unity timestamps between the beginning 

and end of the recording (median across subjects = 53 ms; 
IQR = 45–87 ms) was added to the recorded timestamps to 
correct this drift for each participant separately. In order to 
account for possible inaccuracies of frame drops from Unity, 
the Unity time stamps were interpolated before the drift was 
linearly added to the data during analysis. The interpolated 
timestamps were excluded before defining the event and 
therefore the onsets used for the EEG analysis. Additionally, 
a shift between the beginning of the EEG and Unity times-
tamps was removed by subtracting the first EEG timestamp 
from the Unity timestamps. Importantly, to accurately align 
the different time streams, both eye-tracking and EEG should 
be recorded from the start of the experiment until the very 
end. We applied LSL to synchronize the different devices 
and data streams. Additionally, we corrected the procedural 
drifts by a linear fit. Specifically, we determined the change 
of duration at the start and end of the different streams and 
corrected this drift using the time axis only. Please note that 
this correction used no information from the recorded EEG 
or eye-tracking data. As a result, the two timestreams could 
be accurately aligned.

Eye‑tracking preprocessing and classification

Before applying the eye-tracking classification algorithm, 
the data were preprocessed. Invalid eye-tracking samples, 
which included blinks, were recorded and marked in the 
data. If the duration of the invalid period was longer than 
20 ms, samples up to 23 ms before and after the invalid 
period were also rejected (Dar et al., 2021). Afterward, inva-
lid periods smaller than 250 ms were interpolated (median 
amount of interpolated data across subjects = 2.823%; IQR 
= 1.881–3.914%). This rather long period was chosen in 
accordance with Walter et al. (2022). There, the interpo-
lation period was justified with the analysis that subjects 
were unlikely to fixate on one object, move their fixation 
to another object, and then back again within the period of 
250 ms (Walter et al., 2022). In the current paper, while we 
interpolated long data segments, invalid data is still rejected 
from further analysis.

The participant positions and hit points (the intersec-
tion of the gaze direction vectors with objects in the world) 
needed for the eye-movement classification, specifically 
the translational movement correction, were filtered using 
a 5-point median filter. We selected this filtering method 
as it deals well with single outlying samples without low-
passing, smoothing saccadic onset and offset. These preproc-
essed eye-tracking data were then used for eye-movement 
classification.

The employed eye-movement classification algorithm dif-
ferentiates between fixations and saccades based on the eye 
angular velocity, which is influenced by translational move-
ment within the virtual environment. Figure 2A displays 
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two different hit points that might be viewed in sequence, 
one on the ground (hit point 1) and one on a building (hit 
point 2), as well as two different subject positions (subject 
positions 1 and 2) between which a translational movement 
occurred. Note that the distance between subject positions 
1 and 2 has been exaggerated relative to the distance of the 
viewed objects for didactic purposes. This graph demon-
strates the two potential issues that arise when not correcting 
for translational movement. First, one can consider that a 
translational movement occurs while the subject focuses on 
the same point in the world. When viewing hit point 2, the 
green (diagonal) vector indicates the allocentric eye direc-
tion at the first point in time. The red (straight up) vector 
indicates the eye direction at the second point in time. If not 
correcting for translational movement, we infer a non-zero 
angular velocity, i.e., the angle between the green and red 
vectors, even though the object viewed and the correspond-
ing hit point stays the same. Alternatively, the subject could 
translate their body without changing the allocentric eye 

direction. This results in two different hit points but zero 
angular velocity of the eye. In our figure, this is represented 
by the parallel blue and red allocentric eye directions. If 
we do not correct the translation of the subject, our algo-
rithm will not recognize a shift in hit points even though one 
occurred. As a result, it is essential to correct translational 
movement in a virtual environment that includes transla-
tional movements of the subjects.

We therefore introduced a movement correction before 
calculating the eye angular velocity (Keshava et al., 2023) 
used to define gazes and saccades. The key to our approach 
is first to compute the hit point's movement in allocentric 
coordinates and then translate it to the required change of 
eye direction in allocentric coordinates. Figure 2B demon-
strates this movement correction for both issues. The first 
step was to calculate the shift of the hit points without con-
sidering the position it was seen from, which is represented 
as the green vector v-eye-vec in Fig. 2B. If the distal hit 
point did not move (first problem), this shift is zero and 

Fig. 2   Schematic representation of the translational movement cor-
rection. Seen here is a schematic overview of our correction for 
translational movements. The plot (A) motivates using a translational 
movement correction within virtual reality. We show two consecutive 
subject positions (subject positions 1 and 2) and a vector indicating 
the translation between the two and two different hit points (hit points 
1 and 2) on top of a screenshot of our virtual city. Note that the dis-
tance between subject positions 1 and 2 has been exaggerated relative 
to the distance to the viewed objects for didactic purposes. Three pos-
sible allocentric eye directions are displayed in blue (the left of the 
two parallel vectors), green (diagonal), and red (the right of the two 
parallel vectors). Without movement corrections, an angular veloc-
ity between each combination of these vectors could occur. However, 
when considering the green and red vectors, where the eye direction 
changes but the hit position does not, or the blue and red vectors, 

where the hit positions change but the eye directions do not, a correc-
tion for the translation is needed to determine the differences between 
fixations and saccades accurately. In (B), we show a visual represen-
tation of the algorithm in the case of a translation but no change in 
the allocentric eye direction. The dark gray lines correspond to the 
two eye directions if the subject had not moved. While corresponding 
to the second viewing direction, the light gray line did not enter the 
equation. The two red vectors correspond to the eye direction (eye-
vec), the green vector, v-eye-vec, to the shift of the hit points with-
out taking the subject position into consideration, and the blue line 
v-eye-in-plane is the projection of v-eye-vec onto a plane orthogonal 
to the viewing direction. Finally, the angle w-eye (drawn in orange) 
represents the calculated angular velocity irrespective of translational 
movements
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will stay so in the following operations. Next, this vector 
(v-eye-vec) was projected on a plane orthogonal to the 

viewing direction (eye-vec, the red vector in Fig. 2B), which 
we called v-eye-in-plane and represented by the blue line:

(1)‖v − eye − in − plane(t)‖ = ‖v − eye − vec(t) − (⟨v − eye − vec(t), v − eye − vec(t)⟩ ∗ eye − vec(t))‖

where t indicates a time point, ⟨∙, ∙⟩ the scalar product, and ‖⋯ ‖ 
the Euclidean norm. Using v-eye-in-plane, we determined the 
changes of the eye direction in allocentric coordinates, or more 

specifically, the angular velocity w-eye, by calculating the 
arctan between v-eye-in-plane and the current viewing direc-
tion, eye-vec, and dividing this by the difference in time:

(2)
w − eye

�
t1

�
=

arctan2
�
‖subject − position

�
t1

�
− hit − point

�
t1

�
‖, v − eye − in − plane

�

t2 − t1

with t1 and t2 representing two consecutive time points. 
Finally, this angle was transformed from radians into degrees. 
As a result, we received the change of eye direction the sub-
ject would have made from the first to the second hit point 
without a translational movement. Specifically, whether the 
subject was standing in place while executing a change in 
the viewing direction or translating a considerable amount 
while maintaining an allocentric eye direction did not enter 
the calculation, thereby giving invariant results under dif-
ferent degrees of translation. It is important to note that the 
original normalized direction vectors obtained from Unity 
did not have a length of one. We assume this was due to an 
internal rounding error. In order to avoid systematic errors, 
it is recommended to recompute and normalize these offline.

Angular velocities above 1,000 °/s (Dar et al., 2021) were 
corrected to 1,000 °/s to exclude biologically impossible eye 
movements. The velocities were then filtered again using a 
Savitzky–Golay filter (length of 3 s, polynomial order of 2).

The calculated angular velocities (Keshava et al., 2023) 
were classified into gaze events (smooth pursuit and fixa-
tions) and saccades based on an adaptively calculated 
threshold (Voloh et al., 2020). This experiment did not 
have predefined trials, so applying the adaptive thresh-
old method to the entire dataset would only detect very 
big saccades. As a solution, data were segmented using 
the method introduced by Dar and colleagues (2021): 
data segments of the eye-movement data were calculated 
by applying the MAD saccade algorithm to the entire 
eye-tracking recording to determine a global threshold. 
Large eye movements, typically saccades, exceeding this 
threshold were ranked according to the sum of velocities 
within this threshold and used as event boundaries until 
an average frequency of 2 Hz across the entire recording 
was reached (Dar et al., 2021). Overall, across subjects, 
the method resulted in a median segment duration of 256 
ms (mean = 251 ms; min = 167 ms; max = 299 ms). This 
data segmentation method is referred to as the ‘data-driven 
method’ in the following text.

A preliminary analysis found that a data-driven method 
occasionally produced very short intervals. This depended 
on the filtering details and was most likely caused by our 
relatively low sampling rate. Therefore, for the first part of 
the paper, we additionally contrasted the data-driven method 
with the method of cutting the data into 10-s intervals. A 
separate threshold was calculated for each of these seg-
ments. This solution is referred to as the ‘10-s method’ in 
the following. By comparing the two methods, we wanted to 
investigate the reliability of a robust data segmentation with 
a fixed time scale versus an adaptive algorithm.

Finally, we corrected for outliers or inconsistencies within 
the data. If the direction vector hit more than one object 
during the same gaze interval, the object with the most hits 
was considered the current focus. Events with biologically 
implausible durations (saccades < 20 ms, gazes < 40 ms) 
were merged with the previous event. The slightly longer min-
imum saccade duration of 20 ms compared to the literature 
(Dar et al., 2021) was due to the relatively low sampling rate 
of 90 Hz. In line with Keshava et al. (2023), too-long gazes 
or saccades were identified and rejected if they deviated more 
than 3.5 from the median absolute deviation across all sub-
jects. Finally, invalid eye-tracking periods were rejected. The 
classification for one subject is shown in Fig. 3. In the paper, 
we use this same subject to demonstrate the results for a single 
subject. The subject was not selected for specific reasons other 
than being the first subject recorded.

To assess the accuracy of this eye-tracking algorithm, we 
compared the output of the classification algorithm to the 
hand-labeled data of one subject. We manually classified 
gazes and saccades for the first subject using the unfiltered 
gaze direction vectors. Additionally, we classified invalid data 
using the information given by the eye-tracker. Analogous to 
the algorithm-defined events, we corrected for outliers in the 
manually classified data if their duration deviated more than 
3.5 from the median absolute deviation. The results of the 
hand-labeled data were compared to the algorithm perfor-
mance on a sample-by-sample and event-onset basis.



Attention, Perception, & Psychophysics	

Data distribution

The data distribution was assessed by analyzing the num-
ber and percentages of gazes, saccades, and outliers. The 
number of gazes and saccades was calculated separately for 
both data segmentation algorithms. As the counts across 

subjects were not normally distributed, we report the median 
and interquartile range (IQR = Q1–Q3). Differences in the 
number of gazes and saccades between the segmentation 
algorithms were quantified using a Kolmogorov-Smirnov 
(KS) test. Similarly, percentages of events were calculated 
for both classification algorithms, excluding breaks for 

Fig. 3   Results of the eye-tracking classifications. These data were 
selected to show various properties and problems of the algorithm. 
(A) and (B): The output of both data segmentation methods is shown. 
The x-,y-, and z-coordinates for hit points (A) and direction vectors 
(B) are plotted against time (in seconds). Each coordinate is divided 
into gaze (in blue) and saccade (red-yellow colors) events. Vertical 
lines indicate that the eye direction hit a new collider. In (C), the 

eye angular velocity (dashed green line), as well as the head angu-
lar velocity (light green dotted line), are plotted over the same period. 
The classification threshold for the 10-s method is shown in dark and 
the data-driven method in light grey. The colored outlined rectangles 
indicate events of interest (see Results: Classification fit for more 
details)
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validation and calibration. Outliers were divided into invalid 
samples, composed of blinks and the inability to accurately 
detect the eyes during the recording, and outliers of event 
durations that were too long, reported separately for gazes 
and saccades. Differences between the data segmentation 
algorithms for percentages were assessed using a KS test 
and a post hoc Bonferroni correction. Besides the visual 
inspection, these are the only analyses used to compare the 
two data-segmentation algorithms.

EEG data acquisition and analysis

We recorded EEG data with a 64-channel Ag/AgCl-elec-
trode system, placed according to the international 10/20 
system using a Waveguard cap (ANT, the Netherlands) and 
a Refa8 (TMSi, the Netherlands) amplifier. Impedances were 
kept below 10 kΩ. Data was recorded at 1,024 Hz using an 
average reference and a ground electrode placed under the 
left collarbone. The data was preprocessed using EEGLAB 
(Delorme & Makeig, 2004). First, the data was re-refer-
enced to Cz for preprocessing, high pass filtered to 0.5 Hz 
(EEGLAB plugin firfilt, pop_eegfiltnew, using a hamming 
window; Widmann et al., 2015), and downsampled to 512 
Hz. As a note, we did not apply a baseline correction, as 
there is no obvious choice of baseline in our dataset consist-
ing of a sequence of gazes and saccades occurring in alterna-
tion. As a remedy, we applied a relatively high band limit 
of 0.5 Hz. Gaze onsets defined using the eye-tracking algo-
rithm and data-driven segmentation method were inserted 
into the data. Noisy channels (mean channels rejected = 
13.89 ± 4.74) were visually inspected and channels with 
comparatively high power in high frequencies were rejected 
from further analysis. Additionally, if individual channels 
were noisy over longer segments and the rejection of those 
segments would have resulted in a rejection of the entire 
subject, these noisy channels were also rejected. Similarly, 
data segments containing muscle activity were visually 
inspected and rejected (median number of trials rejected 
= 1,251, IQR = 863.5–1,447.5). Subjects with more than 
40% of rejected data were excluded from further analysis. 
Eye movements were manually rejected using independent 
component analysis (ICA, amica12; Palmer et al., 2012) 
performed on epoched and high-pass filtered data at 2 Hz 
(Dimigen, 2020; mean ICs rejected = 14.78 ± 3.7), guided 
by the output of ICLabel (Pion-Tonachini et al., 2019). After 
applying the ICA weights on the continuous data, the data 
was re-referenced to average reference, and noisy channels 
were interpolated (spherical interpolation). For EEG data 
segmentation, we considered fixation-onset defined events 
within the spirit of classical stimulus-driven setups. In the 
following, when speaking of one trial (terminology adapted 
from standard ERP experiments), we refer to a segment of 
the EEG signal lasting from -200 up to 500 ms around a gaze 

onset. Therefore, the only results of the eye-tracking clas-
sification algorithms relevant for the EEG data analysis, such 
as ERPs or ERSPs, are the exact timing of the gaze onsets.

For the time-frequency analysis, the preprocessed data 
were epoched from -875 ms to 1,175 ms, leaving a buffer 
zone of three cycles of 8 Hz to avoid contamination of the 
results with edge effects later on (Cohen, 2014). The time-
frequency decomposition was calculated with the FieldTrip 
(Oostenveld et al., 2011) function ft_freqanalysis using a 
Morlet wavelet. Since the trade-off between the time and 
frequency resolution can be controlled with the width of 
the wavelet (Cohen, 2014; Gross, 2014), the wavelets con-
sistently had three cycles, favoring a better time resolution. 
The decision to favor a time over a frequency resolution was 
made to evaluate the effects of the precise timing of fixa-
tion-onset defined events on the measured neuronal activity. 
The time-frequency analysis was conducted for single sub-
jects and all subjects. For the time-frequency analysis, we 
compare the power in different frequency bands before and 
after the onset of an eye movement event. Considering the 
average saccade durations observed for the subjects, which 
were predominantly shorter than 200 ms, a baseline period 
ranging from -500 ms to -200 ms was chosen to reduce any 
potential bias caused by saccadic eye movements (Cohen, 
2014) when calculating the time-frequency decomposition. 
While the current baseline period was chosen to exclude 
the specific saccadic period leading up to the gaze event, 
we acknowledge that the interval of 300 ms will typically 
include other fixations and eye movements, like saccades.

Results

LabStreamingLayer and data stream alignments

Different tests revealed that using LSL to align timestreams 
from different recording computers or software is possible 
for our setup. We recorded a mean latency between send-
ing and displaying a visual stimulus of 82 ms (std = 0.6 
ms). Additionally, we recorded an average temporal dis-
tance between individual frames of 0.98 ms for the EEG 
time stream (equivalent to 1,024 Hz; std = 0.000 ms) and 
a temporal distance of 11 ms for the Unity time streams 
(equivalent to 90 Hz; std = 0.9 ms). Taken together, these 
results confirmed constant latencies when using LSL and 
only a low number of frame drops after enforcing 90 FPS.

Eye‑tracking classification

We must rely on secondary measures to validate the eye-
tracking algorithm, as we do not have ground truth in 3D 
recordings. Therefore, as a first step, we visually inspected 
the classification results (Fig.  3). Please note that the 
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subjective impression of the classification of hit points 
(Fig. 3A) and eye direction vectors (Fig. 3B) as gazes or 
saccades were rather similar for both algorithms. Only at 
closer inspection were small differences visible. Both seg-
mentation algorithms showed that changes in the hit posi-
tion often, but not always (middle red outlined rectangle, 
Figs. 3A–C), correlated with a change in collider (displayed 
using purple vertical lines), meaning that eye movements 
were made between objects. Additionally, a change in the hit 
position was usually aligned with saccades, indicated by a 
change in the color of hit points and gaze direction. In a few 
cases, a change of the hit position was not accompanied by a 
saccade, as seen at around 648.8 s (green small outlined rec-
tangle). These were likely due to inaccurate measurements 
or a too-low sampling rate of the eye-tracker to capture very 
small eye movements. Figure 3 also shows events corrected 
for being too short, for example, at around 647.6 s (blue 
outlined rectangle) for the data-driven but not a 10-s method 
(Fig. 3A and B). Investigating the differences between the 
two segmentation algorithms revealed an additional devia-
tion: while both segmentation methods classified events 
simultaneously, some of the saccades for the 10-s method 
are notably longer than the ones for the data-driven method, 
for example, at 648.4 s (red outlined rectangle). This was a 
result of a comparatively lower classification threshold in 
this interval. Finally, comparing the angular head velocity 
and the angular eye velocity (Fig. 3C), some large saccades 
aligned with head movements. This means that both seg-
mentation algorithms matched the underlying data well and 
classified the eye-tracking output similar to what one would 
expect by manual classification, with the data-driven method 
fitting slightly better than the 10-s interval.

Data distribution

We investigated the distribution of gazes, saccades, 
and outliers to explore potentially unusual distribu-
tions and differences between the two segmentation 
algorithms. Counting the different events after outlier 
rejection, the data-driven method resulted in a median 
of 4,917 total gazes (IQR = 4,384.5–5,105.5; median 
number of saccades = 4,704, IQR = 4,351.5–4,863.0) 
and the 10-s method in 4,780 total gazes (IQR = 
4,546.0–4,863.0; median number of saccades = 4,687, 
IQR = 4,471.5–5,073.5). A KS test revealed no signifi-
cant differences in the number of events for either data 
segmentation method (gazes: p = 0.808; saccades: p = 
0.808). Next, we analyzed the percentages of the total 
time for the different categories (Fig. 4). The recorded 
data contained a median of 3.44% (IQR = 2.73–4.25%) of 
invalid samples, meaning the eyes could not be accurately 
detected during these periods. After applying eye-move-
ment classification, investigating the distribution of events 
for both data segmentation methods revealed similar ten-
dencies. For the data-driven method, a median 55.96% of 
the data were gazes (IQR = 53.97–57.12%), 21.0% were 
saccades (IQR = 19.94–22.8%), and 21.68% were outli-
ers, comprising invalid samples, gazes that were too long 
(median = 10.36%, IQR = 8.25–11.85%), and saccades 
that were too long (median = 8.35%, IQR = 7.57–9.81%). 
Similarly, the 10-s method resulted in a median of 53.91% 
gazes (IQR = 51.67–55.28%), 21.24% saccades (IQR = 
18.86–22.04%), and 24.85% outliers (invalid samples; long 
gazes = 12.63%, IQR = 10.23–13.74%; long saccades = 
9.32%, IQR = 8.74–9.98%). Performing a KS test and a 

Fig. 4   Distribution of gazes and saccades. The plot shows the results 
for both data segmentation methods, in (A) the 10-s method and (B) 
the data-driven method. Each data point represents the percentage of 
one participant. The percentages of each subject's gazes, saccades, 

and outliers are calculated. ‘Out gaze’ stands for gaze events excluded 
from the data for being too long, and ‘Out sacc’ represents the per-
centage of saccades excluded for being too long. Invalid samples are 
all samples that were not accurately collected
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post hoc Bonferroni correction revealed no significant 
difference between these data segmentation algorithms. 
Overall, both algorithms resulted in nearly identical distri-
butions of events. In the following analysis, we addition-
ally tested both segmentation methods but did not observe 
any significant difference in the distribution of the various 
derived measures. As a result, the remaining analyses were 
reported using only the data-driven method.

Eye and head movements

To assess the quality of the recorded data, we investigated 
eye and head movements after classification. Most global 
eye movements encompassed the horizontal x-z-plane with 
fewer gazes in the vertical direction directed to the very top 
or bottom of the environment (Fig. 5A). A similar but more 
extreme pattern could be seen for head movements with 
most head movements falling within the horizontal x-z-plane 
(Fig. 5B). Considering that the global eye-direction vectors 
combined head and local eye movements, these results indi-
cated that head movements mediated the preference for the 
horizontal direction. This became apparent when investigat-
ing the normalized eye-in-head direction vectors. Figure 5C 
displays the eye-in-head direction vectors for the horizon-
tal and vertical directions. The distribution of these eye-
in-head direction vectors did not favor the horizontal over 
the vertical direction, with an average absolute maximum 
horizontal value of 0.59 ± 0.04 and a vertical value of 0.59 
± 0.05. Additionally, most of the eye-in-head direction vec-
tors fell within the forward-facing direction. Finally, sac-
cade vectors, normalized to saccade onset (Fig. 5D), were 
calculated by subtracting the coordinates at the beginning 
from the coordinates at the end of the saccade. They closely 
mirrored what could be observed for the eye-in-head direc-
tion vectors, spanning the entire space, with slightly longer 
saccades in the horizontal than vertical direction. Examining 
the eye movements revealed that the recorded data followed 
anticipated patterns and was suitable for further analysis.

Next, we investigated the saccadic main sequence to 
verify the validity of the classified eye movements. The 
accuracy of saccadic eye movements can be supported by 
demonstrating a correlation between saccadic amplitude 
and peak velocity (Bahill et al., 1975; Dar et al., 2021). We 
calculated saccade amplitudes corresponding to the angular 
velocities by correcting for subjects’ translational movement 
(see Fig. 2 for more detail). Differently from velocities, the 
saccade amplitude was calculated between the centroids of 
two consecutive fixations. Furthermore, we did not divide 
the amplitude by time. As seen in Fig. 5E, the peak velocity 
is positively correlated with saccade amplitude (r(79420) 
= .34, p = .0). These results are in line with previously 
reported effects (Bahill, 1975; Dar et al., 2021) and support 
the validity of the classified eye-tracking data.

Besides the direction vectors and the saccadic main 
sequence, the position towards and distance to the hit objects 
could be evaluated to verify the quality of the recorded 
data. The spatial distribution of these gazes can be seen in 
Fig. 5G, shown overlaid on top of the central section of the 
virtual city. The locations of the hit objects captured the 
layout of the Unity scene. The colliders’ boundary lines, 
representing the outlines of objects used to define the object 
boundaries in Unity, of the different objects in the scene are 
visible due to many gazes falling on them, compared to the 
ground or sky. Generally, gazes were distributed across the 
entire scene, with most gazes landing within the area sub-
jects were walking through during the experiment. Figure 5F 
shows the distribution of distances kept to the hit object. 
While we observed differences between subjects, calculating 
the median (mdn) and interquartile range (IQR = Q1–Q3) 
for gazes and saccades across subjects’ medians revealed 
no differences between the distances kept to hit objects for 
gazes and saccades (gazes: mdn = 16.68 Unity units, IQR 
= 14.39–19.29; saccades: mdn = 16.48 Unity units, IQR = 
14.37–19.09). A KS test confirmed these results (p-value = 
1.000). These results indicated that subjects maintained a 
certain distance from the objects they gazed at while avoid-
ing looking at objects that were too far away.

Event durations

We investigated the average duration of saccades and gazes 
to validate the eye-tracking classification further. While 
there were minor variations among participants, the overall 
difference in duration between gazes and saccades remained 
consistent across all subjects (Fig. 6). For each subject, the 
duration of gazes was longer than that of saccades, and the 
distribution of gaze duration was broader. Across subjects, 
the median duration of saccades calculated by the data-
driven method was 0.067 s (IQR = 0.067–0.068 s). Gazes 
had a duration of 0.178 s (IQR = 0.177–0.194 s). Applying a 
KS test revealed significant differences in the event durations 
(p-value = 0.0000). Additionally, means showed a similar 
difference between gazes (mean = 0.183 s ± 0.015) and sac-
cades (mean = 0.07 ± 0.006). These results align with the 
anticipated patterns of eye movements, revealing shorter sac-
cades and longer gazes.

Velocity distribution in relation to gaze onset

Another way to evaluate the classification output's quality is 
the velocity distribution across multiple events. The angu-
lar eye velocities before gaze onset (Fig. 7A; indicated by 
the red lines) were generally higher than after. Addition-
ally, the further away from gaze onset a sample lies, the 
less uniform the data looked. Different peaks of high veloc-
ity occurred at different time points due to different gaze 
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intervals potentially overlapping. Overall, for each subject, 
the algorithm produced high-velocity samples before gaze 
onset and low-velocity samples after gaze onset, as seen 
in Fig. 7B. Velocities at about 110 ms before gaze onset 

slowly increased, terminating in the highest median of 
median velocities at about 11 ms before gaze onset. After 
gaze onset, the median velocities remained relatively low 
and stable throughout the rest of the interval, indicating less 

Fig. 5   Eye and head movements. The data displayed uses the data-
driven segmentation method. (A) Corrected and normalized direc-
tion vectors are shown for all gazes and all subjects. Each subplot 
depicts two of the three coordinates of the direction vector. (B) All 
participants’ normalized head direction vectors for the horizontal and 
vertical coordinates can be seen. (C) Normalized eye-in-head direc-
tion vector's horizontal and vertical coordinates. (D) Horizontal and 
vertical coordinates of the saccade vectors aligned to saccade onset. 

(E) The peak velocity of each saccade is plotted against the saccade 
amplitude of the corresponding saccade. (F) The average distance 
for all subjects' saccades (red) and gazes (blue). The density curve is 
plotted to start at zero, excluding impossible distances and allowing 
easier data comprehension. (G) All gazes' average x- and z-positions 
are displayed for all subjects. This plot only shows the Unity scene's 
central section (similar to Fig. 1C), so gazes on objects further away 
are not displayed. The walkable area of this plot is marked in red
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eye movement. Similarly, the distribution of peak velocities 
was the highest close to gaze onset, specifically at -22 to -11 
ms before gaze onset (Fig. 7C). The distribution of velocities 
before and after gaze onset highlighted that we could seem-
ingly define the gaze onsets as expected.

Dispersion distribution in relation to gaze onset

Besides investigating the temporal development of saccades 
and gazes, we studied the average dispersions for all sub-
jects in relation to gaze onset. The change of dispersions was 
calculated as the Euclidean distance between two consecu-
tive hit points. The dispersion distribution was similar to 
the velocity distribution. As seen in Fig. 8, at roughly -110 
ms before gaze onset, we saw a slow increase in the disper-
sion density distributions for all subjects. At about -44 ms 
before gaze onset, the change in the hit position reached a 
local peak. The locations of the hit points changed the most 
between the second to last and the last sample before gaze 
onset. After gaze onset, the density distributions remained 
relatively low and stable. Changes in the hit position shortly 
before but not after gaze onset supported a clean determina-
tion of fixation onsets.

EEG results

As the next step in our analysis, we turn to the recorded EEG 
data. We analyzed the EEG signal first in the time domain, 
from -200 to 500 ms before and after gaze onset. As an 
example, we first focus on occipital electrodes to investi-
gate visual evoked potentials (Luck, 2014). Using the clas-
sified gaze onsets, Figure 9A shows the fERP for one indi-
vidual and averaged over all subjects. Overall, 3,414 (IQR = 

3,050–4,067) trials went into the calculation of single-sub-
ject ERPs. While minor between-subject variations were vis-
ible at the highest point for the P100, an average ERP across 
subjects revealed the shape of the P100, similar to literature 
(e.g., Luck, 2014). It was, however, visible that the underly-
ing data and average fERPs are noisy, potentially caused 
by the movement and wearing of the head-mounted display 
during the experiment or by an inexact gaze classification. 
Investigating the distribution of the fERPs for all electrodes 
for one subject showed an expected pattern of high ERP, 
specifically P100, responses in the occipital electrodes (see 
Fig. 9B and C; Luck, 2014). Considering the time-sensitive 
nature of an ERP analysis, these results were a good indica-
tor of the accuracy of determining gaze onsets. They indicate 
that combining eye-tracking data recorded in VR and EEG 
allows us to analyze the data in a meaningful way.

As a next step, we analyzed fixation-onset ERSPs. For 
this purpose, spectrograms depicting the activation of one 
and all subjects at the electrode Oz using decibels (dB) as a 
unit were plotted (Fig. 10). The time was clipped from -500 
ms to 800 ms, and the frequencies ranged between 2 and 45 
Hz with 0.5-Hz increments. These spectrograms indicated 
an increased activation peaking at 100 ms followed by a 
decrease in power around 200 ms after fixation onset. The 
frequency range with a power increase was wider for the 
single subject than for all subjects, including theta, alpha, 
and beta bands. In contrast, the increase in mean activation 
across all subjects was only centralized to the theta and alpha 
bands. The decreased frequency range (5–35 Hz) did not dif-
fer between the single subject and all subjects. The fERSP 
results reveal a distinct pattern after gaze onset characterized 
by a power increase peaking 100 ms post-gaze onset, sub-
sequently followed by a power decrease in the next 100 ms. 

Fig. 6   The average duration of gazes and saccades. The plot shows the density distributions of gaze (blue) and saccade (red) durations for all 
subjects individually
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Fig. 7   Eye angular velocity distribution. (A) The eye’s angular veloc-
ities of 200 consecutive time periods are aligned to gaze onset (red 
line). Each row is centered around one gaze onset, about 220 ms 
before and 385 ms after gaze onset. Please note that all three sub-
plots – (A), (B), and (C) – were created using individual frames. As a 
result, the time points given on the x-axis are comprised of small var-
iations of the timing of individual values due to the slightly varying 
frame rate. The colors represent the different velocities, with darker 
blues corresponding to higher velocities. All velocities exceeding 

200 °/s are corrected to that value for easier visibility. Depending on 
the length of one gaze and saccade, the end of a row can include the 
beginning of the next gaze. (B) The median velocity of each subject 
(blue) and the median of medians across subjects (black) plotted over 
time (-220 to 418 ms) are aligned to gaze onset (red line). (C) The 
density distributions of peak velocities for each subject (blue) and the 
distribution across all subjects (black) are shown from 110 ms before 
gaze onset to 22 ms after gaze onset

Fig. 8   Change in the dispersion distribution. Similar to the velocity 
plots, the change in dispersion is aligned to gaze onset. The distribu-
tion is shown for roughly -220 ms before gaze onset to 418 ms after. 
The plot was created using frames, and as a result, the time points 

given on the x-axis are comprised of small variations in the timing of 
individual frames. The median dispersion for each subject is shown in 
blue, and the median across subjects is black
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These temporal power perturbations suggest that the experi-
mental setup and recorded data are sufficiently accurate to 
yield significant results for high-quality analysis.

A topographic analysis of the fERSP data was conducted 
to explore the spatial distribution of neural activity further. 
This analysis focused on the two-time windows with the 
strong power perturbations in the theta and alpha frequency 
bands (4–15 Hz) identified by the spectrograms for each 
condition. The first time interval extended from gaze onset to 

150 ms post-gaze onset, while the second time interval cov-
ered 160–300 ms post-gaze onset. During the first time win-
dow, an increase in power was observed over the occipital 
electrodes, with a more pronounced power increase for the 
single subject (Fig. 10C) compared to all subjects (Fig. 10E). 
In the second time window, a consistent and substantial 
power decrease was observed over the occipital electrodes 
for a single subject and all subjects (Fig. 10D and F). Addi-
tionally, there was a slight tendency for the power changes 

Fig. 9   Fixation-onset event-related potentials (fERPs). (A) Here are 
fERPs at electrode Oz (64-channels; average reference) calculated 
for each subject (blue lines) and across subjects (black line), with the 
subject used as an example in other figures shown in red. The data 
was aligned to gaze onset and epoched from 200 ms before gaze onset 
until 500 ms after. (B) and (C) show the topographical distribution of 
the signal for one subject, the same as used for the single-subject eye-

tracking plots. The time durations in (B) are identical to (A), ranging 
from -200 to 500 ms. In (C), the topographical distribution of four 
time points, 0–20 ms, 80–100 ms, 150–170 ms, and 280–300 ms, is 
presented. The topoplots (created using the default parameters of the 
FieldTrip ft_topoplotER (Oostenveld et al., 2011) function) for each 
time duration is an average across 20 ms
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to the right occipital hemisphere. The topographical maps 
suggest an occipital dominance of the power perturbations in 
the theta and alpha frequency bands during these time win-
dows, aligning with previous literature (e.g., Cohen, 2014).

Finally, we assessed the time sensitivity and the potential 
influence of temporal uncertainty for both fERPs and fER-
SPs. To achieve this, we compared the Pearson correlation 
coefficients between fERPs and fERSPs, spanning the same 
time interval (-200 to 500 ms), to individual trials with no 
shift, trials with a shift of minus one eye-tracking sample 
compared to gaze onset, and trials with a shift of plus one 
sample. Specifically, we compared the average fERP and 
fERSP with EEG trials using the same data as was used to 
calculate the average fERP/fERSP, once by setting the EEG 
trial onset to one eye-tracking sample in the past compared to 
the actual classified gaze onset, and once by taking an EEG 
trial onset one eye-tracking sample in the future compared 
to the actual gaze onset. With our eye-tracking sampling rate 
of 90 Hz, the two latter trial onsets were therefore shifted by 

11 ms either into the future or past compared to the origi-
nal trial onset. In the results of only one subject, we can 
see differences in the correlation coefficients between ERPs 
and ERSPs (Fig. 11A). While the correlation coefficients 
and their distributions changed with the shift conditions for 
ERPs (Fig. 11A and B), the correlation for ERSPs did not 
change as much. Yet, the median ERSP correlation coef-
ficients were much higher than those of the ERPs (Fig. 11A 
and C; the no-shift median for the ERP = 0.069 and for 
ERSP = 0.596). Across subjects, these observations are 
confirmed. The median correlation coefficients of the ERPs 
had a high between-subject variance and visible differences 
between all three shift conditions, with the no-shift having 
the highest correlation for all subjects. A repeated-measure 
ANOVA and post hoc Bonferroni correction revealed a sig-
nificant difference between the no-shift condition and both 
shifts for the ERPs (p-value no-shift - pos-shift = 0.000; 
p-value no-shift - neg-shift = 0.000), with no significant 
difference between the two shift conditions. Like ERPs, the 

Fig. 10   Power of fixation-onset event-related spectral perturbations 
(fERSPs). (A) and (B) show the spectrograms of fERSPs at Oz (plot-
ted using the FieldTrip ft_singleplotTFR function (Oostenveld et al., 
2011); baseline = db). Time in seconds is given on the x-axis and the 
frequencies are on the y-axis. Warmer colors indicate an increase, 
and colder colors a decrease. The vertical dashed line marks the gaze 
onset at 0s. The baseline period ranged from -500 to -200 ms and is 
highlighted in gray. The data are averaged across all trials for one sin-
gle subject at (A) and all subjects at (B). In both spectrograms, an 
increase at around 100 ms followed by a decrease at approximately 
200 ms can be observed. However, in a single subject (A), this 
increase's frequency band is observed to be wider than the average 

of all subjects (B). (C) and (D) show the scalp topographies for the 
frequencies 4–15 Hz for the single subject and (E) and (F) the corre-
sponding topographies for all subjects. The plots (C) – (F) are created 
using the default parameters of the FieldTrip ft_topoplotTFR function 
(Oostenveld et al., 2011). The two different time intervals are chosen 
to depict the increase and the decrease in the power that would be 
comparable in both spectrograms – (A) and (B) – and they are 0–150 
ms and 160–300 ms. (C) and (E) show both a power increase in the 
occipital electrodes for the first 150 ms after gaze onset, while for the 
second time interval, (D) and (F) show both a power decrease in the 
occipital lobe with a slight tendency to the right hemisphere
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median correlation coefficients of the ERSPs had a high 
between-subject variance, yet no difference between the shift 
conditions could be observed. A repeated-measure ANOVA 
confirmed this, revealing no significant differences between 
the conditions. The assumption of sphericity for both ANO-
VAs was validated using the Mauchly test. Finally, the mean 
ERSP correlation for the no-shift condition across subjects 
was 0.596, close to .1 higher than the mean correlation coef-
ficients of the ERPs. These results demonstrated that ERSPs 
are less time-sensitive than ERPs and have a smaller vari-
ance across trials, and are therefore better suited to study 
behavior in free-viewing experiments.

Comparing the classification of our algorithm 
with hand‑labeled data

As we do not have ground truth for our dataset, we assess 
the accuracy of the algorithm classification using hand-
labeled data. At first, we compared the data on a sam-
ple-by-sample level, i.e., comparing how often a sample 
is classified by either procedure as being part of a gaze, 
saccade, invalid segment, or an outlier. The results can 

be seen in Fig. 12A. We observe a high congruence of 
gazes. Interestingly, the data differs for the saccades, with 
roughly as many hand-labeled samples classified as sac-
cades as gazes. For gazes and saccades, while the order 
of magnitude is the same between the hand-labeled data 
and the algorithm-classified data, the number of gazes and 
saccades between both differ. For the algorithm, we have 
a total of 4,917 gazes and 4,799 saccades; for the hand-
labeled data, we have 6,793 gazes and 6,744 saccades. As 
the timing of the gaze onsets is relevant for the current 
purpose, we additionally assessed the temporal shift in 
gaze onsets of the algorithm compared to the hand-labeled 
data (see Fig. 12B). Comparing gaze onsets up to +/- 110 
ms revealed a median shift of 0.0 and an IQR = -1–3. It is 
important to note, however, that we had a total of 846, or 
17.21%, algorithm-labeled gaze onsets that were further 
apart from hand-labeled gaze onsets than 110 ms. Besides 
the samples that could not be matched to a hand-labeled 
event, most gaze onsets were similar in time, as indicated 
by our median. However, the IQR demonstrates that our 
algorithm tends to define gaze events slightly later than 
the hand-labeled data.

Fig. 11   Correlation of individual trials with the averaged fixation-
onset event-related potential (fERP) and fixation-onset event-related 
spectral perturbation (fERSP). The Pearson correlation coefficients 
between each trial's EEG signal and each subject's average ERP and 
ERSP were calculated for channel Oz to compare the time sensitivity 
of the two measures. For this step, the data were high-pass filtered 
to 5 Hz as this analysis did not aim to investigate the effects of low-
frequency drifts. The procedure was completed using trials with ini-
tial trial onsets classified with the eye-tracking algorithm (blue) and 
taking the trial onset as one eye-tracking sample before the origi-

nally classified gaze onset (red, in the middle) and one sample after 
the classified gaze onset (green). Both shifts were correlated with 
the average ERP and ERSP without a shift. In (A), we provide the 
median correlation coefficients for all three conditions for one sub-
ject, the same as used in previous plots. The three left bars are the 
correlation coefficients for the ERPs and the right for the ERSPs. 
Correspondingly, (B) and (C) display the density distribution of the 
correlation coefficients for this subject, with (B) displaying the ERP 
results and (C) the ones for the ERSPs
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Discussion

The present study aimed to classify eye-movement data 
recorded in virtual reality to generate fixation-onset ERPs 
and ERSPs. Using our eye-movement classification algo-
rithm, we showed that we could accurately classify eye 
movements of 3D free-exploration data and that we can 
generate fERPs and fERSPs, proving that combining EEG 
and free-viewing virtual reality setups is possible. We inves-
tigated the classification quality using our modified version 
of a velocity-based classification algorithm (Dar et al., 2021; 
Keshava et al., 2023; Voloh et al., 2020), correcting for sub-
ject movement in the virtual environment. Furthermore, 
we compared two data-segmentation methods dealing with 
varying noise levels across a long recording. The two meth-
ods exhibited a solid performance with only minor differ-
ences visible. As the different measures revealed no relevant 
significant differences, we consider the data-driven method 
(Dar et al., 2021) to elicit a fully adequate description of our 
data. Therefore, our classification algorithm's final imple-
mentation is a combined and adapted version of the MAD 
saccade (Voloh et al., 2020) and REMoDNav algorithm (Dar 
et al., 2021), correcting for translational movement in a 3D 
environment.

The recorded data used to classify gazes and saccades 
was clean, and both the gaze vectors and hit points accu-
rately capture the eye movements. Our correction of transla-
tional movement, which improved the data quality, resulted 
in very clean eye-tracking data, comparable to results in the 
literature (Duchowski, 2017). Head movements and, to a 
smaller degree, eye movements predominantly occurred 

within the horizontal rather than the vertical direction; sub-
jects rarely tilted their head upwards. The displayed behav-
ior could have directly been caused by our instructions not 
to rotate the heads up and down. Another explanation for 
the observed behavior could be an environmental contribu-
tion: Most objects of interest were at participants' eye height 
and might not have elicited further head or eye movements. 
Whether the results were caused by either one of these fac-
tors or a combination of both cannot be determined based on 
our data alone. However, similar results of higher variability 
in the horizontal compared to the vertical eye-in-head direc-
tion could be observed in real-world free-viewing studies 
(Foulsham et al., 2011; ’t Hart & Einhäuser, 2012), and it 
has been shown that subjects’ heading direction was aligned 
with selective visual attention (Thom et al., 2023). Overall, 
the 3D eye-tracking data recorded using virtual reality was 
comparable to literature findings and suitable for classifying 
separate events.

After classifying our eye-tracking data into gazes and sac-
cades, several measures can be employed to investigate the 
quality of the classification. As a first measure, the average 
duration and duration distributions of saccades and gazes are 
comparable to the literature (Dar et al., 2021; Llanes-Jurado 
et al., 2020; Nyström & Holmqvist, 2010). We have skewed, 
non-Gaussian distributions for both gazes and saccades. Our 
saccade durations are slightly longer than previous data pre-
sented in the literature (Dar et al., 2021; Nyström & Hol-
mqvist, 2010), most likely due to our lower sampling rates. 
In order to exclude potential outliers, saccades with a dura-
tion of only a single sample were rejected. The finite sam-
pling rate resulted in a relatively high observable minimum 

Fig. 12   Comparison of the algorithm classification with hand-labeled 
data. (A) visualizes the sample-by-sample comparison of the labels 
assigned by the classification algorithm (x-axis) and by hand-labe-
ling. In (B), the temporal offset of the algorithm-defined gazes is 
compared to the hand-labeled data. The bar at 0 ms represents the 
amount of data where the algorithm-defined gaze onsets align with 
the hand-labeled onsets. The other bars correspond to the temporal 

shift in either direction. For example, the bar at -55 ms shows the 
number of gazes where the algorithm onset started 55 ms before the 
hand-labeled onset. If the gaze onset difference in the negative and 
positive direction was identical, we added ½ for both. As a note, the 
plot was created using frames, so the ‘temporal offset’ labels contain 
small variations in their timing
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saccade duration and, therefore, a longer median and mean 
duration. The mean gaze duration, on the other hand, aligned 
with previously reported data (e.g., Duchowski, 2017; 
Llanes-Jurado et al., 2020). It is comparable between sub-
jects, proving that the event classification mostly works as 
intended. Interestingly, this study's between-subject differ-
ences are smaller than those of other studies (e.g., Nyström 
& Holmqvist, 2010). It is hard to differentiate if this results 
from our free viewing paradigm or is based on the 3D data 
we collected with the relatively lower sampling rate. Simi-
larly, the velocity distributions across eye-movement event 
sequences and subjects follow a pattern expected when using 
a velocity-based algorithm: We see high velocities before 
and comparable lower velocities after gaze onset (Nyström 
& Holmqvist, 2010). The wide distribution of saccade peak 
velocities with the highest density close to gaze onset mim-
ics the distribution of saccade durations. It therefore pro-
vides additional support for the known underlying saccade 
velocity profile (Harris & Wolpert, 2006). As velocity and 
dispersion distributions in relation to gaze onset are often 
related (Duchowski, 2017), our dispersion distributions sup-
ply additional support for expected underlying saccade and 
gaze profiles. In contrast, while the overall performance of 
the classification algorithm is similar to the hand-labeled 
data, the comparison raises two main points of considera-
tion. First, the two methods resulted in a different number 
of events, with many hand-labeled saccades being classified 
as gazes. This difference might have been caused by the 
comparatively long (Dar et al., 2021) minimum saccade and 
gaze durations, an effect of the low sampling rate. Addition-
ally, investigating the event-onset shifts revealed a tendency 
of algorithm-based event onsets to start after hand-labeled 
gaze onsets. This discrepancy could be caused by the differ-
ent classifications of post-saccadic oscillations (Dar et al., 
2021). While our algorithm might classify them as part of a 
saccade, the hand-labeled data might already consider them 
part of the gaze. Therefore, while our classified events fol-
low many patterns observed in the literature, demonstrating 
that our classification algorithm might work as intended, it 
also highlights room for improvement.

Trusting in the current classification, gaze onsets were 
utilized for fERPs and fERSPs to investigate the combina-
tion of EEG and virtual reality recordings. The time-sensi-
tive aspect of the EEG signal can be used to easily examine 
the signal quality (Cohen, 2014; Luck, 2014) and, conse-
quently, the quality of the definition of saccade offsets and 
gaze onsets. Investigating fERPs or fERSPs based on data 
recorded with virtual reality poses the challenge of dealing 
with the low eye-tracking sampling rates (Duchowski, 2017). 
According to Luck (2014), temporal inaccuracies of ± 10 
ms are acceptable, indicating that a stable frame rate of 90 
Hz is most likely suitable for this analysis. Our data confirm 
this observation, as the generated fERPs show a similar time 

course to that reported in previous literature (Luck, 2014). 
As an important note, we did not yet control and correct for 
temporally overlapping events (Ehinger & Dimigen, 2019; 
Gert et al., 2022; Henderson et al., 2013) which might affect 
the overall shape of our fERPs. Specifically, for shorter fixa-
tion durations, the following fixation can occur earlier com-
pared to longer fixations, and as a result, the early neuronal 
components of the following fixation will be superimposed 
on the late components of the preceding fixation (Dimigen 
et al., 2011; Henderson et al., 2013). Furthermore, a pos-
sible modulation of the overall shape of the fERPs due to 
the relatively high high-pass filter (Tanner et al., 2015) can-
not be disregarded. This consideration might be particularly 
important when investigating modulations of ERPs caused 
by different experimental conditions (Tanner et al., 2015). 
Besides the fERP analysis, using a Morlet wavelet trans-
formation, the time-frequency analysis showed promising 
results with changes in the activity at 100 ms and 200 ms 
after the stimulus onset, similar to the fERP components. 
Our results from the time-frequency analysis yielded activ-
ity in the theta to beta band frequencies but only very low 
activity at the gamma frequencies. One reason for the low 
gamma-band activity could be the saccadic spike artifacts, 
which affect experimental setups with non-stationary stimu-
lation (Hipp & Siegel, 2013), such as in our study. However, 
our study differs from this publication in two aspects. First, 
we looked at the activity at the occipital rather than the pari-
etal electrodes (Hipp & Siegel, 2013). Second, to be com-
parable with the fERP analysis, our time-frequency analysis 
favored a better time resolution and, therefore, lacked pre-
cision in the frequency resolution. As a result, to investi-
gate the gamma frequencies further, the analysis should be 
optimized for that objective. Importantly, differences in the 
correlation between the activity at trial onsets without and 
trial onsets with temporal jitter only influenced fERPs and 
not fERSPs, meaning fERSPs are less affected by temporal 
uncertainty, confirming findings from the literature (Cohen, 
2014). This indicated that in recordings challenged with tem-
poral inaccuracies or lower sampling rates, fERSPs might be 
the better-suited analysis. Besides temporal uncertainty, the 
correlation coefficients were higher for fERSPs than fERPs, 
indicating a lower between-trial variance and, thus, fewer 
trials required to estimate a sound time-frequency analysis. 
For experiments using a free-viewing and free-exploration 
context, this reduces the burden of precisely reproducing 
experimental conditions with a large number of trials and 
might, therefore, be the preferred method. Combining eye-
tracking data recorded in virtual reality and classified using 
our algorithm has a high enough temporal precision to gen-
erate fERPs and fERSPs, yet for free-viewing experiments, 
fERSPs might provide more accurate results.

Combining EEG and virtual reality in a free-viewing setup 
raises the question of possible influences on the signal quality, 
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especially since, even after careful preparation, our data was 
quite noisy for many subjects, some of which could not be 
included in the final data analysis. The influence of head move-
ments and HMDs on the quality of EEG signals has been 
investigated in various studies, including our own experiences 
(Izdebski, et al., 2016; Oliveira et al., 2016; Wang et al., 2020; 
Weber et al., 2021). It is known that vertical and, to a smaller 
degree, horizontal head movements greatly affect the signal-to-
noise ratio (Luck, 2014; Oliveira et al., 2016; Tauscher et al., 
2019), yet preprocessing steps, such as ICA, can handle these 
motion artifacts (Oliveira et al., 2016). Furthermore, studies 
have demonstrated that it is possible to collect EEG data while 
subjects are wearing an HMD without reducing the signal 
quality (Izdebski et al., 2016; Wang et al., 2020; Weber et al., 
2021). It is clear that specific care has to be taken, but in our 
own work, we did not observe a negative impact of combining 
these two methods (Izdebski et al., 2016; Oliveira et al., 2016).

Finally, when combining EEG and VR in free-viewing 
and exploration studies, some general points need to be con-
sidered. Integrating different methodologies while subjects 
move freely can lead to high data drop-out. In the current 
study, almost half of all subjects could not be included in the 
final data analysis. Other than noisy EEG signals, motion 
sickness was an issue for many subjects. Motion sickness 
can be dealt with through different means, e.g., through short 
recordings, active movement in the virtual and simultane-
ously in the real world (Clay et al., 2019), and with the help 
of motion sickness tests at the beginning of the recording. 
Overall, planning to record more subjects than needed is 
essential. Another point to consider is the accurate align-
ment of timestreams. Combining eye-tracking and EEG 
data in long recordings without predefined trials requires a 
constant and high enough frame rate, which can challenge 
specific virtual reality setups (e.g., Walter et al., 2022). 
Velocity-based algorithms generally require high sampling 
rates (Duchowski, 2017; Larsson et al., 2013), so should the 
sampling rate fall below 90 Hz, another quality check of the 
proposed algorithm and a comparison between the two data 
segmentation methods might be needed. Altogether, while it 
is possible to combine EEG and eye-tracking data recorded in 
a free-exploration, virtual-reality experiment, specific issues 
can arise that make the combination of both challenging.

In this paper, we implemented an algorithm that is suitable 
for determining gaze onset events. During the early phases of 
the project, we pursued the preferable choice of using already 
existing tools. There are a number of tools available to classify 
eye movements for static 2D images (e.g., Dar et al., 2021); 
however, we found that dynamic scenes created by the 3D 
environment, as well as allowing subjects to move, caused a 
problem. So, step by step, we modified and appended exist-
ing algorithms to this more demanding scenario (Dar et al., 
2021; Keshava et al., 2023; Voloh et al., 2020). Specifically, 
adding EEG into the mix considerably increased the demand 

for precision (Luck, 2014). With the current algorithm, we 
have a workable solution, yet it does not mean that this is the 
end of the development. In particular, differences between the 
hand-labeled data and the algorithm-defined classifications 
raise points of improvement, such as the different number 
of events or the timing of event onsets. Delving further into 
these differences might refine the classification. Additionally, 
further improvements on the algorithm to allow a subsam-
ple precision in defining fixation onset would be desirable. 
Such a solution would decouple the EEG signal sampled at a 
high frequency from measuring the eye movements typically 
sampled at a much lower frequency in a VR setup. Overall, 
however, we consider the current version to perform reason-
ably well enough for the current purpose of combining EEG 
and eye-tracking data.

In conclusion, this project aimed to investigate the pos-
sibility of combining eye-tracking data recorded in virtual 
reality with EEG data in a free viewing study. We modified 
and tested a version of the MAD saccade (Keshava et al., 
2023; Voloh et al., 2020) and REMoDNav (Dar et al., 2021) 
algorithm while additionally correcting for subjects’ trans-
lational movement within the virtual scene. The behavioral 
results indicate an accurate classification of eye movements 
into gazes and saccades. Using the gaze onsets as trial 
onsets, we generated fixation-onset ERPs and ERSPs, with 
fERSPs being less time-sensitive and requiring fewer trials 
to be estimated; they are therefore better suited for more 
naturalistic experiments. These results provide a methodo-
logical basis for combining different techniques, such as 
EEG and eye-tracking, in more realistic free-viewing and 
free-exploration virtual reality studies. Therefore, as virtual 
reality allows for investigating phenomena in more natu-
ralistic settings without losing the replicability and con-
trol usually provided by traditional laboratory studies, this 
opens the possibility for many questions to be answered in 
the future.
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