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Abstract
Fingerprint comparisons are extended in time due to the fine details (minutiae) that necessitate multiple eye fixations throughout
the comparison. How is evidence accumulated across these multiple regions? The present work measures decisions at multiple
points during a comparison to address how feature diagnosticity and image clarity play a role in evidence accumulation. We find
that evidence is accumulated at a constant rate over time, with evidence for identification and exclusion accumulated at similar
rates. Manipulations of image diagnosticity and image clarity demonstrate two exceptions to this constant rate: Highly diagnostic
evidence followed by weak evidence tends to lose the initial benefits of the strong start, and low image clarity at the start of the
comparison can be overcomewith high image clarity at the end of the comparison. The results suggest that examiners tend to treat
each region fairly independently (as demonstrated by linear evidence accumulation), with only weak evidence for hysteresis
effects that tend to fade as additional regions are presented. Data from transition probability matrices support an incremental
evidence accumulation account, with very little evidence for rapid “aha” moments even for exclusion decisions. The results are
consistent with a model in which each fixated region contributes an independent unit of evidence, and these accumulate to form
an eventual decision. Fingerprint comparisons do not seem to depend onwhich regions are selected first, and thus examiners need
not worry about finding the most diagnostic region first, but instead focus on conducting a complete analysis of the latent print.
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Introduction

Themajority of fingerprint examinations are not done by com-
puter, but instead by human experts. There are no mandated
criteria for sufficiency for their decisions (SWGFAST, 2013),
and laypersons tend to over-interpret these decisions
(Swofford & Cino, 2017). Thus, it is important to understand
how examiners accumulate information during these tasks,
which has a direct bearing on their ultimate decision.

Fingerprint examiners receive latent fingerprints collected
from crime scenes and compare these against exemplar

fingerprints from known sources. These exemplars come either
from suspects or are returned from database searches. The exam-
iner conducts an analysis of the latent impression and then per-
forms a comparison with one or more exemplars using a process
known as ACE-V (SWGFAST, 2013; Tierney, 2013). During
the analysis phase, an examiner identifies individual regions or
features for later comparison. During the comparison phase, the
examiner assesses the amount of perceived detail in agreement
for areas they determine might correspond. Finally, this evidence
is accumulated and evaluated against an external standard to
reach one of three conclusions: In an Exclusion conclusion, the
examiner expresses their expert opinion that the two impressions
originated from different sources; in an Identification conclusion,
the examiner expresses their opinion that the two impressions
come from the same source; if neither conclusion can be reached,
the examiner can give an Inconclusive conclusion (and in some
cases ask for better exemplars if exemplar quality is the limiting
factor). After a conclusion is made, the comparison is submitted
for technical review and in some labs a second examiner repeats
some or all of the comparison to serve as verification.

Perhaps surprisingly, there is no fixed standard for what con-
stitutes sufficiency tomake an Identification decision in the USA,
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nor is there a well-specified set of features that are used (although
some efforts have described an extended feature set; see Taylor
et al., 2013). Instead, an examiner is free to use whatever infor-
mation they deem diagnostic and maintain their own internal
decision threshold for sufficiency. Although there is no fixed
standard in the USA for the number of corresponding features,
examiners often describe using 12 or more features before they
are completely comfortable making an identification decision
(Ulery et al., 2014). Some examiners report relying on a “one
unexplainable discrepancy” rule as a basis for anExclusion,while
others describe relying on the totality of the evidence.

Although the present work does not use eye-tracking
methods, it is helpful to consider data from eye-gaze recordings
to visualize how information may be acquired and integrated.
During the comparison process, saccades are made both within
and between impressions as illustrated by the sample eye-
tracking data in the top panel of Fig. 1 from Busey et al.
(2015). One reason for the multiple fixations may be that the
relevant details for comparison (minutiae) require foveal in-
spection. Because multiple regions are visited, the growth of
visual information is extended over time, and the fixations that
result from each saccade reveal new visual features at a rate that
makes it difficult to measure using something like a talk-aloud
protocol. In addition, eye gaze measures where the eyes point,
not what information the examiner acquires from that location.
Thus, neither talk-aloud protocols nor eye tracking provide a
complete account of the accumulation of evidence during fin-
gerprint comparisons. While there is evidence that experts can
make some basic judgments about fingerprints with presenta-
tions as brief as 250 ms (Searston & Tangen, 2017; M. B.
Thompson et al., 2014), typical comparisons may take tens of
minutes to hours to complete. Whether this is a continuous
process or involves an all-or-none “aha” moment has not been
addressed in the literature, and the nature and rate of this accu-
mulation is poorly understood.

The goal of the present work is to determine how evidence
is accumulated over time during a fingerprint comparison, and
to characterize the role of factors such as feature inter-depen-
dency, region diagnosticity, and image clarity in the decision
process. Our method provides for investigations of dependen-
cies between sequential decisions, which can be grouped
roughly into two categories. The first are perceptually based
dependencies, and include effects such as configural process-
ing (Fific & Townsend, 2010; Richler et al., 2015), or failures
of perceptual independence or perceptual separation (Ashby
& Townsend, 1986). The second are decision-based depen-
dencies, which include processes such as anchoring effects
and other decision biases. We discuss each of these below.

Perceptual dependencies

Within the related field of face recognition, the general scientific
consensus supports the notion that facial features are processed

inter-dependently. Examples are plentiful, but the classic
Thatcher effect (P. Thompson, 1980) illustrates the relational
dependency of features; work by Tanaka and Farah (1993) dem-
onstrates dependencies between features when identifying faces;
and modeling by Ashby and Townsend (1986) points to inter-
dependence at the perceptual processing level. The nature of
these configural effects is documented in a wide range of tasks
by Richler et al. (2012) using the composite task. The exact
nature of these dependencies will depend in part on the model
adopted by different authors, but most papers argue for a face-as-
template approach or the idea that the interpretation of perceptual
information from one region is affected by the presence of a
nearby region (for review, see Piepers & Robbins, 2012).

Do such effects exist in fingerprint processing by experts?
Although faces and fingerprints share similarities in that they
are all composed of similar-looking features that differ primarily
in their shape and location, examiners tend not to talk in terms of
holisticmechanisms. Instead, the language that is used by experts
to describe the comparison process tends to focus on individual
features that they describe as “minutiae.” Eye-tracking studies
with fingerprint experts (Busey et al., 2013; Busey et al., 2015;
Busey et al., 2017; Busey et al., 2021; Hicklin et al., 2019) have
revealed that experts typically place one or more features from
the latent print (termed a target group) into visual working mem-
ory, and thenmake a saccade to the exemplar print to search for a
similar region that may be within tolerance.1 If such a region is
found, it is described as a corresponding region. The search
continues by selecting and searching additional target groups to
determine possible correspondence or discrepancy.

Although there have been efforts to document the relation
between the image features and sufficiency (Ulery et al., 2011,
2012; Ulery et al., 2014), the relation between the decision and
the physical stimuli is not well described. Models based on
feature rarity are fairly accurate at accounting for the regions
visited by examiners as measured by eye tracking, illustrating a
role for feature diagnosticity (Busey et al., 2017). In a forensic
setting, rare features tend to individualize much better than
common features, which may account for the success of these
models. In addition, as illustrated by eye-tracking data in Fig. 1
from Busey et al. (2015), the regions selected from an impres-
sion are not at random, but tend to be close together and orga-
nized, suggesting that relational information may play a role,
and experts report the use of techniques such as counting ridges
between features (see Hicklin et al., 2019, for eye-tracking ex-
amples of such ridge-counting behavior). There is some evi-
dence for holistic or configural processing of fingerprints
(Busey & Vanderkolk, 2005), although the classic inversion
effect test for holistic processing has produced mixed results
(Searston & Tangen, 2017; M. B. Thompson et al., 2014;

1 This is standard terminology for examiners, although in the psychology
literature we would express this in terms of a similarity judgment and a crite-
rion that it is evaluated against.
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Vogelsang et al., 2017). Thus, the role of relational information
is unclear, although anecdotal evidence suggests that experts
make use of relational information such as counting ridges or
measuring distances to landmarks such as the core or delta
regions of an impression. In a closely related target localization
task, Hicklin et al. (2019) found that examiners made multiple
orienting fixations between a candidate target location and the
core area of a fingerprint, presumably to determine the relative

location of the target group. Thus, there may be a deliberative
relational process conducted in some cases, which may contrib-
ute to feature inter-dependencies.

Decisional dependencies

In addition to perceptual dependencies, an evolving decision
process may include dependencies that exist at the decision

Fig. 1 Top panel: Example eye-tracking data from a fingerprint exam-
iner on a comparison with a simulated latent that has been corrupted by
multiplicative noise to simulate a latent impression. Circles represent
fixations, with circle diameter related to fixation duration. Saccades are
represented by blue lines. Data from Busey et al. (2015). Bottom left

panel: Minutia marked by 12 latent print examiners during a fingerprint
analysis task. Bottom right panel: Eye-tracking heatmap overlaid over
the marks, illustrating a tight correspondence between looking and mark-
ing. Unpublished data from our laboratory
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stage. Anchoring effects (Mochon & Frederick, 2013;
Tversky & Kahneman, 1974) suggest that initial information
or decisions create an “anchor” or refence against which sub-
sequent responses are measured against. In perceptual tasks,
the sequential effect has long been documented (Holland &
Lockhead, 1968), and more recently extended to attractive-
ness judgments (Kondo et al., 2012). Thus, decision-based
dependencies may also exist in a fingerprint comparison task,
such that if an examiner initially inspects a region with poor
clarity or diagnosticity, this may color the interpretation of
subsequent regions, ultimately leading to a different evalua-
tion of the totality of the evidence than if they had initially
viewed a high-quality region.

Independent contributions

An alternative to either perceptual or decisional dependencies
is that each region adds an additional unit of information, and
this information accumulates independently. Such a model
would predict a linear relationship between the number of
visible regions and a measure of sensitivity such as d’. It
would also predict linear increases in the standard deviation
of the underlying distribution when modeled by signal detec-
tion theory. As more regions become visible, we may encoun-
ter diminishing returns in terms of the informativeness of each
region, and certainly there will come a point where the entire
image is revealed, as in actual casework. However, the select-
ed regions in the present study are relatively small and repre-
sent only a small fraction of the available information in a
latent fingerprint. Thus, we may not be operating in a region
of performance where diminishing returns plays a significant
role.

The goal of the present project is to decompose the entire
latent print comparison task into a set of individual decisions
that will allow us to track the growth of visual information as it
accumulates to an ultimate decision. This will allow us to
address the following questions:

& How does evidence accumulate for identification and ex-
clusion conclusions, and does evidence accumulate at the
same rates for both conclusions?

& How does the diagnosticity or image clarity of the differ-
ent regions affect the conclusions or evidence
accumulation?

& Does information from one region affect the interpretation
of another region as might be expected by perceptual
grouping models (Kim et al., 2021)?

To answer these questions, we slow down the comparison
task and get multiple measures of the accumulated evidence as
examiners work toward a conclusion. Our task has two parts: a
feature-marking task and a comparison task. In the first part,
we emulated the comparison phase by showing examiners

clean impressions and asking them to select eight individual
regions in order of feature diagnosticity for purposes of com-
parison. They repeated this process for 72 impressions. As
shown in the bottom panels of Fig. 1, during a simultaneous
minutiae marking and eye-tracking task, examiners spend the
vast majority of their time looking where they are marking.
Thus, although our feature-marking task is only a proxy for
the undisturbed behavior of a true fingerprint analysis, the
eyes and marking behavior appear to be tightly coupled.

Following the marking task and no sooner than a week later,
the same examiners conducted comparisons in which the re-
gions they had previously selected were sequentially presented
and individual decisions were made after each region was re-
vealed. This allows us to track the growth of evidence through-
out the comparison process and evaluate the role of relational
information, feature diagnosticity, and image clarity.

The results were modeled using signal detection theory fit
to individual subject data, which simultaneously characterizes
the rates of information accumulation for identification and
exclusion decisions.

Experiment 1

The goal of Experiment 1 was to determine the role of feature
diagnosticity in the accumulation of evidence in a fingerprint
comparison task. Sixteen fingerprint examiners selected eight
regions from each of 72 high-quality impressions, using an
interface as shown in the top panel of Fig. 2. This interface
included only the latent impression, which mirrors casework
because examiners typically mark up the latent impression
before seeing candidate exemplar prints to avoid biases from
the clear exemplar.

Participants moved a red square cursor around until they se-
lected a region, which left a blue square. Theywere asked to select
the most diagnostic region first, followed by seven additional
diagnostic regions. The instructions emphasized choosing regions
based on the utility of each region for purposes of comparison
(which implied both identification and exclusion decisions).

At test, the pre-selected regions were sequentially present-
ed to each examiner, and we asked the examiner to provide a
tentative conclusion after each region was revealed. In addi-
tion, we revealed the regions in one of three orders:

1) Random (the diagnosticity rank of the regions was
randomized)

2) Best to Worst Diagnosticity (the reveal of the regions
followed the order in which they were selected)

3) Worst to Best Diagnosticity (the reveal of the regions was
reversed relative to the order in which theywere selected).

These orders allowed us to determine how diagnosticity
might affect the manner in which evidence is accumulated.
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Method

Participants

Participants were 16 active fingerprint examiners (12 female)
with at least 2 years of unsupervised casework experience.

These were recruited from state, federal, and large Metro labs
in the USA. Participants were recruited from the International
Association for Identification (IAI) annual conference, as well
as regional associations of the IAI. Participants are therefore
selected from a group who follows the IAI and are connected
to the community of examiners through an association with
the IAI. Due to the complexity of defining years of experience,
we chose not to collect precise years of experience and only
required our participants to be currently performing friction
ridge examination casework and be 21 years or older. Other
studies have not found strong links between years of experi-
ence and performance (Ulery et al., 2011, 2012).

Stimuli

The stimuli were collected in our laboratory using ink stamp
pads on photo paper. This generally produces relatively high-
quality impressions, and therefore for our comparison task we
combined these images with noise patches sampled from black
powder lifts that did not include ridge detail. The bottom panel
of Fig. 2 illustrates an example of this process. Rather than use
an additive noise process, we instead used a multiplicative pro-
cess that treats the noise and ridge detail as neutral-density
filters, which is appropriate for physical surfaces. This tends
to create fairly realistic simulated latent prints (see the bottom
panel of Fig. 2), and gives us control over the visibility of the
regions. We will explicitly manipulated this in Experiment 2.
No noise was used during the selection phase.

Procedure

The selection phase began with the following instructions:

In this experiment you will be using the mouse to indi-
cate which regions of latent prints are likely to be most
diagnostic. Think of this as the analysis phase of a com-
parison where you are identifying those regions that if
you find them in the comparison print would provide the
most diagnosticity or specificity for purposes of individ-
ualization. You will have 8 locations that you can click
on, and each click will leave a square behind as a marker
of where you clicked. You cannot overlap your clicks
but you can put them next to each other. It is very im-
portant that your first click be on what you consider to
be the most diagnostic feature or region on the print.
Each subsequent click should be on regions that are
progressively less diagnostic or provide progressively
less specificity (but are still the most specific of the
remaining areas).

The interface for this markup is shown in the top panel of
Fig. 2. Participants completed 72 of these markups. Progress
was self-paced, and typically extended over several days.

Fig. 2 Top panel: Illustration of the region selection screen. Participants
used a red square to select regions for purposes of comparison in order of
diagnosticity. The only constraint was that the regions could not
physically overlap. One blue region has already been marked. Bottom
panel: Noise combination mechanism. Left region – noise from black
powder impression taken from regions with no ridge detail. Middle region
– high-quality ink stamp impression. Right region – the result of a mul-
tiplicative process that combines the noise in ridge impressions to create a
realistic simulated latent print
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The comparison phase began at least 1 week after the end of
the selection phase, and in some cases a month later. Examiners
were shown displays similar to the top panel of Fig. 3 in which a
single region was visible. After comparing this small region
against the comparison print on the right side of the screen,
the participants selected one of the eight decision options shown
on the bottom of the display in the screenshots in Fig. 3, at
which point a second region was revealed and participants were
required to again select one of the eight options. The bottom
panel of Fig. 3 illustrates a display from the same trial as in the
top panel, but with all eight regions shown. Note that it is
merely coincidental that there are eight total regions and eight
possible choices for decisions.

We chose the response scale illustrated in Fig. 3 by com-
bining difficulty with the traditional Exclusion/Identification
language. In the psychological literature, the latent axis has
been referred to as a confidence scale and the response labels
adopt the language of confidence. However, we have found
that fingerprint examiners greatly resist the conflation of their
conclusion scale with the language of confidence. To ground
their responses in a scale that they were familiar with, we
adopted an expanded conclusion scale that mixed difficulty
with the decision. However, the Inconclusive category was
eliminated as a means to require fine judgments on the part
of our participants. Because of these changes from a tradition-
al scale (as well as our procedure of sequentially revealing
small regions), our study should not be used to estimate error
rates in the field of fingerprint examinations.

There were 72 total trials (36 mated and 36 non-mated)
during the comparison phase of the experiment. No time limit
was imposed on decisions, although the data were only saved
at the end of each trial. Data collection typically did not take
place in one sitting; it was often spaced out over several days
or weeks. No feedback was given.

Results and discussion

The raw data for each subject are relatively straightforward:
we get eight responses per trial, one for each region that is
revealed. Each response is one of the eight possible choices
ranging from Easy Exclusion to Easy Identification. Most
participants generally initially chose Tending Exclusion or
Tending Identification responses when only a single region
was presented and then they selected responses toward the
endpoints of the scale as additional regions were presented,
although some reversals were observed.

The raw data consist of the counts at each of the eight
possible responses for a given region count (e.g., five visible
regions) accumulated across all trials for a given condition
(Random, Best to Worst, or Worst to Best) for an individual
subject.

One challenge with working with data along an Exclusion/
Identification scale is that different examiners will have

different thresholds for how much evidence is required to
make an “Identification” decision (this is known as a threshold
for sufficiency for Identification in the latent print communi-
ty). Where this threshold comes from and who gets to decide
its value is a separate topic (see Mannering et al., 2021).
However, for the present purposes we must acknowledge that
these differences will exist and therefore transform our re-
sponse count data into a value along an underlying evidence
axis that represents the perceived strength of evidence for a
given set of visible regions. Such an approach would separate
the strength of the evidence from a decision criterion adopted
by an examiner for the various decision options.

Modeling via signal detection theory

An obvious choice of model for this purpose is Signal
Detection Theory (Macmillan & Creelman, 2005). Figure 4
illustrates how the distributions can be summarized using
Gaussian curves, which are placed on a unitless axis as shown
in Panel B of Fig. 4. We define the zero for this axis as the
decision criterion between “Tending Exclude” and “Tending
Ident” because this will allow us to simultaneously measure
the evidence in favor of exclusion and the evidence in favor of
identification. This fixed the endpoint of the latent dimension.
The scale of the latent dimension is defined by the standard
deviation of the distribution for data collected when four re-
gions were present, which we fixed at 1.0 for all three condi-
tions.2 The fits to the other distributions (other than with four
regions) have standard deviations that are free parameters,
with the constraint that the mated and non-mated distributions
have the same values for a particular number of regions. All
three conditions (Random, Best to Worst, and Worst to Best)
shared the same standard deviation values for a given region
count. However, the means for the mated and non-mated dis-
tributions for these three conditions are allowed to vary as
means to estimate the strength of evidence for a given condi-
tion and region count.

Panel B of Fig. 4 illustrates how we compute the locations
of the mated and non-mated distributions, along with the dis-
tance between them, referred to as d’ in the signal detection
literature. Panel C of Fig. 4 illustrates how the evidence space
is partitioned using the criteria that separate the different re-
sponses. Signal detection theory allows us to simultaneously
estimate the decision criterion and the mated and non-mated
distributions for all three region orderings and for each num-
ber of visible regions, subject to the following assumptions:

2 We chose the data collected with four regions visible to represent a fixed
standard deviation of 1.0 because we felt that these distributions are least likely
to be affected by the endpoints of the scale or have data crowded into the
“tending” responses in the middle of the scale.
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a) We assume that subjects do not know which region or-
dering they are in (or even the existence of conditions; this
was not revealed to them), and therefore we fit a common
set of decision criterion (Panel C of Fig. 4) to the distri-
butions for all three region orderings. We also applied the
same set of decision criteria for all numbers of regions,
with the assumption that each examiner would have one
set of decision criteria that they would apply throughout
the entire experiment, and for each number of visible
regions.

b) We assume that even if the collected data is not Gaussian
(it is on an 8-point scale), the underlying evidence distri-
butions are approximately Gaussian and the participant
samples from these to compare against the decision
thresholds and therefore generate a response. This
Gaussian assumption has been tested in related memory
paradigms with a 99-point scale and found to be approx-
imately accurate (Mickes et al., 2007); therefore we are
comfortable making this assumption (although see
Rouder et al., 2007, and Wixted & Mickes, 2010) for a

Fig. 3 Top panel: Example test trial with only a single region visible.
Examiners make a response using one of the eight buttons after each
region is presented. Bottom panel: Example test trial from the same
sequence but with all eight regions visible. A trial requires eight

separate responses, one for each region, and the previous regions
remain on the display as each new region is added. Because we have
independent control over the noise and ridge impressions, the
appearance of the new regions was quite natural
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debate about whether the Gaussian assumption is test-
able). We primarily rely on the mean of the Gaussian,
which is likely more stable than other attributes such as
normality.

One challenge with fitting Signal Detection Theory to
datasets with lots of possible responses is that some participants
may fail to use a response category for some conditions. This
was especially true for the “Easy Exclude” and “Easy Ident”
responses, which produced relatively few responses for some

participants. Because we are mainly concerned with accurate
estimates of the mated and non-mated distribution locations, we
collapsed the “Easy Exclude” and “Moderate Exclude” re-
sponses, as well as the “Easy Ident” and “Moderate Ident”
responses. This produces a lower-dimensional parameter space
and assists with the stability of the parameter estimation.

We use maximum likelihood estimation using custom
Matlab code to estimate the parameters for each subject (see
the Online Supplementary Material (OSM) via the Open
Science Framework (OSF) at osf.io). For a complete dataset

Fig. 4 Panel A: Summarizing the response distributions with Gaussian
distributions. Panel B:Representing the locations of the two distributions
using the non-mated and mated distribution means, which also measures
d’. Panel C: All fitted parameters, including the six response criteria that
partition the evidence axis into eight responses (the criterion that separates

Tending Exclusion from Tending Identification is fixed at zero to set the
scale). Due to low number of Easy Exclude and Easy Ident responses, the
actual modeling collapsed the “Easy Exclude” and “EasyModerate” bins,
as well as the “Easy Ident” and “Moderate Ident” bins
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for each participant, we estimate four decision criteria for the
entire dataset (the boundary between Tending Exclude and
Tending Ident was fixed at zero to fix the scale, and the
extremes were collapsed, leaving just four criteria to be
estimated). If we were to allow the criteria to shift when we
added each additional patch, this would suggest that terms like
“moderate ident” would take on a relative sense, such as “this
is a moderate ident for a four-region image.” However, in
casework the criteria for sufficiency are evaluated against
some shared view of what is sufficient for identification. We
believe that these external considerations provide the kind of
constraints that would make the decision criteria stable across
numbers of visible regions in our experiment. We estimated
eight mated distribution locations, eight non-mated distribu-
tion locations, and seven standard deviation values for each
region order condition (recall that the standard deviation for
four patches was fixed at 1.0 to set the scale). These parame-
ters are all estimated simultaneously using the fMinSearch
function in Matlab. There are 4 + (8+8+7)*3 = 73 free param-
eters, and the data contain 8*5*3 = 120 degrees of freedom
(eight separate decisions on each trial, five degrees of freedom
for each number of visible regions, and three region order-
ings). Thus, the model is very far from saturation. If we had
not collapsed the extreme responses (see previous paragraph),
we would have had 75 free parameters and 8*7*3 = 168 de-
grees of freedom.

Signal detection theory modeling results

The left column of Fig. 5 presents the results from the signal
detection theory model, which in this implementation is a
variant of ordinal or ordered probit regression. Model fits for
individual participants are provided in a folder called
IndividualDPrimeGraphs in each experiment folder on the
OSF site, and while these exhibit considerable heterogenetity
due to the fact that they are single-subject data, the general
trends are consistent with the data presented in Fig. 5. The
responses from each number of regions are modeled using a
Gaussian distribution on the underlying latent axis with a
mean and standard deviation that are estimated by choosing
values that produce areas under the Gaussian distribution be-
tween the decision criterion that are similar to the observed
frequencies from the participants. The four decision criteria
that were allowed to vary are common to all conditions and
numbers of visible regions. The adequacy of the model fits to
individual subjects can be judged by inspection of the graphs
in the folder IndividualFrequenciesAndProportionsGraphs on
the OSF site. These graphs illustrate that the Gaussian distri-
bution provides a reasonable summary of the response fre-
quencies. Some of the mis-predictions of the model are likely
due to multinomial variance. Note that we only rely on the
mean of the Gaussian distribution, which is probably more
robust than estimates of things like the normality of the data.

We summarize the discriminability of the examiners for
each condition and number of regions by the difference be-
tween the mated and non-mated distributions (d’, see the top-
left panel of Fig. 5) or by the location of the Gaussian distri-
bution along the latent dimension (also referred to as the z-axis;
see lower two panels of the left column of Fig. 5). Note that the
two lower-left panels of Fig. 5 illustrate a conservative response
bias, because the y-intercepts are negative. This likely results
from the fact that examiners have unequal utilities: An errone-
ous identification can lead to dismissal, while an erroneous
exclusion is not likely to even be caught.

As illustrated by the top-right panel of Fig. 5, sensitivity
(d’) grows approximately linearly as additional regions are
added to the display. The growth of evidence is remarkably
linear, with the exception of the Best toWorst region ordering,
which shows a clear bend in both the mated and the non-
mated distribution data and therefore the d’ data as well (top
panel). To determine whether there was a significant curvilin-
ear component to the data, we fit both linear and quadratic
regression models to the curves in Fig. 5, and used an F-test
to determine whether the additional quadratic parameter pro-
duced a statistically significant improvement in the fit. All
tests used an alpha of 0.05, which gives a critical F value of
6.61. For the d’ fits in the top-left panel of Fig. 5, only the Best
to Worst condition showed evidence of curvilinearity (F(1,5)
= 9.26). For the mated trials in the middle-left panel of Fig. 5,
again the Best to Worst condition showed evidence for curvi-
linearity (F(1,5) = 77.88). The Random condition in the non-
mated trials showed evidence of curvilinearity (F(1,5) =
10.45) while the Best to Worst condition did not (F(1,5) =
3.77).

The data for the Worst to Best condition appears to show
slightly worse performance than the other two conditions, a
result that is conceptually replicated in Experiment 2. These
two effects demonstrate small hysteresis effects: seeing a re-
gion with low diagnosticity early on appears to result in less
willingness to use the endpoints of the conclusion scale when
more regions are visible. Note that by the time all eight regions
are visible in all three conditions, the images are identical in all
three conditions, because presentation order is the only vari-
able manipulated across the conditions.

The slope of the relation between the number of visible
regions and the value of the mated or non-mated Gaussian
distributions along the latent dimension can be viewed as a
measure of the rate of information acquisition as more regions
are added to the display. In addition to the apparent linearity of
this relation, we can use the slopes of these lines as a rough
guide to answer the following question: Is inculpatory infor-
mation acquired faster or slower than exculpatory informa-
tion? In principle, exclusions should be faster than identifica-
tions, because many examiners require only one unexplain-
able discrepancy to make an exclusion decision. However,
identification decisions require exhaustive checking of all of
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Fig. 5 Left columns: Data from Experiment 1 (manipulating region
diagnosticity). Right columns: Data from Experiment 2 (manipulating
image clarity). All error bars represent one standard error of the mean.
Top panels: d’ (sensitivity) data for all three region-order conditions.
Middle panels: Location of the mated mean distribution along the evi-
dence axis for all three region-order conditions.Bottom panels: Location

of the non-mated mean distribution along the evidence axis for all three
region-order conditions. The growth of evidence for the random condi-
tion is mostly linear, while the Lowest to Highest region ordering shows a
clear bend in both the mated and non-mated distribution data and there-
fore the d’ data as well (top panels). Curves are quadratic regression lines.
See text for details
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the regions and therefore inculpatory information may grow at
a slower rate.

Contrary to this expectation, the rate of growth of the two
sets of curves in the lower-left two panels of Fig. 5 are quite
similar (see also the left panel of Fig. 6). The slopes of the
three mated conditions are 0.178, 0.178, and 0.139 for the
Random, Best to Worst, and Worst to Best conditions. The
slopes of the three non-mated conditions are -0.194, -0.186,
and -0.185, and are negative because evidence accumulates in
the exculpatory direction but are comparable to the mated
condition by taking the absolute value of the slopes. Thus,
exculpatory evidence may accumulate at a slightly faster rate,
but this difference is small relative to the overall rate of infor-
mation acquisition. The interpretation of this is somewhat
complicated by the small but significant quadratic elements
to the relations and should therefore be used only as a general
guide to the differential rates of inculpatory and exculpatory
information acquisition. This finding is conceptually replicat-
ed in Experiment 2.

Experiment 2

Feature diagnosticity is only one factor that might affect re-
gion utility. Region clarity has also been identified as a major
factor in whether a region is marked or considered by exam-
iners during a comparison (Ulery et al., 2014). What are the
consequences of looking at low-clarity or high-clarity regions
first during a comparison?

Experiment 2 is a conceptual replication of Experiment 1,
and explores the role of feature clarity in the accumulation of
evidence in a fingerprint comparison task. We asked a new set
of 16 fingerprint examiners to select eight regions from each
of 72 high-quality impressions, using an interface as shown in
the top panel of Fig. 2. However, at test, we randomized the
selection order (recall that Experiment 1 used Random, Best
to Worst, and Worst to Best presentation orders), and instead
experimentally manipulated the visibility of individual re-
gions using a signal-to-noise manipulation. An example of
this is shown in Fig. 7. We manipulated the signal-to-noise
ratio (SNR) of the regions using the same multiplicative noise
function used in Experiment 1. However, in Experiment 2 the
SNR varied for each region by trading off the contrast of the
noise and the fingerprint fragment in the multiplicative com-
bination function.

We used this manipulation to reveal the regions in one of
three orders:

1) Random (the visibility of the regions was randomized)
2) Highest Clarity to Lowest Clarity
3) Lowest Clarity to Highest Clarity.

These orders allow us to determine how feature visibility
might affect the manner in which evidence is accumulated. In
addition, this manipulation has another benefit, in that the
visibility is much more visually apparent than feature
diagnosticity might be, and we can also enforce a greater
separation between the highest and lowest level. Note that in
Experiment 1, feature diagnosticity might be fairly similar for
all eight regions, in the sense that the top eight regions might
all be of similar diagnosticity. However, we did observe dif-
ferences in the presentation order in Fig. 5, so feature
diagnosticity must have had some variation. Regardless, as
shown in Fig. 7, the differences between the highest and low-
est clarity regions are readily apparent in Experiment 2.

Method

Participants

Participants were 16 fingerprint examiners (eight female) with
at least 2 years of unsupervised casework experience. These
were recruited from the same population as in Experiment 1,
be currently performing friction ridge examination casework,
and be 21 years or older.

Stimuli

The stimuli were identical to Experiment 1, with the exception
that the noise patches varied in their signal-to-noise level,
which was done by increasing contrast of the visual noise
while simultaneously decreasing the image contrast. We
chose SNR levels that ranged from high to low clarity, and
used the same selection procedure from Experiment 1 to gen-
erate personalized stimuli based on each participant's previous
markup. The regions were combined with the noise using the
same multiplicative combination mechanism, where image
and noise contrast were constrained to sum to 1 as the SNR
varied.

Procedure

The procedure was identical to Experiment 2, with the excep-
tion that the order of the regions followed one of the three
orders described above (Random, Highest to Lowest Clarity,
and Lowest to Highest Clarity).

Results and discussion

The results of the SDT modeling for Experiment 2 are shown
in the right column of Fig. 5. As with Experiment 1, we see a
fairly linear relation between d’ and the number of visible
regions (top-right panel of Fig. 5). However, there are qua-
dratic components to all three conditions: Random (F(1,5) =
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11.29), Highest to Lowest (F(1,5) = 7.25), and Lowest to
Highest (F(1,5) = 102.19). Of these, the Lowest to Highest
is the most pronounced, implying that seeing low-clarity re-
gions early on in the comparison can lead to low sensitivity
but an accelerating acquisition rate to produce performance on
par with the other two conditions by the time the eighth region
is made visible.

For the mated trials, the relation between the number of
regions and the location of the Gaussian distribution along
the latent dimension is again mostly linear, with a small qua-
dratic component for the Random condition (F(1,5) = 13.75)
and a robust quadratic component for the Lowest to Highest
(F(1,5) = 67.45) condition. The non-mated trials produced a
significant quadratic term only for the Lowest to Highest con-
dition (F(1,5) = 81.52).

Note that once all eight regions are visible, there is no
physical difference between any of the three conditions, and
it is noteworthy that the d’ and z-axis values are virtually
identical for the three conditions at the eight-region portion
of the graph. Thus, any early effect of presenting high- or low-
clarity regions early on the trial will dissipate by the point at
which all eight regions are visible.

As with Experiment 1, we can get a rough sense of the rate
at which inculpatory and exculpatory evidence accumulates
by comparing the slopes of the mated and non-mated condi-
tions, which fits linear regression functions and ignores any
quadratic trends. These data are shown in the right panel of
Fig. 6. The mated trials produce slopes of 0.211, 0.217, and
0.278 for the Random, Highest to Lowest, and Lowest to
Highest conditions. The non-mated trials produce slopes of -
0.296, -0.301 and -0.295 for the Random, Highest to Lowest,
and Lowest to Highest conditions. Thus, it appears that excul-
patory evidence accumulates at a slightly faster rate than in-
culpatory evidence, which is consistent with Experiment 1.

In the modeling, we allowed the standard deviation of the
Gaussian distribution on the latent dimension to be a free
parameter, with the exception of the four-region presentation
where it was fixed at 1.0 to set the scale. The same standard
deviation was used for all three conditions for a given number
of regions. As shown in Fig. 8, the standard deviations grew
linearly as more regions were presented for both experiments,
which simplifies the interpretation of the d’ values and z-axis
values in Fig. 5 because the underlying standard deviation is
not changing in a non-linear way.

Inter-item dependencies

The modal finding of this work is a (mostly) linear relation
between d’ (sensitivity in signal detection theory (SDT) no-
menclature) and the number of visible regions (see Fig. 5).
This linear relation is consistent with an independent evidence
accumulation model, as contrasted against a model in which a
critical number of regions is required before they become self-
reinforcing. However, there are important limitations to our
analyses that must be acknowledged. Our SDT analysis
groups together data from all trials for a given region count
(e.g., five regions visible) and has no way to track the infor-
mation growth on a per trial basis. If on some trials a subject
was in a no-information state and then immediately transition-
ed into a full-information state at some particular region count
(an “aha”moment, say with six regions), this would appear as
an abrupt increase in d’ at that region count. This clearly did
not happen with regularity, because we saw (mostly) linear
increases in d’ with different region counts rather than an s-
curve or step function. However, if this putative “aha” mo-
ment occurs early for some trials and later for other trials, this
mixture could, in principle, average out to be a linear increase
in d’with region count.We consider this unlikely – our curves
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Fig. 6 Mated and non-mated data plotted on equivalently-scaled axes for
Experiment 1 (left panel) and Experiment 2 (right panel). This demon-
strates that the rate of evidence accumulation for non-mated pairs is fairly
similar to that of mated pairs, with perhaps exculpatory evidence

accumulating slightly faster than inculpatory evidence. Error bars are
one SEM. Note that although all axes are different, they each span 2.5
standard deviation units and are therefore equivalent in span
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show enough sensitivity to deviate from strict linearity with
two separate manipulations – but we cannot rule this account
out with our current approach. It would require a careful
balancing of the mixture to produce a linear relation.
However, without additional evidence we are reluctant to con-
clude that such “aha” events fail to occur, or that in some cases
different regions can become self-reinforcing (Richler et al.,
2015; Vogelsang et al., 2017). We would simply argue that,
on the whole, such events are likely relatively rare and the
typical behavior treats individual regions independently for
purposes of evidence accumulation. However, there are other
analyses that do consider the chain of responses within a trial,
which we discuss next.

An alternative approach to addressing the question of
whether evidence is accumulated gradually or in an all-or-
none fashion relies on transition probability matrices.
These are computed by conditioning on a given response
with n regions and considering the likelihood of
transitioning to a different response with n+1 regions.
Summary transition probability matrix tables are shown
in Table 1 for Experiment 1 for the random trials, with
counts in each cell for each transition, and proportions in
parentheses based on the row totals. We only analyzed the
random trials because it is difficult to separate the physi-
cally diminishing information in the Best to Worst condi-
tion from a psychologically diminishing account where
each region becomes psychologically less informative.
The random condition does not systematically vary the
informativeness, and so it is a cleaner condition to use

for the transition probability matrix. In principle, these
tables should be considered separately as each region is
added to the display, but for purposes of exposition we
have collapsed across all of the responses within each trial
and combined across subjects as well. The cells shaded
gray in Table 1 correspond to cases where a region is
added to the display but the examiner chose to use the
same response as used previously. Green cells correspond
to a one-step change toward an Identification conclusion,
and blue toward an Exclusion conclusion. Yellow and or-
ange cells represent the interesting cases, as they corre-
spond to jumps of 2 or 3 steps respectively. Inspection
of Table 1 illustrates relatively few larger jumps, with no
cell representing more than 3% of the overall responses in
that row, except in cases where there are almost no data in
that row.

Table 2 illustrates the same analyses for Experiment 2.
Again, we see very few counts in the yellow or orange
shading, with the only exception being that 7% of the re-
sponses in the Tending ID response jump to Moderate ID
for mated pairs. We also see 16% of the Difficult Exclusion
response jump to Tending ID for mated pairs. Thus, we
might describe this as only weak evidence for large transi-
tions along the scale that would be consistent with a model
where evidence accumulation was abrupt. Instead, the vast
majority of the evidence is consistent with the conclusions
from the SDT analysis: gradual accumulation of evidence
with each patch contributing an independent amount of sup-
port for a given proposition.

Highest
Clarity

Lowest
Clarity

Fig. 7 Example manipulation of the task in Experiment 2. Rather than varying the diagnosticity of different regions, the diagnosticity order was
randomized, and then regions were presented in one of three different clarity manipulations: Random, Highest to Lowest, or Lowest to Highest
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Fig. 8 Estimated standard deviation values for both Experiment 1 (left panel) and Experiment 2 (right panel) for different number of visible regions.
Both functions are quite linear, which simplifies the interpretation of the graphs shown in Fig. 5. Error bars are one SEM

Table 1 Experiment 1 transition probability matrix between current
response (row) and subsequent response (column) for non-mated (upper
table) and mated trials (lower table) for the Random region ordering

condition. Numbers in parentheses represent the proportion of responses
for that row that fell in that cell

Non-Mated Impressions

EasyEx ModEx DiffEx TendEx TendID DiffID ModID EasyID

EasyEx 106 (0.99) 0 (0.00) 0 (0.00) 1 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

ModEx 27 (0.28) 67 (0.68) 2 (0.02) 2 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

DiffEx 2 (0.02) 33 (0.28) 75 (0.63) 10 (0.08) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

TendEx 15 (0.01) 21 (0.02) 64 (0.06) 903 (0.87) 31 (0.03) 0 (0.00) 0 (0.00) 0 (0.00)

TendID 0 (0.00) 1 (0.01) 1 (0.01) 41 (0.28) 101 (0.70) 1 (0.01) 0 (0.00) 0 (0.00)

DiffID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (1.00) 0 (0.00) 0 (0.00)

ModID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

EasyID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Mated Impressions

EasyEx ModEx DiffEx TendEx TendID DiffID ModID EasyID

EasyEx 3 (0.75) 0 (0.00) 0 (0.00) 1 (0.25) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

ModEx 0 (0.00) 0 (0.00) 1 (0.33) 1 (0.33) 1 (0.33) 0 (0.00) 0 (0.00) 0 (0.00)

DiffEx 0 (0.00) 1 (0.06) 13 (0.76) 3 (0.18) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

TendEx 2 (0.00) 3 (0.01) 5 (0.01) 492 (0.84) 79 (0.13) 5 (0.01) 1 (0.00) 0 (0.00)

TendID 0 (0.00) 0 (0.00) 0 (0.00) 25 (0.06) 299 (0.74) 62 (0.15) 14 (0.03) 5 (0.01)

DiffID 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.01) 7 (0.05) 92 (0.65) 37 (0.26) 4 (0.03)

ModID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.01) 2 (0.02) 49 (0.60) 30 (0.37)

EasyID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 112 (1.00)

Color codes:Gray – stayedwith same responsewhen the next region is added. Green – advanced one response toward ID. Blue – advanced one response
toward Ex. Yellow – advanced two responses either toward ID (upper triangle) or toward Ex (lower triangle). Orange – advanced three responses either
toward ID (upper triangle) or toward Ex (lower triangle). Exclusions show some evidence for larger jumps (Yellow and Orange in lower triangle; upper
table), but there is less evidence for large jumps for mated impressions (Yellow and Orange in upper triangle; lower table)

Attention, Perception, & Psychophysics (2023) 85:244–260 257



General discussion

It is perhaps somewhat surprising that support for the same
source and different sources propositions accumulates at ap-
proximately the same rate. This is contrary to expectations in
the examiner community, who often rely on “one unexplain-
able difference” when making exclusion decisions. We also
found relatively little support for any form of sequential bias-
ing or hysteresis in the sequential decisions (Kiyonaga et al.,
2017) because even though information accumulation was
lessened by poor quality patches presented early in the trial,
the presentation of higher-quality patches later in the trial
made up for this slow start. This is perhaps good news for
the examiner community, who may not have to rely on always
finding the most diagnostic region first or risk biasing the
entire decision process for a given comparison.

The independence we observe between patches may be a
function of their relative spatial isolation. We know that these
are relevant patches, because each examiner selected their
own regions. However, while fingerprints often contain re-
gions of high and low quality similar to our displays, they
are often connected by at least discernable ridge flow. Had
we included such background features, we may have observed
one region “bootstrapping” nearby regions, thus producing d’
curves that accelerated rather than appearing linear with the
number of presented regions. However, designing such a
background while not providing additional information might
prove challenging.

The results help constrain models of spatial information
acquisition, because complex models that involve integration
across regions may not be necessary to account for the major
finding that items seem to be processed and interpreted

Table 2 Experiment 2 transition probability matrix between current
response (row) and subsequent response (column) for non-mated (upper
table) and mated trials (lower table) for the Random region ordering

condition. Numbers in parentheses represent the proportion of responses
for that row that fell in that cell

Non-Mated Impressions

EasyEx ModEx DiffEx TendEx TendID DiffID ModID EasyID

EasyEx 97 (0.99) 0 (0.00) 0 (0.00) 1 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

ModEx 27 (0.22) 96 (0.77) 1 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.01) 0 (0.00)

DiffEx 5 (0.03) 44 (0.22) 133 (0.67) 14 (0.07) 2 (0.01) 0 (0.00) 0 (0.00) 0 (0.00)

TendEx 6 (0.01) 28 (0.03) 94 (0.12) 648 (0.80) 37 (0.05) 1 (0.00) 0 (0.00) 0 (0.00)

TendID 0 (0.00) 2 (0.01) 4 (0.02) 59 (0.36) 96 (0.59) 1 (0.01) 0 (0.00) 0 (0.00)

DiffID 0 (0.00) 0 (0.00) 1 (0.50) 0 (0.00) 0 (0.00) 1 (0.50) 0 (0.00) 0 (0.00)

ModID 0 (0.00) 1 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

EasyID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Mated Impressions

EasyEx ModEx DiffEx TendEx TendID DiffID ModID EasyID

EasyEx 0 (0.00) 0 (0.00) 1 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

ModEx 1 (0.08) 6 (0.50) 2 (0.17) 1 (0.08) 1 (0.08) 0 (0.00) 1 (0.08) 0 (0.00)

DiffEx 0 (0.00) 7 (0.13) 35 (0.63) 4 (0.07) 9 (0.16) 1 (0.02) 0 (0.00) 0 (0.00)

TendEx 0 (0.00) 2 (0.01) 19 (0.05) 274 (0.73) 72 (0.19) 5 (0.01) 1 (0.00) 0 (0.00)

TendID 1 (0.00) 0 (0.00) 1 (0.00) 29 (0.07) 292 (0.68) 75 (0.17) 30 (0.07) 3 (0.01)

DiffID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 4 (0.03) 93 (0.61) 52 (0.34) 4 (0.03)

ModID 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.01) 0 (0.00) 3 (0.02) 113 (0.70) 45 (0.28)

EasyID 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.01) 0 (0.00) 1 (0.01) 91 (0.98)

Color codes: Gray – stayed with same response when the next region is added. Green – advanced one response toward ID. Blue – advanced one response
toward Ex. Yellow – advanced two responses either toward ID (upper triangle) or toward Ex (lower triangle). Orange – advanced three responses either
toward ID (upper triangle) or toward Ex (lower triangle). Mated and non-mated trials show weak evidence for larger jumps (Yellow and Orange)
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relatively independently. This result may be region-size de-
pendent, and we had to make some decisions about how large
our regions were based on the relative size of minutiae in our
impressions. Although independence may break with ex-
tremely small or extremely large patches, independence seems
to hold for our mid-sized regions.

Open practices statement The data and materials for all experiments
are available via the Open Science Framework at osf.io. The project was
not preregistered because data collection began before this became a
standard practice.
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