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Abstract
Proximity and feature similarity are two important determinants of perceptual grouping in vision.When viewing visual scenes
conveying both grouping options simultaneously, people most usually detect proximity groups faster than similarity groups.
This article demonstrates that perceptual judgments of grouping orientation guided by either proximity or contrast similarity
are indicative of a sequential organization of grouping operations in the visual pathway, which lends a temporal processing
advantage to proximity grouping (Experiment 1). Invoking the double-factorial paradigm, latent cognitive architecture for
perceptual grouping is also investigated in a task with redundant signals (Experiment 2). Reaction time data from this task is
assessed in terms of the race model inequality, workload capacity analysis, and interaction contrasts of means and survivor
functions. Again, empirical benchmarks indicate serial processing of proximity groups and similarity groups, with a self-
terminating stopping rule for processing. A subset of participants exhibit atypical performance metrics, hinting at possible
individual differences in configural visual processing.
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The human visual system is highly fluent in parsing opti-
cal input into structured and meaningful units, commonly
termed perceptual groups (Wertheimer, 1923; Wagemans
et al., 2012; Kubovy et al., 1998) . The Gestalt laws gov-
erning perceptual organization in vision include grouping by
closeness in space (law of proximity) and grouping by shared
featural properties such asmatching contrast level or hue (law
of similarity). An important theoretical issue in vision sci-
ence is whether a common set of mental operations supports
all types of grouping or whether distinct operations gov-
ern particular Gestalt laws (Houtkamp & Roelfsema, 2010;
Roelfsema & Houtkamp, 2011; Zucker et al., 1983; Palmer
et al., 2003). Vision researchers have therefore tried to char-
acterize the cognitive mechanisms of perceptual grouping
in terms of their structural locus (Grassi et al., 2016; Gross-
berg &Williamson, 2001; Han et al., 2002, 2001; Fang et al.,
2008; Huberle&Karnath, 2012) aswell as the time-course of
different grouping operations relative to one another (Baylis
& Driver, 1992; Pomerantz & Garner, 1973; Pomerantz &
Schwaitzberg, 1975; Palmer et al., 2003; Han &Humphreys,
1999; Han, 2004; Schmidt & Schmidt, 2013; Wannig et
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al., 2011; Rashal et al., 2017; Razpurker-Apfeld & Kimchi,
2007).

A prominent finding from this research is that proximity
grouping has a relatively fast time-course when compared to
similarity grouping through shared attributes such as simi-
lar shape, similar color, and so forth (Ben-Av & Sagi, 1995;
Luna et al., 2016; Villalba-García et al., 2018; Trick & Enns,
1977).We shall refer to this empirical finding as the proximity
advantage. This article is concerned with elucidating the fac-
tors at play in the chain of visual processing eventswhich give
rise to the proximity advantage. To this end, we investigated
people’s ability to judge the orientation of perceptual groups
defined by proximity and contrast similarity. This ability was
examined under conditions of focused attention (Experiment
1) and divided attention (Experiment 2). Of particular the-
oretical interest is whether proximity groups and contrast
similarity groups are processed in serial or in parallel, and
the extent to which these two grouping mechanisms operate
independently.

Proximity advantage

A key source of evidence for the proximity advantage
comes from a series of studies conducted by Han and
colleagues (Han & Humphreys, 1999; Han et al., 2001,
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2002; Han, 2004). In one experiment (Han et al., 2001,
Experiment 1), the authors investigated the time-course of
perceptual grouping by proximity and similar shape. Partic-
ipants were presented with visual arrays containing simple
geometrical forms (circles and squares) organized in a peri-
odic pattern. We show these arrays in Fig. 1 for the reader’s
convenience. On each trial, the local elements of the array
were organized into either a horizontal or a vertical configu-
ration such that the perceptual groups formed either rows or
columns. This was achieved by periodically spacing the ele-
ments further from some neighboring elements and closer
to others (proximity grouping), or by organizing the pat-
tern into repeated stripes of circles and squares (similarity
grouping). For each array, people were required to indicate
if the grouping orientation was vertical or horizontal with a
speeded button press. Event-related potentials (ERPs) asso-
ciatedwith the two types of groupingweremeasured together
with response times (RTs) and error rates. Their results can
be recapitulated as follows:

Speeded orientation judgments of proximity grouping
were on average faster and more accurate than similarity
grouping judgments. Proximity grouping also elicited an
early positivity difference over the medial occipital cortex.
This early positivity was not present for arrays grouped by
shape similarity. Instead, similarity grouping was associated
with a longer latency ERP component over the lateral occip-
ital cortex. Roughly comparable results were obtained in
another study investigating the grouping cues of proximity
and color similarity (Han et al., 2002) although this study did
not observe a difference in accuracy for proximity and simi-
larity grouping. In broad strokes, these findings are consistent
with the notion of an earlier structural locus of visual process-

Fig. 1 Schematic illustration of stimulus materials from Han et al.
(2001). The upper row depicts arrays with proximity grouping, and
the lower row depicts arrays with similarity grouping. Whenever one of
the leftmost arrays are presented, participants had to respond “vertical”.
When one of the rightmost arrays are presented, they had to respond
“horizontal”

ing for proximity groups relative to similarity groups, which
manifests both behaviorally and electrophysiologically as a
proximity advantage in the temporal domain.

It has been suggested that the faster time-course of
proximity grouping relative to similarity grouping reflects
constraints on visual processing imposed by the hierarchical
arrangement of subdivisions in the human visual pathway
(Sasaki, 2007; Huang, 2015; Han et al., 2005; Quinlan &
Wilton, 1998). Under this view, grouping cues such as prox-
imity are seen to be fairly low-level in the sense that they
are detected already at the earliest stage of perceptual orga-
nization. This processing stage is assumed to be primarily
concerned with spatial configuration, but to be strikingly
insensitive to cues for similarity grouping, such as whether
a given region of space is red or blue, for example. Only
at a subsequent processing stage are proximity groups com-
plemented by perceptual analysis of contingencies in visual
dimensions such as similarity of color or shape. This state of
affairs then lends a temporal processing advantage to prox-
imity grouping over similarity grouping.

The above sketched account of perceptual grouping oper-
ations can then be conceived as a serial processing chain:
Proximity groups are detected first, and similarity groups
later. This sequential conceptionof perceptual groupingoper-
ations in the visual pathway might admittedly oversimplify
matters because it posits that theflowof information is strictly
feed-forward. Empirically, top-down control and recurrent
feedback are believed to influence perceptual grouping
(Roelfsema, 2006; Kon & Francis, 2022; Dobbins & Gross-
mann, 2002; Beck & Palmer, 2002; Fang et al., 2008).
However, the extent to which feed-backward interactions
support perceptual grouping under conditions of time pres-
sure (such as in standard RT tasks when people are instructed
to respond very fast) is an open question. One possible way to
investigate whether proximity groups and similarity groups
are processed in serial is to examine people’s ability to pro-
cess more complex visual stimuli, which sometimes contain
conflicting configural information, as explained below.

Congruence effect

A paradigm for studying interactions between grouping
cues was developed by Han (2004). People were shown
visual arrays wherein the individual elements were grouped
together on the basis of proximity and similarity, such that
each grouping cue served to induce either a vertical or a
horizontal grouping orientation. Participants had to attend
to the orientation of a target grouping cue (while ignoring
the orientation of the non-target cue as best they could) and
indicate whether the target group was arranged horizontally
or vertically. Sometimes the two cues indicated the same
orientation (cooperation trials) and sometimes opposite ori-
entations (conflict trials; see upper and lower panels of Fig. 2,
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Fig. 2 Schematic illustration of stimulus materials fromHan (2004). In
the upper row of arrays, grouping by proximity and grouping by shape
similarity indicate the sameglobal stimulus configuration in cooperative
fashion. In the lower row of arrays, proximity and shape similarity
indicate conflicting stimulus configurations

respectively). Again, proximity orientation judgments were
particularly fluent in terms of both speed and accuracy (the
proximity advantage). More pertinent, however, responses
were also slower and more error prone when the two group-
ing orientations conflicted as compared to when they were in
cooperation. This congruence effect was more pronounced
when similarity was the target group than when proximity
was the target group.

The attenuated congruence effect for proximity group ori-
entation judgments is further consistent with the idea that
proximity and similarity groups are processed in serial. To
intuit why, consider the following analogy of two factory
workers in the act of assembling light bulbs next to a con-
veyor belt: First, worker number one determines whether the
caps are properly fitted to the bulb (processing stage 1). The
second worker then evaluates each light bulb individually by
screwing it into an electrical socket (processing stage 2). If
the first worker sends a bulb with an improperly fitted cap
(a conflicting array) down the conveyor belt, then the second
worker might encounter some difficulty fitting the bulb into
the socket (slower processing). However, in the contrasting
case, where the secondworkermakes an errorwhile screwing
a properly fitted light bulb into the socket, this does not entail
a problem for the first worker because the conveyor belt only
rolls forward and never in reverse (the manufacturing pro-
cess is sequential feed-forward). Assume that a similar serial
processing architecture holds for perceptual grouping, so that
proximity groups are processed prior to similarity groups:We
would then expect that the conflicting proximity groups can
interfere with judgments of similarity group orientation, but
the conflicting similarity groups should conversely not inter-

fere with judgments of proximity group orientation, similar
to what was observed by Han (2004).

A caveat that complicates the interpretation of these data
is that Han (2004) did not use a neutral condition. By neu-
tral condition, we mean a set of trials in which only a single
grouping cue is present in the array. Comparing performance
metrics on conflict and cooperation trials relative to a neutral
baseline might provide new clues about the origins of the
congruence effect which constrain theoretical accounts of
perceptual grouping by proximity and similarity. Three dif-
ferent interpretations of the congruence effect seem possible:
First, two cooperating cues might facilitate performance by
conveying convergent information about orientation to the
observer (a facilitation effect). Second, two conflicting cues
might interfere with performance by providing discordant
information (an interference effect); and finally, some com-
bination of facilitation and interference could also mimic the
observed pattern of results. These three accounts cannot cur-
rently be distinguished from the data at hand.

To summarize, it seems worthwhile to further investigate
whether the congruence effect is the same when proximity is
the task-relevant grouping cue and when similarity is task-
relevant. The study by Han (2004) found that the congruence
effect was attenuated for proximity judgments, implying that
possible cross-talk between processing stages might not be
strictly symmetrical. This asymmetry is seemingly in line
with the serial processing account of the proximity advan-
tage, according to which the faster time-course of proximity
grouping reflects the precedence of spatial analysis in early
visual processing. It is also of interest to determine if the con-
gruence effect is due to interference or facilitation (or both)
from the task-irrelevant grouping dimension. Experiment 1
aimed to test whether cross-talk between proximity group-
ing and similarity grouping is bidirectional, and whether said
cross-talk interferes with or facilitates performance.

Experiment 1 (Focused attention)

This preregistered experiment (https://osf.io/tjrw5) relied on
a grouping orientation judgment task similar to Han (2004).
The purpose was to study interactions between grouping by
proximity and grouping by contrast similarity. Participants
were presented with visual arrays as depicted in Fig. 3 and
were instructed to judge the orientation of the target group as
either vertical or horizontal. A novel tweak to the experimen-
tal design was the inclusion of a baseline condition (leftmost
panels) in which only a single grouping cue was present
in the array. The baseline condition was intended to serve
as an empirical benchmark against which to compare per-
formance on conflict and cooperation trials (analogous to
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Fig. 3 Schematic depiction of stimulus materials from Experiment 1.
The upper row depicts representative array configurations for proxim-
ity judgments, and the lower row depicts the corresponding arrays for
similarity judgments. From left to right, the array types depict baseline,

cooperation and conflict trials, respectively. Please note that with the
exception of baseline trials, the array configurations were the same for
proximity judgments and similarity judgments

the ‘target alone’ condition in Eriksen and Eriksen, 1974).
This should enable us to distinguish between the three pos-
sible accounts of the congruence effect, namely facilitation,
interference, or both. We were also interested in whether
congruence effects are the same for proximity and similarity
judgments.

Method

Participants

Sixty individuals were recruited from a native German-
speaking participant pool via the online service Prolific
(www.prolific.com). Six of them were excluded due to
exhibiting low (< 90 %) overall accuracy of responding,
yielding a final sample size of 54 individuals (39 males) with
a mean age of 30 years (age range, 18–64 years). All par-
ticipants were naïve to the purpose of the experiment and
reported normal or corrected-to-normal vision. They com-
pleted a single session each at a time and place of their
choosing, with the only constraint being that they follow
through the procedure on a personal computer rather than
on a phone or a tablet.

The target sample size was determined through a priori
power analysis based on iterative Monte Carlo simulation.
The power analysis aimed to determine the sample size suffi-
cient to achieve what corresponds to 95 % frequentist power
for all pertinent research hypotheses. Data were simulated
and fitted 10,000 times to confirmatory Bayesian statistical
models in steps of increasing sample size with the Bayes
factor (BF) criterion threshold set to substantial evidence

(BF > 3). The simulation was informed by extensive pilot
testing of the experiment.

Apparatus and stimuli

Stimulus presentation and response recording was controlled
by a script in PsychoPy software (Peirce et al., 2019)
and implemented online on the launch platform Pavlovia
(https://pavlovia.org/). Participants responded by making
one out of two possible button presses on their keyboards;
the ‘up’ arrow to indicate a vertical grouping arrangement
(columns) or the ‘right’ arrow to indicate a horizontal group-
ing arrangement (rows). Visual stimuli were quadratic arrays
containing 16 gray monochrome squares organized in a 4 ×
4 grid. The arrays were presented centrally on the computer
monitor against a dark background. The global configuration
of the arraywasmanipulatedby adjusting theproximity of the
squares, or their relative contrast level, or both. The purpose
of these manipulations was to induce perceptual grouping
by dividing the arrays into either an upper and a lower sub-
set (rows) or a left and right subset (columns) such that the
array was organized into groups along the horizontal or ver-
tical main axes, respectively. Stimulus materials are depicted
schematically in Fig. 3.

To ensure that the visual stimuli retain proportionality
despite variability in monitor size and screen resolution,
the stimulus metric was defined relative to screen height.
Each square measured 0.04 height units in diameter. Neigh-
boring squares were separated by 0.04 height units under
conditions of no proximity grouping. By extrapolation, the
entire array measured 0.28 height units in diameter. Proxi-
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mal (grouped) squares were separated by 0.025 height units,
and distal (ungrouped) squares were separated by 0.07 units.
Dim squares were defined asmiddle gray in RGB color space
[0,0,0] and bright squares were defined as white [1,1,1]. The
squares were presented against a black [-1,-1,-1] background
following the offset of a mid-gray crosshair. A random stim-
ulus latency component was sampled from a zero-truncated
Gaussian with a mean and standard deviation of 1000 ms to
avoid rhythmic responses. This random latency was added to
a constant foreperiod of 500 ms.

Procedure and design

Participants were tested in a setting of their choice in a single
session comprising 288 trials. They were greeted with writ-
ten instructions on the monitor underscoring the importance
of responding as fast and as accurately as possible. Trials
were separated into four experimental blocks comprising
72 trials each, preceded by two practice blocks comprising
24 trials each. In two experimental blocks, the task-relevant
dimension was the contrast level of the squares (similarity
grouping), and in the other two blocks the target dimension
was the spatial separation between squares (proximity group-
ing). Contrast similarity and proximity were manipulated
factorially, either in isolation on baseline trials or in combina-
tion on cooperation and conflict trials. This yielded six unique
stimulus conditions: (a) similarity baseline, (b) similarity
cooperation, (c) similarity conflict, (d) proximity baseline,
(e) proximity cooperation, and (f) proximity conflict. Partic-
ipants were instructed to attend to one grouping dimension
at a time in alternating blocks. Conflict level was intermixed
within blocks. Stimuli were presented in pseudo-randomly
constructed cycles of 12 trials each, counterbalanced for the
orientation of the target dimension (vertical or horizontal)
and themanner inwhich similarity grouping divided the array
into regions of high and low contrast. In total, 48 experimen-
tal trials per condition (12 trials in each of the six stimulus
conditions times four blocks) were presented. At the end
of each practice and experimental block, the procedure was
paused, and task instructions were re-presented. An opportu-
nity to rest was provided between blocks. In all respects, the
experiment was conducted in accordance with the guidelines
for human subject research laid down by the Tübingen Ethics
Committee for Psychological Research and the Declaration
of Helsinki.

Data analysis

First, the RT data were inspected for outliers. All responses
faster than 200 ms were considered anticipatory, and responses
slower than 1500 ms were considered misses. Anticipa-
tions and misses were removed from further analysis. Few
responses were found to be too fast (0.1 %) or too slow

(2.34 %). Mean error rates and mean-corrected RTs for each
participant were then entered separately into two 2 × 3
(task-relevant dimension× conflict level) repeated measures
Bayesian analyses of variance (BANOVAs) with participant
ID as a random factor. The two levels of the factor grouping
dimension were proximity and contrast similarity, and the
three levels of the conflict level factor were baseline, coop-
eration, and conflict. Bayes factors (BFs) were computed
with the BayesFactor package (Morey & Rouder, 2022) by
comparing the evidence for BANOVA models incorporating
main and interaction effects to intercept-only models. The
predetermined criterion threshold for evidential strength was
BF > 3, typically taken to indicate moderate evidence for a
hypothesis (Lee & Wagenmakers, 2013).

Graphical reliability measures for the error rate and RT
data are reported in terms of their within-subjects 95 %
highest density intervals (95 % HDIs). These HDIs were
calculated in two steps; first by centering the data for each
participant and condition as advised by Cousineau (2005)
and Loftus and Masson (1994). Then, the mean-centered
data were entered into Bayesian linear models to compute
parameter estimates using RStan software (Stan Develop-
ment Team, 2023).

All Bayesian analyses conducted using simulation are
based on 1000 warm-up steps, and 10,000 sampled steps,
for each of three independent chains. These chains showed
little autocorrelation, as determined with the R̂ convergence
statistic (Gelman&Rubin, 1992), whichwas found to be less
than 1.01 in every case. The reported parameter estimates
should therefore be highly representative of their posterior
distributions. All analyses were conducted in the R software
for statistical computing (R Core Team, 2022). The analy-
sis code is available together with experimental data via the
Open Science Foundation (https://osf.io/wt2gb/).

Results and discussion

The error rate model incorporating main effects of conflict
level (BF > 107) and grouping dimension (BF = 27)
yielded extreme and strong evidence for a congruence effect
and the proximity advantage, respectively.However, the best-
fitting BANOVA model of error rates included a factorial
interaction between grouping dimension and conflict level in
addition to main effects (BF > 7× 1013). A similar pattern
of results was apparent for RTs. Again, the evidence for main
effects of grouping dimension (BF > 4 × 107) and conflict
level (BF > 14, 000) on RTs suggested both a congruence
effect and a proximity advantage. Yet, the best-fitting RT
model incorporated an interaction between grouping dimen-
sion and conflict level as well as main effects of grouping
dimension and conflict level. The evidential strengthwasvery
large (BF > 2 × 1018). Factorial plots of mean error rates
andmean correct RTs are given in Fig. 4. Taken together, both

123



1308 Attention, Perception, & Psychophysics (2024) 86:1303–1317

Fig. 4 Results fromExperiment 1 in terms ofmean RTs (left panel) and
mean error rates (right panel), depicted here as a function of grouping
dimension (proximity or contrast similarity) and conflict level (base-

line, cooperation and conflict). Error bars represent the 95 % HDIs of
the posterior distributions of means

error rates and RTs were indicative of a proximity advantage
and a congruence effect. Interaction terms suggest a differ-
ential pattern of cross-talk for the two grouping dimension.
Post hoc contrasts using Bayesian t tests further confirmed
these findings. Regarding similarity judgments, RTs were
shorter and more accurate on cooperation trials, intermedi-
ate on baseline trials, and longer and less accurate on conflict
trials (all BFs > 3). For proximity judgments, both RTs and
error rates were equivalent between cooperation and conflict
trials (BFs < 1

3 ). However, baseline proximity RTs were
shorter compared to both cooperation trials and conflict tri-
als (BFs > 100), and were less accurate on conflict trials
relative to baseline (BF = 3.49). The comparison of error
rates for proximity judgments on baseline and cooperation
trials was inconclusive ( 13 < BF < 3).

In summary, Experiment 1 replicated two important
behavioral benchmarks of human performance in speeded
orientation judgments of multidimensional Gestalt stim-
uli reported in earlier studies (e.g., Han et al., 2001; Han
et al., 2002 and Han, 2004). First, there was an overall prox-
imity advantage, as indexed by how orientation judgments
of proximity groups were both faster and less error-prone
than orientation judgments of contrast similarity groups.
The observed proximity advantage can therefore not be
attributed to more reckless responding when proximity is
the target dimension (i.e., a speed-accuracy trade-off). Sec-
ond, we found evidence of a congruence effect indicating
cross-talk between processing stages. Visual inspection of
Figure 4 suggests that both candidate sources (interference
and facilitation) give rise to the congruence effect when sim-
ilarity grouping is the target dimension. Finally, and perhaps
most pertinent for the present research, there was evidence
of an asymmetric congruence effect, because judgments of
proximity orientation were unaffected by whether contrast

similarity grouping was in conflict or in cooperation. In our
opinion, these findings strengthen the case that the proximity
advantage reflects the involvement of an earlier visual pro-
cessing stage involved in the detection of proximity groups
relative to similarity groups. The asymmetric congruence
effect in particular lends strong support to the notion of a
two-stage serial model of grouping by proximity and simi-
larity.

Several theoretical accounts of perceptual grouping have
argued for the existence of two distinct stages of process-
ing; an initial spatial analysis stage followed by a subsequent
feature analysis stage (Huang, 2015; Sasaki, 2007; Yu et al.,
2019; Quinlan &Wilton, 1998). An idea advanced by Quin-
lan andWilton (1998) is that the output of the spatial analysis
stage is a set of local clusters (proximity groups) whose fea-
tures (e.g., color and shape) have not yet been processed.
In the second stage, the feature values of the elements con-
tained within each cluster are detected and compared with
each other for possible matches. Features are only checked
between clusters in the case of a within-cluster mismatch.
Therefore, the serial processing account of perceptual group-
ing implies a slower time-course for similarity grouping
whenproximity and similarity cues are in conflict as observed
in Experiment 1. A serial processing architecture can also
account for different congruence effects for the two group-
ing dimensions: Because the local clusters are defined prior
to the feature analysis stage, proximity judgments should not
be affected by whether features within said clusters match or
mismatch.

To reiterate, we argue that the results of Experiment 1
support a two-stage serial model of grouping by proxim-
ity and contrast similarity. Yet, the task of distinguishing
serial and parallel processing based on behavioral data is
notoriously difficult (Townsend, 1971, 1990; Townsend &
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Nozawa, 1997;Colonius&Vorberg, 1994;Vorberg&Ulrich,
1987). Therefore, invoking the double-factorial paradigm
(Townsend & Nozawa, 1995; Wenger & Townsend, 2000;
Houpt et al., 2014; Altieri et al., 2017; Houpt & Townsend,
2010, 2012), Experiment 2 aimed to test the serial processing
account of grouping by similarity and proximity from a novel
theoretical perspective as explained below. The reader famil-
iar with the double-factorial method and associated analysis
procedures for distinguishing serial and parallel processing
might only skim the next section briefly or skip it entirely, as
it provides an introductory overview of these procedures for
a broader readership.

Double-factorial paradigm

The double-factorial paradigm is an experimental method-
ology developed to characterize multi-channel processing
systems in terms of latent cognitive architecture (serial, paral-
lel, or coactive), combination or stopping rule for processing
(exhaustive or self-terminating), workload capacity (lim-
ited, unlimited, or super-capacity), and possible stochastic
dependencies between processing pathways (dependent or
independent) (Altieri et al., 2017).

This is achieved by instructing people to monitor two sen-
sory channels for incoming targets and to respond to these
targets as fast as possible. On any given trial in this divided
attention task, a target signal can appear in either a single
channel (singleton trials) or in both channels simultaneously
(redundant trials). For RT tasks with two response options,
the targets in the two channels are most usually mapped to
the same manual response on those trials where they appear
together. In this regard, the two stimulus components are
redundant, because each component independently conveys
all the information necessary for the observer to respond.
The double-factorial method is therefore an extension of the
redundant signals paradigm (Miller, 1982; Raab, 1962) in
which people’s ability to detect either of singleton signals A
or B is compared to their ability to detect a redundant signal
combinationAB. In the context of the present experiment, the
two signal components A and B denote grouping by proxim-
ity and grouping by similar contrast level, and their redundant
combination AB denotes multidimensional Gestalt stimulus
arrays containing both grouping cues. Importantly, the stim-
ulus arrays used in Experiment 1 were not redundant in this
respect because the two grouping cues sometimes afforded
conflicting information about orientation to the participants.

The double-factorial derives its name from two criti-
cal factorial manipulations of the stimulus: the redundancy
manipulation and the salience manipulation. The afore-
mentioned redundancy manipulation is a manipulation of
perceptual workload that concerns the number of targets (sin-
gleton vs. redundant) available to the observer. It allows one
to contrast the RTs from singleton trials and redundant tri-

als, and test the data against the predictions of a “horse race
model” embodying parallel independent processing of infor-
mation sources A and B with a self-terminating stopping
rule for processing. This model metaphorically resembles a
horse race in the sense that the two signals A andB race along
separate channels towards an OR-gated response center on
redundant trials. The signals are assumed independent in the
sense that a target on channel A does not influence process-
ing speed on channel B and vice versa. The fastest signal
to be detected “wins” the race and independently triggers a
manual response, yielding a statistical facilitation of RTs of
magnitude

RTAB = min(RTA, RTB) (1)

where RTA and RTB are the RTs on singleton trials, and
RTAB is the theoretically inferred RT on redundant trials.
The race model therefore makes the decisive prediction that
no response on redundant trials can be faster than the fastest
response (or slower than the slowest response) on singleton
trial. The upper bound for statistical facilitation, as given by
the race model inequality (Miller, 1982), states that

P(RTAB ≤ t) ≤ P(RTA ≤ t) + P(RTB ≤ t) (2)

where the left-hand term denotes the cumulative density
function (CDF) for RTAB and the right-hand terms denotes
the CDFs for RTA and RTB , respectively. Violations of the
race model inequality have often been used to refute serial
and parallel processing models in favor of coactive models,
where information is pooled across both channels to elicit a
response (Miller, 1982).

Processing capacity is similarly assessed by contrasting
performance on redundant trials relative to singleton trials.
Following Wenger and Townsend (2000), a capacity coeffi-
cientCOR(t) can be computed from the ratio of the integrated
hazard function for RTs from redundant trials over the sum of
the integrated hazard functions for RTs from singleton trials,
such that

COR(t) = HAB(t)

HA(t) + HB(t)
(3)

where the numerator denotes the integrated hazard function
for RTs from redundant trials, and the denominator denotes
the sum of the integrated hazard functions from singleton
trials. The unitless metric COR(t) denotes the empirically
established rate of information processing on redundant trials
relative to singleton trials, and canbe compared to the theoret-
ical predictions of the horse racemodel. The horse racemodel
predicts that COR(t) should equal unity across all values of
t > 0, a benchmark termed unlimited capacity. In contrast,
limited capacity is formally defined as a capacity coeffi-
cient that is significantly less than 1, while super capacity is
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defined as a capacity coefficient that is significantly greater
than 1.When a systemexhibits limited processing capacity or
super capacity, this is an indication that processing pathways
under consideration are not consistent with self-terminating,
independent parallel processing. Workload capacity can be
formally evaluated with the Houpt–Townsend test (Houpt &
Townsend, 2012; Houpt et al., 2014).

The second manipulated factor alluded to in the epithet
“double-factorial” concerns the salience of the two stimu-
lus components, that is to say, whether the two targets on
channels A and B are easy or difficult to detect. This factor
serves to aid the experimenter in determining whether the
two salience manipulations have additive effects on RT or
not. Essentially, the two salience manipulations should have
additive effects on RTs if they affect independent processing
stages, but have interactive effects on RT if the two process-
ing stages are not independent. In this regard, the salience
manipulation is an outgrowth of the additive factors method
of Sternberg (1969). Let M denote the mean RT on redun-
dant trials when the targets on channels A and B are either
low salience (L) or high salience (H ). Following Sternberg
(1969), one can compute a mean interaction contrast (MIC)
as follows

MIC = MLL − MLH − MHL + MHH (4)

If the effects of increased grouping salience are addi-
tive, then Eq. 4 should equal zero. Correspondingly, the two
factors are sub-additive if the MIC is negative, and super-
additive if the MIC is positive.

Following Houpt and Townsend (2010), the survivor dis-
tributions functions belonging to the RT distributions from
the four redundant signal combinations can also be subjected
to a survivor interaction contrast (SIC) as follows

SIC(t) = SLL(t) − SLH (t) − SHL(t) + SHH (t) (5)

where the subscripts again indicate the presence of a low
salience (L) or a high salience (H ) target on channels A
and B respectively, and S(t) denotes the survivor function
for RTs belonging to that trial type. The shape of the SIC
curve for values of t > 0 is further indicative of certain
types of processing architectures (serial, parallel, or coac-
tive) and stopping rules (exhaustive or self-terminating).
When all of the aforementioned analysis methods for RTs
are combined, they constitute a particularly powerful set
of tools for distinguishing between serial, parallel, and
coactive model architectures (Houpt et al., 2014; Altieri
et al., 2017). We therefore sought to use the race model
inequality, capacity analysis, the SIC test, and the MIC
test, to further assess latent cognitive architecture subserv-

ing perceptual grouping by proximity and contrast similarity.
How to interpret said contrasts of CDFs, hazard functions,
survivor functions, and mean RTs, will be further elab-
orated on in the General discussion section ensuing this
experiment.

Experiment 2 (divided attention)

Invoking the double-factorial paradigm and associatedmeth-
ods for analyzing RT distributions, the goal of Experiment 2
was to further characterize visual information processing in
the classification of multidimensional Gestalt stimuli. More
specifically, the research aims of Experiment 2were to evalu-
ate: (a) if proximity grouping and contrast similarity grouping
occur in serial or in parallel, (b) if the stopping rule for pro-
cessing is exhaustive or self-terminating, (c) if processing
capacity for such visual stimuli is limited, and (d) if proximity
groups and contrast similarity groups are processed indepen-
dently. These research questions were evaluated on the basis
of a set of non-parametric procedures developed to aid the
analysis of RT data garnered in the double-factorial paradigm
as detailed above. To this end, the design of Experiment 1
was modified by removing all arrays containing conflicting
grouping cues. In addition, two levels of grouping salience
were employed for each grouping dimension.

Method

Participants

Again, 60 German-speaking individuals were recruited for
this online experiment. Five were excluded due to exhibiting
less than 90 % overall accuracy of responding, yielding a
final sample size of 55 individuals (23 females) with a mean
age of 29 years (age range, 18–57 years).

Apparatus and stimuli

On singleton trials, the grouping orientation of the arrays was
defined by either proximity or contrast similarity. On redun-
dant trials, both proximity and contrast similarity defined the
grouping orientation of the array in a cooperative fashion.
In addition, two levels of grouping salience were employed
for each grouping dimension: low salience proximity group-
ing (0.0325 height units), high salience proximity grouping
(0.025height units), lowsalience contrast similarity grouping
(RGB value [0.5,0.5,0.5]), and high salience contrast simi-
larity grouping (RGB value [1,1,1]). Representative stimulus
arrays from Experiment 2 are depicted in Fig. 5.
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Fig. 5 Schematic depiction of stimulus arrays from Experiment 2. On
singleton trials, one of the leftmost four arrays were presented such that
proximity or contrast similarity served to induce vertical or horizontal
grouping orientation in isolation. On redundant trials, proximity and

contrast similarity induced grouping in cooperative fashion as depicted
in the rightmost four arrays. The subscripts L, H, and x denote low
salience grouping, high salience grouping, and absence of grouping in
channels A and B, respectively

Design

Experiment 2 embodied a double factorial two-choice RT
task in which people had to identify the orientation of per-
ceptual groups present in visual arrays as being either vertical
or horizontal. For each grouping cue, two levels of salience
were employed; low or high salience proximity grouping,
and low or high salience contrast similarity grouping. Addi-
tionally, each trial could entail either a singleton target or two
redundant targets. This yielded a total of eight stimulus con-
ditions, defined by 2 contrast levels× 2 proximity levels× 2
redundancy levels. On redundant signal trials, the two group-
ing cues always indicated the same orientation (either both
vertical or both horizontal). The arrayswere counterbalanced
for grouping orientation and the manner in which similarity
grouping divided the stimulus into regions of low contrast
and high contrast relative to the background. The 32 stimulus
arrays (eight conditions × 4 arrays) was first cycled through
in pseudo-randomorder once during a block of practice trials,
and then three times consecutively per experimental block. A
total of four practice blocks and four experimental blockswas
cycled through per participant, yielding a sum total of 288
experimental trials and 128 practice trials. After each prac-
tice and experimental block, participants were encouraged
but not required to take a short break. The eight experimen-
tal conditions were varied within blocks.

Procedure

The time-course of each experimental trial and the procedure
more generally was similar to Experiment 1.

Data analysis

First, five participants exhibiting< 90 % overall accuracy of
performance were excluded from the analysis. Outlier RTs
shorter than 200 ms and longer than 1500 ms were also
removed from further analysis. Then, mean-averaged RTs
and error rates for singleton trials and for redundant trials
were entered into separate BANOVAmodels. Singleton trial
models incorporated the factorial predictors grouping dimen-
sion and grouping salience level. Redundant trial models
incorporated the predictors proximity salience and contrast
similarity salience. Incorrect responses were discarded from
the analysis of mean RTs. Graphical reliability measures for
meanRTs andmean error rateswere again computed in terms
of their 95 % HDIs.

To test the race model inequality, ten interpolated per-
centiles (.05, .15, . . . , .95) for the pertinent RT distribution
CDFs and bounding sums were calculated individually for
each participant following the procedures outlined in Ulrich
et al. (2007). Then, the interpolated percentiles were group-
averaged, and Bayesian t tests were computed for each of
the ten group percentiles to contrast RTs on redundant signal
trials with the theoretical bounding sum of the independent
race model.

A SIC test and a MIC test were computed for each of
55 participants using the sft package (Houpt et al., 2014).
The SIC test relies on a modified two-sample Kolmogorov–
Smirnov test to determine if positive and negative deviations
from the null hypothesis SIC(t) = 0 are statistically reliable,
as detailed in Houpt and Townsend (2010). The MIC test is
based on a non-parametric adjusted rank transform test as
outlined in Houpt et al. (2014). The criterion threshold of
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statistical significance for the SIC test and the MIC test was
α = .05. The proportion of participants exhibiting positive
and negative violations of the SIC, and violations of MIC =
0, was tested using three separate Bayesian binomial tests.

Capacity analysis was also conducted for each partici-
pant. Both positive and negative violations of the unlimited
capacity assumption COR(t) = 1 was tested for using the
Houpt–Townsend test (Houpt & Townsend, 2012). The pro-
portion of participants exhibiting super capacity and limited
capacity was tested using two separate binomial Bayesian
tests. The threshold of evidential strength was set to BF > 3
for all Bayesian statistical tests.

Results and discussion

Error rates for singleton trials were best captured by a model
incorporatingmain effects of grouping dimension and group-
ing salience, but no factorial interaction (BF > 5 × 1024).
Similarly, mean RT on singleton trials was also best captured
by amodel incorporatingmain effects but no interaction term
(BF > 3×1064). This demonstrates that the saliencemanip-
ulations for the two grouping cues were successful. Error
rates and mean RTs for singleton trials are depicted in Fig. 6.
Visual inspection of this figure suggests a proximity advan-
tage, which again cannot be attributed to a trade-off between
speed and accuracy.

The best model of error rates on redundant trials incor-
porated a main effect of proximity grouping salience, but
no main effect of similar contrast grouping salience, and no
proximity × contrast interaction (BF = 87). A main effects
model gave good account of mean RTs (BF > 1014), indi-
cating that the two saliencemanipulations were effective also

when grouping was redundant, but the best model of RTs on
redundant trials incorporated a factorial interaction between
proximity level and contrast level in addition to main effects
(BF > 3 × 1014). Error rates and mean RTs for redundant
signal trials are depicted in Fig. 7.

The race model inequality for low salience trials was not
meaningfully violated for any percentile (all BFs < 3).
This finding is inconsistent with coactive processing of low
salience proximity groups and low salience similarity groups,
but for high salience trials, there was a minor inequality vio-
lation indicative of coactivation (Miller, 1982) at the smallest
(.05) percentile value (BF = 4.73). Because the race model
was only violated at a single percentile, these findings are
mostly inconsistent with coactive processing of proximity
groups and similarity groups. Possible implications of the
violation for high salience targets will be further elaborated
on in the General discussion. Bounding sums and empirical
CDFs are depicted in Fig. 8.

Capacity analysis based on the Houpt–Townsend test
indicated limited workload capacity for redundant targets,
as attested by negative violations of COR(t) = 1 for 54
out of 55 participants with respect to low salience targets
(BF > 1063). This state of affairs also held true for high
salience targets, with 52 out of 55 participants (BF > 1058)
exhibiting limited capacity. This suggests that at least one
of the assumptions of the independent race model was vio-
lated. No participants exhibited super capacity for either low
or high salience targets.

Eight out of 55 participants exhibited positively vio-
lated SIC for some values of t > 0. A binomial Bayesian
test showed that this was meaningfully different from 0
(BF = 6.59) given our threshold criterion ofα = 0.05. Only

Fig. 6 Results fromExperiment 2 in terms ofmean RTs (left panel) and
mean error rates (right panel) from singleton trials, here depicted as a
function of grouping dimension (proximity or similarity) and grouping

salience (low or high salience). The error bars denote the 95 % HDIs
of the posterior distributions of means
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Fig. 7 Results from Experiment 2 in terms of mean RTs (left panel)
and mean error rates (right panel) for redundant trials, depicted here as
a function of proximity grouping salience (high or low) and similarity

grouping salience (high or low). The error bars represent the 95%HDIs
of the posterior distributions of means

two out of 55 participants exhibited a negatively violated
SIC, a finding which was not meaningfully different from
0 (BF = 0.67). Seven out of 55 participants further exhib-
ited a non-zero MIC, but this finding was not significantly
different from 0 (BF = 2.87). Six out of the eight partici-
pants who exhibited negatively violated SICs also exhibited
non-zero MICs. This is to be expected since an ordering of
survivor functions implies an ordering of means and vice
versa. Nonetheless, for the majority of participants, both the
SIC and the MIC were not different from zero.

This is in accordance with a serial processing architecture
for proximity groups and contrast similarity groups with a
self-terminating stopping rule for processing. Some heuris-

tics for how to interpret the SIC and the MIC are provided in
Table 1 following Houpt and Townsend (2010).

General discussion

The goal of this research was to shed light on the time-course
of proximity grouping and contrast similarity grouping in the
visual pathway. To this end, Experiment 1 investigated the
extent to which people can selectively attend to one of said
grouping cues while ignoring the other. The following con-
clusions were drawn: First, judgments of proximity group
orientation were in general faster and more accurate than

Fig. 8 Bounding sums and empirical CDFs from redundant trials in
Experiment 2 with low saliency grouping (A) and high saliency group-
ing (B). The black triangles denote the empirical CDFs from redundant
trials, and the gray circles denote the theoretical bound of the horse race

model given by the sum of the CDFs from singleton trials. The asterisk
at the fifth percentile of high salience denotes a violated race model
inequality, i.e., a Bayes factor in favor of coactive processing
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Table 1 Model predictions for serial, parallel, and coactive processing
architectures

Model class SIC+ SIC− MIC

Serial-OR ✗ ✗ ✗

Serial-AND ✓ ✓ ✗

Parallel-OR ✓ ✗ ✓

Parallel-AND ✗ ✓ ✓

Coactive ✓ ✓ ✓

Experiment 2 ✗ ✗ ✗

Serial and parallel models can incorporate self-terminating (OR) or
exhaustive (AND) stopping rules for processing. The rightmost three
columns list whether the model predicts a positively violated SIC
(SIC+), a negatively violated SIC (SIC−), and a non-zero MIC. The
last row in the table lists benchmarks observed for the majority of
participants in Experiment 2. These results hint at a serial processing
architecture for proximity groups and contrast similarity groups with
a self-terminating stopping rule. Table based on Houpt and Townsend
(2010)

judgments of contrast similarity group orientation (the prox-
imity advantage). Second, the congruence effect for grouping
by proximity and similar contrast levels on performance
can be attributed to two types of cross-talk between group-
ing domains: facilitatory interaction on cooperation trials
and interference on conflict trials. Finally, the congruence
effect was only prominent for judgments of similarity group
orientation. In other words, the flow of information in the
processing chain seems to be unidirectional such that only
similarity grouping is subject to congruence effects.We inter-
preted this finding in accordance with a serial processing
account of grouping by proximity and contrast similarity
(e.g., Sasaki, 2007; Trick and Enns, 1977; Quinlan and
Wilton, 1998; Huang, 2015)

In Experiment 2, we subjected the serial processing
account of grouping byproximity and similar contrast level to
an empirical test in the double-factorial paradigm. Drawing
on established methodology for analyzing RTs collected in
the double factorial paradigm (Townsend & Nozawa, 1995;
Houpt et al., 2014; Houpt & Townsend, 2010; Wenger &
Townsend, 2000) we found the following: First, the race
model inequality (Miller, 1982) was not violated for low
salience targets. Instead, the empirical CDF for RTs from
redundant trials with low salience targets was contained
within the theoretical bounding sum of the independent race
model. For high salience targets, the race model inequal-
ity was on the other hand violated at the fifth percentile.
Therefore, coactive processing cannot entirely be ruled out
when both proximity and contrast similarity is very salient.
Nonetheless, we would advise some caution when interpret-
ing this result because of two reasons: First, a simulation
study by Kiesel et al. (2007) has demonstrated that stan-
dard methods for testing the race model inequality entail a

systematic bias in favor of violation, especially in the fifth
to tenth percentile region. This bias stems inherently from
the estimation procedures for the group CDF and bound-
ing sum. Second, a caveat which further complicates matters
is inflated Type I error rates associated with multiple com-
parisons. In frequentist statistics, the multiple comparisons
problem can be mitigated with a suitable (e.g., Bonferroni)
adjustment of alpha threshold. However, no correspond-
ing adjustment with well-characterized statistical properties
exist for the Bayesian tests employed in the present research.
Kiesel et al. 2007 suggest that violations alongmultiple along
multiple percentiles should be required to reject the race
model when type I error rates are not controlled. Because
only a single percentile point was violated here, we argue
that our results speak against coactive processing of prox-
imity groups and similar contrast groups, especially with
respect to low salience trials. Rather, a serial or a parallel
processing account seems to best capture these results from
Experiment 2. However, see Townsend and Nozawa (1997)
for a demonstration that inference about mental architecture
basedon tests of the racemodel inequality should not be taken
at face value without aid from complementary assessments
of capacity and stopping rule.

On that note, it was further observed that most partic-
ipants exhibited limited workload capacity on redundant
signal trials. This held true for all but one participant with
respect to low salience trials, and all but three for high
salience trials. This finding is inconsistent with indepen-
dent parallel processing, which predicts unlimited capacity
on redundant signal trials, i.e., COR(t) = 1. Therefore,
the workload capacity analysis suggests that processing of
proximity groups and similar contrast groups is slower than
predicted by independent racing on redundant signal trials.

Finally, analysis of means and survivor functions pertain-
ing to RTs from redundant signal trials revealed that the
majority of participants exhibited SICs and MICs which
tended to zero. Following Houpt and Townsend (2010),
this pattern of results is indicative of serial processing of
proximity groups and contrast similarity groups with a self-
terminating (OR) decision rule, as outlined in Table 1.
However, the SIC was positively violated for a larger subset
of participants than would be expected by chance. The fol-
lowing two explanations might possibly accommodate this
perplexing finding from Experiment 2:

First, it might be that the analysis of SICs andMICs reveal
true individual differences between participants in speeded
classification of multidimensional Gestalt stimuli. For exam-
ple, a subset of participants might process proximity groups
and similar contrast groups in parallel, whereas others do not.
Smith andLittle (2018) has underscored thatwhenever aMIC
is tested, care must be taken to ensure that the sampling dis-
tribution of the MIC is not bimodal, because the underlying
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parameter might be heterogeneous across participants. More
careful studies of single subjects, advantageously conducted
as small-N experiments using many trials and/or sessions,
would be necessary to shed further light on the possibility of
individual differences in orientation judgments of proximity
groups and similar contrast groups, and perhaps configural
visual processing tasks more broadly.

Second, it is also possible that the subset of participants
with atypical performance metrics reflects the type I error
rates of the SIC test and the MIC test. It has been shown by
Houpt and Townsend (2010) that the model confusion prob-
ability for a serial-OR system on the basis of the SIC test
and the MIC test is about 10 % when the alpha level of the
Houpt–Townsend test is .05. Most usually, this results in that
a serial-ORmodel ismiscategorized as either a parallel-AND
or a parallel-OR model with about equal probability, but
almost never as a serial-AND model. This explanation gives
a fairly parsimonious account of the findings from Exper-
iment 2 because it only posits that certain deviations from
the predictions of the serial-OR model are inevitable using
the present analysis procedures and alpha threshold. How-
ever, the fairly large proportion of participants exhibiting
both positive SICs and MICs, typically indicative of parallel
processing with an OR-decision rule, was admittedly higher
(10.9 %) than would be expected by chance (5 %).

In summary, Experiment 1 suggests that interactions
between proximity grouping and similar contrast grouping
reflects both interference and facilitation with respect to
baseline. Interactions appear unidirectional in the sense that
orientation judgments of similar contrast groups are affected,
whereas orientation judgments of proximity groups are not.
We interpreted this finding as indicative of a serial processing
chain for the two grouping cues when attention is focalized
towards either cue in isolation. The results of Experiment 2
provide further support the serial processing of proximity
groups and similar contrast groups when attention is divided
between them. Theoretically driven analyses of RTs suggest
that the stopping rule for processing is self-terminating, i.e.,
the responsemechanism is OR-gated in this task. In our view,
the outcome of this research suggests that proximity groups
and contrast similarity groups are processed sequentially. A
subset of participants exhibited RT benchmarks more in line
with parallel processing. Further research relying on more
detailed assessments of individual participants are warranted
to determine whether deviations from the predictions of the
serial-OR model reflects true population variability in pro-
cessing architecture for multidimensional Gestalt stimuli.
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