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Abstract
Feature Integration Theory (FIT) set out the groundwork for much of the work in visual cognition since its publication. One of the
most important legacies of this theory has been the emphasis on feature-specific processing. Nowadays, visual features are
thought of as a sort of currency of visual attention (e.g., features can be attended, processing of attended features is enhanced), and
attended features are thought to guide attention towards likely targets in a scene. Here we propose an alternative theory – the
Target Contrast Signal Theory – based on the idea that when we search for a specific target, it is not the target-specific features
that guide our attention towards the target; rather, what determines behavior is the result of an active comparison between the
target template in mind and every element present in the scene. This comparison occurs in parallel and is aimed at rejecting from
consideration items that peripheral vision can confidently reject as being non-targets. The speed at which each item is evaluated is
determined by the overall contrast between that item and the target template. We present computational simulations to demon-
strate the workings of the theory as well as eye-movement data that support core predictions of the theory. The theory is discussed
in the context of FIT and other important theories of visual search.
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Introduction

The goal of most theories of visual attention and visual search is
to predict how attention will move in a scene as a function of the
elements in it. Analyses of the search slope (i.e., the slope coef-
ficient of the linear regression of reaction time (RT) as a function
of the number of elements) can provide key insights into our
understanding of visual attention. Pioneering work by Treisman
undoubtedly promoted the importance of this measure. Indeed,
in Feature Integration Theory (FIT; Treisman & Gelade, 1980),
search slopes were used as the critical measure to distinguish
between two fundamentally different modes of information pro-
cessing that guide attention in a scene. The core idea of the
theory is that feature search (i.e., when the target differs from

distractors along a unique visual feature) could be performed in
parallel and, as a result, search times should be unaffected by the
number of distractors. Indeed, in feature search, the presence of
the target would be indexed by a single point of activity in the
“feature map” coding for that unique feature, and as such, this
activation could be detected in parallel, regardless of the amount
of activity on other feature maps. Feature search was compared
to conjunction search, where the target shares at least one feature
with every other distractor in the display. As a result, all feature
maps would register more than one point of activation, making
parallel detection of the target impossible. Treisman and Gelade
(1980) proposed that attention would then be required to visit
separate spatial locations to bind feature values across different
feature maps into cohered object representations that could then
be compared to the target template. This process naturally takes
longer with more items in the display, leading to a steep depen-
dence of RT on set size. Treisman and Sato (1990) later im-
proved on this first model to account for efficient search perfor-
mance in certain conjunction search tasks, by adding a mecha-
nism of feature-based inhibition that can reduce the activity in
two or more feature maps to decrease the activity in certain
distractor locations.

In a similar vein, Duncan and Humphreys (1989) proposed
the concept of a “search surface.” The idea of a search surface
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is meant to reflect the fact that search slopes seem to be deter-
mined by two sets of similarity relations among search items:
The search slope is an increasing function of target-distractor
similarity but a decreasing function of distractor-distractor
similarity. In other words, the larger the target-distractor sim-
ilarity, the larger the search slope; the larger the distractor-
distractor similarity, the smaller the search slope. Wolfe’s
Guided Search (1994) model was perhaps an early culmina-
tion of the efforts in systematically understanding search slope
variations. In this context, search slopes are a function of the
salience of the target with respect to the distractors. As sa-
lience decreases, search slopes increase until search eventually
becomes serial. The most important contribution of Guided
Search was the proposal that a top-down signal could boost
the processing of specific feature maps, increasing the weight
of that map on the overall activation map.

The importance of parallel processing
in visual search

Whereas the models reviewed above focused on understand-
ing serial and/or capacity-limited attention mechanisms, there
are two traditions in the visual search literature that placed a
major emphasis on the parallel analysis of the scene. First,
Signal-Detection Theories (SDTs) of visual search propose
that the entire scene is processed and result in a representation
of the distribution of distractor observations, as well as a dis-
tribution of target observations (e.g., Eckstein, Thomas,
Palmer, & Shimozaki, 2000; Palmer, Verghese, & Pavel,
2000; Verghese, 2001). The goal of SDT models is to predict
search accuracy and not reaction times. Rosenholtz (2001)
improved the performance of this family of models: instead
of using the entire distribution of distractors, the model per-
formed substantially better when using only summary infor-
mation about the distractors (average and variance),
supporting the idea that peripheral vision is limited in its abil-
ity to represent all peripheral items. More directly related to
the Target Contrast Signal Theory presented below,
Rosenholtz demonstrated that similar performance could also
be obtained when peripheral analysis compared display items
to one another and, in some proportion of the time, display
items to a target template (Relative-Coding-With-Reference-
Model). Importantly, SDT theories of visual search demon-
strated that a parallel processing mechanism can account for a
wide range of visual search results without invoking feature-
binding spatial attention. A second tradition consists of theo-
ries aimed at predicting eyemovements during search or scene
viewing. These theories rely entirely on a parallel analysis of
the scene to determine where the eyes will move next. We
discuss these theories in more detail in theGeneral discussion.

Another model that strongly relies on parallel processing is
the Texture Tiling Model of Rosenholtz and colleagues (e.g.,

Balas, Nakano & Rosenholtz, 2009; Rosenholtz, Huang, Raj,
Balas & Ilie, 2012). This model is a low-level model of pe-
ripheral vision that has demonstrated great success at
predicting performance across a number of inefficient search
tasks (i.e., tasks that produce search slopes of more than 10
ms/item) and can account for a number of well-known visual
search phenomena, such as search asymmetries and conjunc-
tion search inefficiency. The model assumes a rich set of low-
level summary statistics is computed in parallel over pooling
regions (that increase in size with eccentricity) across the
scene. The statistics are supposed to represent computations
that V1-like cells can make over the pooling regions (Freeman
& Simoncelli, 2011). The central idea is that search perfor-
mance must be constrained by the sort of information periph-
eral vision can represent about the objects in the field of view.
The authors argue that in crowded displays (when multiple
items fall within the same pooling region), visual search does
not operate at the object or item level, but rather at the pooled-
region level. As a result, search efficiency is determined not
by the speed attention canmove around the scene and discrim-
inate individual objects, but rather by the ability of the visual
system to distinguish pooled representations that contain tar-
get features (that have been pooled together with distractor
features) from pooled representations that summarize regions
containing only distractors. This work has highlighted the
importance of considering peripheral processing limitations
when trying to understand visual search performance.

Finally, recent work has focused on understanding the sys-
tematic variation of RTas a function of set size associated with
parallel processing during search (Buetti, Cronin, Madison,
Wang, & Lleras, 2016; Wang, Buetti, & Lleras, 2017). Most
theories of visual attention include an initial parallel process-
ing of the scene that creates a map, referred to as a saliency
map (e.g., Itti & Koch, 2000), activation map (Wolfe, 1994),
or a target-distractor similarity map (Adeli, Vitu & Zelinsky,
2017; Zelinsky, 2008). These theories assume that the time to
compute this map is negligible or constant, much like signal-
detection theories of search (e.g., Palmer et al., 2000;
Rosenholtz, 2001). Buetti et al. (2016) took a closer look at
the so-called “flat search functions” observed in efficient
search and discovered that they were not really flat: In addi-
tion to the linear search function typically observed in serial/
inefficient search, Buetti et al. (2016) reported that efficient
search with a fixed target (e.g., search for a red triangle among
blue circles), was best described by a logarithmic RT by set
size function rather than by a linear one. Furthermore, the
steepness of the logarithmic functions was associated with
target-distractor similarity: the more similar the distractors,
the steeper the logarithmic functions (e.g., a red triangle
among orange diamonds; see Fig. 1, left panel). Note that
logarithmic and negatively accelerated search functions had
already been reported in multiple studies but were never sys-
tematically analyzed (e.g., Briggs & Swanson, 1970;
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Carrasco, Evert, Chang, & Katz, 1995; Corballis, Kirby &
Miller, 1972; Kristofferson, 1972; Palmer, Ames, & Lindsey,
1993; Simpson, 1972; Swanson & Briggs, 1969; Treisman &
Gelade, 1980). Wang et al. (2017) extended these findings on
simple geometric shapes to real-world objects (Fig. 1, right
panel).

Importantly, the logarithmic dependency of RT on set size
constrains the possible functional architectures underlying vi-
sual search, and, in particular, efficient search. Townsend and
Ashby (1983) conducted the first systematic investigation of
various possible cognitive architectures, distinguishing be-
tween properties such as parallel versus serial processing, un-
limited versus limited capacity, and exhaustive versus self-
terminating completion rules. Buetti et al. (2016) used this
framework to propose that the observed logarithmic functions,
and modulations of their steepness, were indicative of a pro-
cessing architecture with parallel processing, unlimited capac-
ity, and an exhaustive termination rule. Buetti et al.’s (2016)
simulations also demonstrated that one can easily account for
the modulation of the steepness of the logarithmic functions
by assuming that the processing time of an individual item is
inversely proportional to its dissimilarity to the target.

In the context of these findings, Buetti et al. (2016) pro-
posed that visual processing in visual search evolved over two
stages. During the first stage, the visual system accumulates
visual information in parallel about each item in the display.
Peripheral vision imposes a limit on the resolution and infor-
mation that the system can acquire in this fashion (e.g., Neider
& Zelinsky, 2010; Rosenholtz, 2016; Strasburger, Rentschler,
& Jüttner, 2011; Wang, Lleras, & Buetti, 2018). When
distractors are sufficiently visually different from the target
(referred to as lures), the visual system relies on peripheral
vision to decide with high confidence that the item is unlikely

to be a target. When distractors are too similar to the target
(referred to as candidates), the visual system lacks the pro-
cessing resolution to be able to confidently rule out the possi-
bility that those distractors are not the target. The amount of
information necessary for this rejection decision should thus
reflect the item’s similarity to the target template. As a result,
during this first stage of processing, a rejection decision can be
made through a relatively coarse, rather than fine-grained,
discrimination process. For highly dissimilar items, little in-
formation would be required to reject them. However, if a
decision cannot be made when the maximal amount of infor-
mation is reached, the item would then be labeled as a candi-
date and queued for processing in the second, capacity-limited
stage. Therefore, in the context of this model, the accumula-
tion threshold that separated the lure and candidate categories
was essentially proposed to arise from the processing limita-
tions in peripheral vision (e.g., Freeman & Simoncelli, 2011;
Levi, 2008; Rosenholtz et al., 2012; Strasburger et al., 2011).
As a result, candidate items were proposed to require a closer
scrutiny to be distinguished from the target. This attentive
scrutiny would likely require eye movements and/or focused
attention to each of these items, until the target is found, pro-
ducing a steep linear cost to RT. Buetti et al.’s (2016,
Experiments 2, 3A–D) findings confirmed that candidates
contribute linearly to RTs even in the presence of lures and
regardless of the lure-target similarity.

Mathematical model and first simulations
in Buetti et al. (2016)

The architecture proposed by Buetti et al. (2016) was im-
plemented in simulations using equations that govern the

Fig. 1 Fixed-target efficient search reaction times (RTs) increase as a
logarithmic function of set size. (A) Replotted data from Buetti et al.
(2016; Experiment 1A), search for simple colored geometric stimuli.
(B) Data from Wang et al. (2017; Experiment 1), search for real-world

objects. Error bars indicate one standard error of the mean. Curves are
best-fitting logarithmic functions. Figures reprinted from Wang et al.
(2017)
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behavior of individual stochastic evidence accumulators
(Wang et al., 2017). In the formal model, during stage-
one processing, the visual system tries to reject each search
item by reaching a decision that it is unlikely to be the
target. The model is a drift-diffusion model, where evi-
dence is accumulated in parallel at each location, with un-
limited capacity (i.e., the evidence accumulation rate for
each item is independent of set size). The amount of infor-
mation required to reach a decision is proportional to the
item’s similarity to the target. The greater the target-item
similarity, the more information is needed. To account for
the resolution limitations in peripheral vision, a maximum
decision threshold was introduced. Items that reach this
maximum threshold are too similar to the target to be
rejected as lures; their location is thus passed on to the
second stage of search during which focused attention (or
eye movements) is directed to these locations to make a
more confident decision regarding these high-similarity
items. Information accumulation was modeled as a
Gaussian random walk with a positive mean drift rate.
Thus, the completion time for each item’s processing fol-
lows the Inverse Gaussian distribution. Finally, the model
had an exhaustive termination rule. Thus, the stage-one
completion time for a specific search display was deter-
mined by the time taken by the last accumulator to reach
threshold.

This initial model allowed us to simulate stage-one pro-
cessing time as a function of set size and lure-target similarity,
and to reproduce all of the observed characteristics in the
search functions reported in Buetti et al. (2016).
Interestingly, our simulations revealed that the accumulation
thresholds, which represent each item’s similarity to the target,
were proportional to the logarithmic slopes of simulated
search functions. This relation supports the assumption that
accumulation thresholds are determined by and represent
target-lure similarity and is consistent with the findings that
logarithmic slopes increase with increasing lure-target
similarity.

One successful application of this initial model was a dem-
onstration that the coefficient of the slope of the logarithmic
function meaningfully predicts future performance, even in
novel search scenarios. That is, this coefficient can be used
to predict how long it will take to find a target in novel scenes
that contain multiple types of lures (Lleras,Wang,Madison, &
Buetti, 2019; Wang et al., 2017). For instance, one can first
measure how long it takes for observers to find a target in
homogeneous displays that contain all identical lures (e.g.,
find a red triangle amongst blue circles and a red target
amongst yellow triangles). The parameters estimated from
those tasks can then be used to predict how long it will take
to find a red triangle in a heterogeneous display (i.e., a display
that contains a mix of blue circles and yellow triangles). Wang
et al. (2017) used this approach to determine the best-

approximating “global” equation to predict simulated process-
ing times in heterogeneous displays based on simulated RTs in
homogeneous displays. This equation is referred to as
“global” because it summarizes the behavior of an entire set
of independent 1-D Brownian noise accumulators, which are
not directly observable in search behavior, whereas the global
equation is. One advantage of a global equation is that once
one is identified, there is no longer a need to run simulations of
a set of accumulators to understand the behavior of the set.
The global equation can then be used to predict behavior un-
der any behavioral experiment that falls within the umbrella
covered by the simulation (in this case, predicting heteroge-
neous display RTs based on homogeneous display RTs).

Equation 1, presented below, was the winning equation
among the four tested ones. In Equation 1, Dj indicates the
logarithmic slope parameters associated with lures of type j
and are organized from smallest D1 to largest DL (with D0 =
0). This equation assumed an architecture with unlimited ca-
pacity, parallel processing, and an exhaustive stopping rule.

RT ¼ a

þ ∑
L

j¼1
Dj−Dj−1
� �

*ln NT− ∑
j−1

i¼1
Ni

� �
*1 2;∞½ Þ jð Þ þ 1

� �

ð1Þ

L indicates the number of lure types present in the display,
NT the total number of lures, Ni the number of lures of type i.
The constant a represents the reaction time when the target is
alone in the display. The index function 1[2,∞)(j) indicates that
the sum over Ni only applies when there are at least two dif-
ferent types of lures in the display (j>1).When j=1, the second
sum is zero.

Next, the same approach was used to predict search times
in human participants. Specifically, we first estimated the
slope coefficients when searching in homogeneous displays
in a group of subjects. We then tested whether Equation 1
could predict observed search times in heterogeneous displays
based on the parameters observed in homogeneous displays.
Critically, a separate group of participants completed the
search in heterogeneous displays. The results indicated that
Equation 1 accounted for 96.8% of RT variance when pictures
of real-world objects were used as stimuli (Wang et al., 2017)
and 89.9% when simple geometric figures were used (Lleras
et al., 2019).

Finally, Lleras et al. (2019) also demonstrated that this
modeling approach can be used to quantitatively measure
the extent of inter-item interactions in a search scene (which
tend to facilitate search in homogeneous compared to hetero-
geneous search scenes). These inter-item facilitations were
stronger in displays containing simpler (geometric shapes)
compared to more complex (real world objects) visual stimuli
(Fig. 2). Inter-item interactions were thus indexed by a
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Fig. 2 Predicting heterogeneous search times based on homogeneous
search times. Top panel illustrates the procedure. First, the logarithmic
slope for homogeneous displays is measured (Di values), then those
parameters are used along with Equation 2 to predict reaction times in
heterogeneous displays (sample displays on the right). Bottom left panel:
Search for geometric stimuli: observed vs. predicted reaction times (RTs)
in Lleras et al. (2019). Each dot corresponds to one of 45 different types of

lure mixtures across three different experiment. Equation 2 captured 90%
of the variance with β=1.8. Bottom right panel: Search for real-world
objects: observed vs. predicted RTs in Wang et al. (2017). Each dot
corresponds to one of 21 different lure mixtures tested in the heteroge-
neous search display condition. Equation 2 captured 96% of the variance,
with β = 1.3
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multiplicative factor β as shown in Equation 2.

RT ¼ aþ β* ∑
L

j¼1
Dj−Dj−1
� �

*ln NT− ∑
j−1

i¼1
Ni

� �
*1 2;∞½ Þ jð Þ þ 1

� � !
ð2Þ

Shortcomings of Buetti et al.’s (2016) model

There are four major shortcomings in Buetti et al.’s (2016)
model. We first list and describe them before addressing them
with a new theory in the next section. The first shortcoming
concerns the fact that the thresholds of the accumulation pro-
cess are proportional to the lure-target similarity, such that
lures that are more similar to the target would have higher
thresholds and thus take longer to process. This poses the
problem of predetermining the thresholds at the start of a
trial. In other words, how does the system set, a priori, the
threshold for each lure in the scene? If the threshold is set at
the start of the accumulation process, this is tantamount to
saying that the system already knows what the lure being
processed is (or at least, its degree of similarity to the target!).
It would also imply that the system has sufficient information
to determine which items are lures and which are candidates.
If this was the case, why would the system bother to go
through the accumulation process? Buetti et al.’s model over-
came this problem via supervision: we, the modelers, set the
threshold for each lure type in each simulation. But a success-
ful model ought to determine the decision time for a given
type of lure in an unsupervised manner. In other words, a
successful model ought to be able to operate on distractors
without knowing a priori how similar each of those distractors
is to the target. The model ought to react differently (accumu-
late evidence slower) to distractors that are more similar to the
target than to distractors that are very dissimilar from the
target.

The second shortcoming concerns the candidates’ contri-
bution to stage-one processing, when these items are present
in the display. While experimentally we reported independent
contribution to RT by candidates and lures (Experiments 3A–
D, Buetti et al., 2016), all search items on the display, includ-
ing candidates, must go through the information accumulation
process. Because candidates have a higher threshold in that
first model, they usually end up being the last ones to com-
plete processing. We should thus expect the number of candi-
dates to also contribute to stage-one processing time in a log-
arithmic fashion (in addition to their linear contribution during
stage-two processing) because stage one only ends after all
accumulators have reached threshold, including all the candi-
date accumulators. This contradicts empirical results
(including our own; Buetti et al., 2016) where candidates have

been shown to produce linear RT-by-set size functions, with
no evidence of a negative accelerated curve.

A third shortcoming of the initial model is that the defini-
tion of candidates and lures is empirically driven. That is,
lures were defined as those distractors that produced logarith-
mic search functions and candidates as those that produced
linear search functions. We provided no a priori mechanism to
distinguish these two types of items, given a specific target
item. This concern can be attenuated in part by the predictive
successes inWang et al. (2017) and Lleras et al. (2019), where
we demonstrated that once it is determined that a stimulus is a
lure with respect to a given target, it will continue to be a lure
and hold the same “similarity” relationship irrespective of the
context in which it is tested.

A final shortcoming of the model is perhaps the assumption
that the initial parallel processing stage is exhaustive. That is,
although the entire model seems to be predicated on that as-
sumption, it might seem too strong of an assumption. For
instance, it is well known that visual processing rates decrease
with increasing eccentricity (e.g., Carrasco & Frieder, 1997;
Wang et al., 2018). Suppose then that a display has items at
various eccentricities, including fairly far into the periphery. It
surely sounds extreme to propose that the first stage of pro-
cessing would continue until all the items are processed, in-
cluding the more peripheral and slower-to-process items.
Surely, in such scenarios there ought to be some rule that
terminates processing before the farthest stimuli are fully
processed. Such scenarios are consistent with the vast litera-
ture on the functional viewing field or useful field of view
(e.g., Ball, Beard, Roenker, Miller, & Griggs, 1988; Sanders,
1970; Williams, 1989).

Target Contrast Signal Theory

Like Buetti et al.’s (2016), the Target Contrast Signal Theory
(TCS) is a theory that describes the temporal dynamics of
peripheral parallel processing during efficient search, when
the target is known and fixed across trials. TCS also addresses
the major shortcomings of the Buetti et al.’s initial model. As a
brief overview, TCS proposes that in visual search, visual
processing begins with the accumulation of a contrast signal
between each item in the display and the target template. This
accumulation of evidence is toward a non-target threshold and
occurs in parallel across all locations in the display. Locations
that reach threshold are determined to be unlikely to contain
the target and are discarded from further processing. The
“end” of stage-one processing is determined by a time-out
mechanism: If no accumulators reach threshold during a time
interval T0, visual processing moves on to stage two where
attention (and/or eye movements) is deployed serially to in-
spect the remaining locations until the target is found or search
is terminated. A good analogy for this time-out parameter is
cooking popcorn in the microwave. The instructions indicate
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that, after the popcorn has started popping, the popcorn has
finished cooking once there is an interval of 3 s between pops.
Similarly, we propose that after accumulators have started
hitting threshold, if a time interval of T0 elapses without any
accumulator completing, then parallel evaluation of the dis-
play is terminated and a decision is made to move attention or
the eyes towards one of the unresolved accumulators. To be
clear, when the time-out elapses, it does not mean that all
parallel analysis of the scene ends. Accumulators that had
not reached threshold at this point will continue to be analyzed
after the eye movement.

Characterization of TCS

Computation of a difference signal Perhaps the most impor-
tant innovation of CST is with respect to what is being accu-
mulated in the accumulators. As did many feature-oriented
and similarity-based theories before (e.g., Duncan &
Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994;
Zelinsky, 2008), in Buetti et al.’s initial model we proposed
that each accumulator accumulated perceptual evidence at
each location. That is, the accumulators were conceptualized
as sampling perception consisting of the features present at
each location. TCS instead proposes that the accumulators
are not sampling perception but are instead computing a dif-
ference signal: the contrast between the visual characteristics
of the item in the scene and the target template. The compu-
tational goal of stage-one processing remains the same as in
the previous model: it consists of determining which items in
the display are unlikely to be the target. Thus, the end of the
accumulation process for a location occurs whenever evidence
reaches a non-target decision threshold, that is, when the sys-
tem has accumulated enough evidence that the item in that
location is visually different from the target template.

In Appendix 1 (“Why accumulate contrast?”) we situate
the current TCS proposal about computing a difference signal
in the context of current theories and findings in the literature.
There is indeed growing evidence that visual search for a
specific feature is not achieved by tuning attention to that
specific feature.

Similarity impacts accumulation rates One improvement over
the previous model is that there is no longer a need to provide
the model with a known value for the target-distractor simi-
larity at each location. Indeed, the evidence accumulation pro-
cess for each item is modeled by 1D Brownian motion accu-
mulators, whose mean accumulation rate is a function of the
overall target-distractor contrast difference. The model “dis-
covers” the difference as it gathers evidence, resulting in dif-
ferent evidence accumulation rates for different levels of lure-
target similarity. The more items are dissimilar to the target
(the larger the contrast is), the larger each (noisy) sample of the
target contrast will be. Over time, this means the accumulation

rate will be large and the accumulators will reach threshold
quickly. In other words, when the visual dissimilarity between
the target and the lure is large, every sample will provide a
large amount of evidence that the lure is not like the target. In
contrast, the more similar target and distractors are (the small-
er the contrast signal is), the smaller each (noisy) sample of the
target contrast will be. This results in a smaller accumulation
rate and accumulators will take relatively longer to reach
threshold. That is, when the visual dissimilarity between the
target and lure is small (high lure-target similarity), every
sample will only provide a small amount of evidence regard-
ing that difference, leading to a slower accumulation of evi-
dence. In sum, the accumulation rate simply tracks the likeli-
hood that any given sample will provide positive evidence for
a difference between visual properties of the distractor and the
target template.

In formal terms, TCS proposes that the slope of the loga-
rithmic function (D) is inversely proportional to the overall
magnitude of the contrast signal (C) between a distractor item
and the target template (Equation 3), with a multiplicative
constant θ.

D ¼ θ
C

ð3Þ

Finally, the rate of evidence accumulation is likely to be
dependent on a number of additional factors such as eccen-
tricity (Buetti et al., 2016), size of the item (Wang et al., 2018),
and crowding (Madison, Lleras & Buetti, 2018) precisely be-
cause these factors change the magnitude of the contrast
signal.

Fixed threshold for all accumulators TCS proposes that, all
else being equal, there is a fixed threshold for all accumula-
tors, or, more precisely, that the threshold is independent of the
lure-target similarity. The threshold can be understood as the
amount of evidence that is required for the visual system to
confidently reject that an item is not the target. Once an accu-
mulator reaches threshold, the visual system ceases to consid-
er its location as a possible location for the target. Note that in
this view, there is no need to “suppress” the location of the
rejected lures (for distractor suppression accounts see Arita,
Carlisle, &Woodman, 2012; Klein, 1988; MacInnes & Klein,
2003; Moher, Lakshmanan, Egeth, & Ewen, 2014; Müller &
von Mühlenen, 2000; Takeda & Yagi, 2000; Thomas &
Lleras, 2009; Thomas et al., 2006; Woodman & Luck,
2007). These locations are simply ignored in further process-
ing, and only the locations that have not reached threshold
continue to be of potential interest to the system. Finally,
TCS does not explicitly represent a target-distractor similarity
signal (TDS) as is commonly done in computer vision models
of vision and in saliency and activation-map accounts of vi-
sion (e.g., Itti & Koch, 2000; Wolfe, 1994). The accumulators
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that reach threshold are simply coded as having reached
threshold regardless of how long it took for them to do so.
Accumulators that did not reach threshold are simply passed
on as potential targets for attention, without any ranking, or
prioritization. That is to say, TCS does not query or represent
the amount of evidence at non-resolved accumulators to pri-
oritize some candidate locations over others. Recent work
suggested that there is no similarity-based prioritization
amongst the candidates (see Ng, Patel, Buetti, & Lleras,
submitted) and it is likely that other factors might come to
play in terms of how eye movements are selected (such as a
viewer’s scanning preferences and saccade distance, for
example).

Termination rule determined by a time-out mechanism
Because the evidence that is accumulated reflects the contrast
signal between the target template and a specific item in the
display, the accumulation rate of the target itself will be near
zero. Candidates will also have near-zero, or relatively small,
accumulation rates. This introduces the problem of termina-
tion. If certain items will never reach threshold, what deter-
mines whether enough processing of the scene has taken
place? We propose that the termination is determined by a
time-out mechanism. The time-out parameter (T0) is defined
by a time interval during which no accumulators reach the
decision threshold. After accumulators start reaching the
threshold, if a time interval T0 elapses without any additional
accumulator reaching threshold, the list of locations associated
with unresolved accumulators is passed on for consideration
as possible targets for inspection by focused attention and/or
an eye movement. The goal then will be to scrutinize that
location with heightened resolution (e.g., Desimone &
Duncan, 1995). In other words, locations on this list are scru-
tinized during the second stage of processing until the target
(if one is present) is found.

There are multiple factors that might impact this time-out
parameter. For instance, task instructions might encourage
participants to actively move their eyes when searching for
the target as in “active search” conditions (e.g., Lleras & von
Mühlenen, 2004; Smilek, Enns, Eastwood, & Merikle, 2006).
Such a strategy would be modeled by a relatively small time-
out parameter. This is in contrast to a “passive” search mode,
where participants might prefer to maintain fixation and let
accumulators complete as much as possible prior to moving
their eyes. Such a strategy would be modeled by a relatively
larger time-out parameter. There might also be individual dif-
ferences in terms of participants’ preferences to actively
search the display by moving their eyes versus keeping their
eyes still, and perhaps certain traits (e.g., hyperactivity) might
also be associated with more active searches and correspond-
ingly smaller time-out parameters. The time-out might also be
sensitive to the duration of central fixation in the most recent
trials, such that it might be reduced if processing on the

previous trial was easy and might be longer if processing on
the preceding trial was more difficult (e.g., Trukenbrod &
Engbert, 2014). It is also possible that the default setting for
the time-out might be determined by the underlying distribu-
tion of fixation durations during normal scene viewing (e.g.,
Nuthmann, Smith, Engbert, & Henderson, 2010). Similarly,
the time-out might also be sensitive to target prevalence ef-
fects (e.g., Mitroff & Biggs, 2014; Wolfe, Horowitz, &
Kenner, 2005; Wolfe & Van Wert, 2010), such that it is pro-
gressively shortened when targets become rare.

As a result, variations in the time-out parameter vary the
spatial extent that is processed before a decision to move
attention/eye movements is reached. Items near fixation will
be processed faster than items farther in the periphery because
accumulation rates decrease as a function of eccentricity (e.g.,
Wang et al., 2018). Therefore, a small time-out parameter is
associated with the parallel evaluation of only a small region
around fixation because the accumulators in the periphery
might not reach threshold before the time-out elapses. More
on this will be presented in the section on eye movements and
the discussion sections, but it is important to note that the
concept of a functional viewing field (e.g., Hulleman &
Olivers, 2017) is an emergent property of the proposed
architecture.

A simulation of stage-one processing according to TCS
is shown in Fig. 3 (top and middle panels), which illus-
trates the accumulation of a contrast signal in a search
display containing one target and several lures. The top
and middle panels show how the contrast signal accumu-
lates when the dissimilarity between the target (red T) and
the lures is very high (blue circles, top panel) or moderate
(orange crosses, middle panel). The red line represents the
accumulation associated with the target item. The blue and
orange lines represent the noisy accumulation process for
the blue and orange lures, respectively. Due to noise in the
accumulation process, the individual lures reach the deci-
sion threshold at different time points, even when they are
all identical. However, in most cases, these time points are
close to each other and are within the time-out interval.
The target itself has a near-zero contrast signal against
the target template and will not reach threshold. Once a
time interval longer than the time-out elapses without ac-
cumulators reaching threshold (in the figure, that occurs
after all lure accumulators reach threshold), attention will
directly move towards the location of the only accumulator
that did not reach threshold (the target).

Therefore, in TCS, the addition of the time-out parameter
introduces a new termination rule that is not exhaustive. When
all distractors are lures, then, in most cases, we can expect all
lure accumulators to reach threshold before the time-out pa-
rameter. In this case, the model will behave as a lure-
exhaustive model (Fig. 3, top and middle panels). However,
we can also expect that in some situations, not all
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accumulators will reach threshold. As previously mentioned,
this is the case for instance when participants decide to

actively move their eyes, spending little time at each location
(this corresponds to a very small time-out parameter).
Similarly, if many items in the display are far in the periphery,
the accumulators for these items will have small drift rates;
even if all the elements are indeed lures, a time-out might
elapse before all lures reach threshold. At that point in time,
attention will move to one of the unresolved accumulators,
which will include lure items. Thus, TCS predicts that under
certain situations, attention (and eye movements) will “false
alarm” and deploy to a lure, rather than a target, even under
efficient search conditions. Below, we provide eye-movement
evidence consistent with this prediction. Evidence that atten-
tion false alarms to “distractors” even in efficient search has
also been recently presented by Rangelov, Müller, and
Zehetleitner (2017).

Because candidates are quite similar to the target, their
accumulators ought to rarely reach threshold and thus, their
presence and number do not contribute to overall process-
ing time during the parallel evaluation of the scene. This is
an important key distinction from the previous model.
Indeed, since candidate accumulators fail to reach thresh-
old (in most cases), and parallel processing times are de-
termined by the completion time of last accumulator that
reaches threshold before the time-out, this property of the
new model explains why candidates do not contribute log-
arithmically to RT. Figure 3 (bottom panel) illustrates the
accumulation of a contrast signal in a search display con-
taining both lures (e.g., orange crosses) and candidates
(e.g., red Ls) in addition to the target (e.g., a red T). The
contrast signal for candidates takes longer to accumulate
because of the small contrast signal they generate. When
candidates are not overly similar to the target, the
candidate-target contrast signal is not entirely zero. In such
cases, candidate accumulators might eventually reach
threshold. However, we propose that in most of such cases,
the time-out parameter T0 will be reached prior to that time
(as visualized in Fig. 3, bottom panel). Thus, parallel pro-
cessing will actually terminate prior to any of the candidate
accumulators reaching threshold.

In sum, the introduction of the time-out parameter ad-
dresses two of the main shortcomings of the preceding model:
(i) the known fact that the number of candidates only contrib-
utes linearly to RT (not logarithmically) and (ii) the observa-
tion that even efficient search is not always exhaustive of the
entire display (Rangelov et al., 2017).

Redefining “lures” and “candidates” Due to the stochastic
nature of evidence accumulation, it is possible that in a small
proportion of cases some candidate accumulators might reach
threshold before the time-out elapses. In this case, those loca-
tions will be discarded during parallel processing of the scene
and will not be scrutinized by focused attention/eye move-
ments later on. This observation highlights the probabilistic

Fig. 3 Simulated stage-one processing when one target (e.g., a red T,
shown as a red line) is accompanied by five lures that are highly dissimilar
(e.g., blue circles, shown as blue lines in top panel) or moderately dis-
similar to the target (e.g., orange crosses, shown as orange lines, middle
panel). The bottom panel shows simulated stage-one processing when the
target is accompanied by five dissimilar lures and three candidate items
(e.g., red Ls, shown as green lines). The lines represent the noisy accu-
mulation of contrast signal over time for each item. The green dashed line
represents a fixed decision threshold set at 100 (arbitrary units). In all
panels, the accumulator associated with the target item (red line) produces
a near-zero contrast signal and never reaches threshold. The two vertical
lines indicate the points at which the time-out T0 counter was started and
then when it ended, triggering the decision to move attention (or the eyes)
to one of the accumulators that did not reach threshold. Time and contrast
signal are in arbitrary units
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distinction between lures and candidates. That is, in most
cases, stimuli that are sufficiently different from the target
template ought to be rejected in parallel by the visual system
in the vast majority of cases and stimuli that are sufficiently
similar to the target template are candidates for scrutiny by
focused attention and eye movements. That said, the combi-
nation of the processing properties of peripheral vision1 and
the duration of the time-out parameter do create exceptions to
those rules. For instance, a lure that is relatively similar to the
target template and that appears far in peripheral vision might
have a slow accumulation rate that will not hit threshold be-
fore the time-out elapses. Similarly, a candidate that is visually
not too similar to the target and that appears near fixation
might have a faster accumulation rate and might be rejected
in parallel prior to the time-out being reached (because of
increased processing resolution of vision near fixation; see
Fifić, Townsend, & Eidels, 2008). Thus, instead of defining
lures and candidates with respect to their similarity to the
target, it would be more precise to define them based on the
type of processing that the visual system uses to categorize
them as non-target items. Thus, lures are items that have
reached threshold and the visual system can confidently dis-
card in parallel whereas candidates are items that have yet to
reached threshold and the visual system requires close inspec-
tion or scrutiny to rejecting them. Note, though, that these
labels tend to be stable for any given target-distractor pair, as
evidenced by the success in predicting performance across
different groups of participants and display complexity
(Lleras et al., 2019; Wang et al., 2017).

Finally, it is important to remember that in TCS the target is
processed just like any other candidate. This means that re-
gardless of where the target is in the periphery (near or far), it
will accumulate next to nothing in terms of contrast because
the goal of peripheral analysis is to find evidence to discard
unlikely target locations. So, even if the target appears near
fixation (but not at fixation), it should be treated (blindly) as
any other peripheral distractor and evaluated to see if its loca-
tion can be rejected. The accumulation process will not reach
threshold and the target location will therefore be amongst the
set of possible target locations. This is different from what
would happen if and when the eyes are looking directly at
the target. It is likely that foveal information accumulates not
towards a non-target threshold, but rather, towards a target-
threshold, i.e., the perceptual information at the fovea is com-
pared to the target template for a positive match.

Highlights of Target Contrast Signal Theory
(TCS)

What TCS can do:

1. TCS provides an account for the variation of RT as a
function of set size observed in efficient search tasks,
which has been overlooked by previous theories. This
variation in RTs is systematic and informative: the loga-
rithmic slope coefficient measured in a typical efficient
search task (one target, all identical lures) indexes the
dissimilarity between the target and lure stimuli.

2. Using Equation 2, the logarithmic slope coefficients can
be used to predict performance in future experiments
where the same target and lure stimuli are again paired,
even in heterogeneous search displays (e.g., Lleras et al.,
2019; Wang et al., 2017).

3. Current theories typically predict that the eyes ought to
always move directly to the target in efficient search tasks,
yet in many occasions they do not (Ng, Lleras & Buetti,
2018; Rangelov, Muller & Zehetleimer, 2017). TCS pro-
vides a framework for understanding the occurrence of
eye-movements to non-target elements.

4. TCS provides a framework for evaluating and quantifying
lure-lure similarity effects (referred to as homogeneity ef-
fects) in efficient search, independently from target-lure
similarity (Lleras et al., 2019).

5. TCS provides a framework for understanding processing
costs associated with varying levels of target-distractor
similarity: lures incur logarithmic processing costs but
no linear processing costs, while candidates incur linear
processing costs but no logarithmic processing costs.

6. TCS provides an intuitive account for the phenomenon of
search asymmetries due to the fact that the target-contrast
signal is computed as a function of the visual properties
present in the target template (not as a function of the
properties present in the distractor).

7. TCS provides a framework for understanding the impact
of stimulus factors such as visual crowding and stimulus
size as these factors are integral to determining the quality
of peripheral representations.

Below follows a list of the most important limitations of
TCS (see also the Limitation section in the General
discussion):

1. TCS has yet to include a formal description of how pro-
cessing unfolds during stage two and how eye movements
are chosen when multiple possible target locations are
present in the scene.

2. TCS is not a theory of oddball search, which has a very
different RT × set size function (e.g., Bravo & Nakayama,
1992; Buetti et al., 2016).

1 Similar to the Texture Tiling Model of Rosenholtz and colleagues, TCS is
premised on the fact that there are processing limitations in peripheral vision.
These limitations constrain the speed at which the target-contrast signal is
computed at any given eccentricity and the confidence with which peripheral
locations are classified. Note that these limitations are not just in terms of
decreased visual acuity (i.e., they are not equivalent to a Gaussian blurring
of the image input, as proposed by Zelinsky, 2008) but reflect a deeper limi-
tation in how information is processed in the first place (see Rosenholtz, 2016;
Strasburger et al., 2011).
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3. TCS is not a theory of attentional capture. Certain forms
of capture (contingent-capture) might well be understood
within TCS framework but a more comprehensive theory
of all capture (surprise capture, bottom-up capture) is be-
yond the scope of the theory.

4. TCS is a computational, cognitive theory, that is not nec-
essarily neurally inspired. We do not know where the
neurons required to represent the target-contrast signal
reside or if they even exist (see Appendix 1 for a
discussion on contrast signals in the brain). This compu-
tation might be represented in neuron assemblies or be
distributed along different levels of the visual system.

Amore thorough discussion of the limitations of the TCS is
presented in Appendix 3.

Simulation of TCS

As mentioned earlier, it is important to make a distinction
between two different types of equations in our work. Like
in Buetti et al. (2016), each accumulator in TCS is modeled
as a Gaussian random walk with a positive mean drift rate,
such that the completion time for each item still follows the
Inverse Gaussian distribution. There is, therefore, a first set
of equations: those that drive the behavior of individual
accumulators. These equations reflect the underlying
mechanism of the model: that contrast evidence is accumu-
lated at varying rates and with various degrees of noise.
Note that these equations cannot be tested behaviorally. A
second set of equations summarize the behavior of a group
of accumulators, such as Equations 1 and 2. Unlike the
equations governing individual accumulators, these global
equations can be tested empirically (both in human exper-
iments and computer simulations) and used to predict per-
formance in novel scenarios (e.g., Lleras et al., 2019; Wang
et al., 2017).

Below, we present a series of simulations that illustrate the
basic properties of TCS. The goal of these simulations was to
demonstrate that the underlying architecture of the model (i.e.,
multiple stochastic accumulators processing information in
parallel until a time-out is hit) can reproduce the patterns of
behavior we now know characterize efficient search.
Examples of such patterns are: The presence of a logarithmic
RT by set size function; modulation of the logarithmic slope
function by target-lure contrast signal; RTs in lure-
heterogeneous displays determined by Equation 2; and the
observation that candidates do not contribute to stage-one
processing costs. In addition, we also present simulations that
demonstrate other aspects of behavior emerging from the TCS
architecture. These simulations evaluated for instance, the im-
pact of the noise parameter on processing times and what

conditions might lead lures to be inspected by attention and/
or eye movements during stage-two processing.

Approach In all simulations the accumulation threshold was
fixed at 100 (arbitrary units, see Fig. 3).2 The following pa-
rameters were varied in the simulations (values were reported
in the figures): the number of each type of item in a search
display Ni, the average accumulation rate for each type of
distractor item ki, and the standard deviation of the Gaussian
noise in the accumulation rate σi.

When simulating a visual search trial, for each type of
item (denoted by subscript ‘i’ here) characterized by an
accumulation rate ki and an accumulation noise σi, we sim-
ulated Ni random variables that follow an Inverse Gaussian
distribution (Fig. 4). Only one target is present per search
trial, with a fixed accumulation rate of k=0.02. The target
was present on each trial. The noise parameter was set to
the average of all other items (this does not influence the
outcome of the simulation). Next, we sampled each ran-
dom variable based on their respective Inverse Gaussian
distribution to determine the processing time for each item
in a particular trial. The time-out mechanism was then im-
plemented by sorting the item completion times in ascend-
ing order and then locating the first interval between each
successive completion time that was greater than T0. The
simulated time cost for stage-one processing was defined
to be equal to the completion time of the last item before
the timeout.

The simulation was then run multiple times (N = 8,000
for each simulated condition) to obtain a reliable estimate
of the expected processing time as well as the distribution
of processing times for each specific condition. The results
obtained from these simulations were then compared to
group-level mean data from participants who searched dis-
plays similar to the ones used in the simulations, as we
assumed that noise and artifacts present in individual sub-
ject data will be averaged out in group estimates.

Simulation results The first set of simulations were aimed at
validating TCS by verifying that it can reproduce the three
following important properties:

1) Logarithmic RT by set size functions that are modulated
by lure-target similarity. When the target was fixed and
distractors varied in their accumulation rate k, the time
cost by set size functions at different levels of k were all
logarithmic (Fig. 4). Note that when all lures are identical,

2 Note that fixing the threshold does not result in the loss of any degrees of
freedom in the parameter space, because the Inverse Gaussian distribution is
characterized by two free parameters. Thus, varying the accumulation rate
parameter k and the noise parameter σ covers the full spectrum of possible
distributions that describe an individual item’s processing time under the cur-
rent model.
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Equation 1 simplifies to:

RT ¼ aþ D1*ln NT þ 1ð Þ

Thus, the R square values indicated that the overall com-
pletion times in the simulations for a given accumulation rate

matched Equation 1 extremely well. Furthermore, lower k
values (i.e., small contrast signal) led to steeper logarithmic
functions, consistent with TCS’ proposal that logarithmic
slopes are inversely related to the contrast signal (Equation
3). These simulation results are consistent with human data
showing steeper logarithmic functions for high-similarity
lures (Buetti et al., 2016; Madison et al., 2018; Ng et al.,
2018; Wang et al., 2018).

2) Ability to account for completion times in heterogeneous
displays. Wang et al.’s (2017) contribution was to demonstrate
that global Equation 1 best predicted the behavior of the entire
set of accumulators that followed the architecture of Buetti
et al.’s (2016) model (Fig. 5, right). In that study, the authors
compared four models with distinct underlying architecture
(described in Fig. 5). The present simulations aimed at verify-
ing that Equation 1 was still the best global equation to predict
the behavior of the set of accumulators, as now described in
the TCS architecture. As inWang et al. (2017), the parameters
used in the heterogeneous display simulations were the best-
fitting logarithmic fits to the completion times in simulated
homogeneous displays. The results confirmed that Equation
1 provided the best estimate for the global time costs to pro-
cess heterogeneous search displays (Fig. 5, left). In other
words, in spite of the new mathematical implementations in
TCS (new termination rule, most critically), Equation 1 con-
tinues to account for completion times in displays simulta-
neously containing different types of lures. This means that
Equation 1 is consistent with TCS and therefore TCS can

Fig. 5 Simulated search time costs in heterogeneous displays based on
parameters estimated in simulated homogeneous search conditions.
Comparison of simulations carried out using TCS (left panel) and initial
model by Buetti et al. (2016) (right panel). The critical difference is that in
the left panel, the evidence accumulators in the simulations accumulate con-
trast signal, with the accumulation rate being proportional to the overall con-
trast signal and the time-out rule determining when processing finishes. In the
right panel, the evidence accumulators accumulate perceptual evidence at the
same rate across all accumulators and decision thresholds are determined as a
function of lure-target similarity. The figures illustrate the ability of four
models to account for completion times in lure-heterogeneous simulations
were compared, each model reflecting a different underlying architecture. In
both simulations, Model 1, corresponding to Equation 1 in the present paper,

was thewinningmodel, falling the closest to the y=x line (perfect agreement).
In addition, the non-winningmodels had qualitatively similar deviations from
the y = x line. The same set of heterogeneous search conditions were used in
these two simulations. For reference, Model 2 represents a distractor
discounting model where distractors are rejected by subsets determined by
their similarity to the target (e.g., for a red target, all the blue lures would be
discarded first, then accumulation for the yellow lures would start until those
are rejected, and so forth). Models 3 and 4 represent models where all the
lures are rejected at the same processing rate, with Model 3 using a max rule
(inspired by Zelinsky, 2008) and Model 4 using an average discounting rate.
Formore details seeWang et al. (2017). The results show that the architecture
of TCS produces overall RTs that are consistent with the predictions of
Equation 1 when predicting performance in lure-heterogeneous displays

Fig. 4 Simulations of stage one-time cost (in arbitrary units) according to
the Target Contrast Signal theory. The time costs increase logarithmically
as a function of set size. Simulations are shown for four different values of
the accumulation rate parameter k, noting that k is a function the overall
magnitude of the lure-target contrast signal. As k increases, log functions
flatten out, indicating faster overall processing times. Fixed parameter
values: T0 = 6, σ = 22.36. R-Square values indicate the strength of the
logarithmic fit for each condition
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predict the RTs in heterogeneous search scenes (as shown in
Fig. 2).

3) Candidates should not contribute to stage-one
processing. A simulation was run with varying number of
lures and candidates (defined by large and small accumulation
rates k, respectively). As shown on Fig. 6 (left), stage-one time
costs vary only minimally when candidates were added to the
simulation. Figure 6 (right) shows the number of items that did
not reach threshold before the time-out elapsed as a function
of distractor type and number of distractors. One can see that
with the chosen parameters, lure locations are never passed on
to stage two while all candidate locations are.

The next set of simulations were aimed at identifying novel
properties of TCS.

4) Impact of the noise parameter on stage-one processing
time. In the model, the time cost for stage-one processing is
modulated by the noise parameter σ in addition to the rate
parameter k. Given a constant k rate, increasing σ should lead
to steeper logarithmic curves. This property was confirmed by
the simulations (Fig. 7) and suggests that factors such as visual
crowding that increase the noise in the accumulation process
ought to result in steeper logarithmic curves. Evidence consis-
tent with this property of TCS was presented in Madison et al.
(2018) where it was shown that search efficiency was reduced
(i.e., the logarithmic slopes became steeper) in displays where
crowding was possible compared to displays where crowding
was minimized. Furthermore, stimulus size might also be a
factor that impacts noise, with smaller stimuli in the periphery
leading to larger noise in the accumulation process. Evidence
consistent with this property was presented in Wang et al.
(2018) where it was shown that search efficiency increased

(i.e., the logarithmic slopes become shallower) as the size of
stimuli in the periphery increased.

5) Conditions leading lures to be scrutinized in stage two.
The second set of simulations evaluated the likelihood that
target-dissimilar items do not reach the threshold before the
time-out elapses and enter stage two as a result (Fig. 8). We
refer to this condition as a “false alarm” as it creates the possi-
bility that attention and/or eye movements will be directed to
lures. The probability of these events depends on the values of
the time-out parameter T0, the accumulation rate k, and noise
parameter σ. As a first example, Fig. 8 (left panel) illustrates

Fig. 6 Candidates do not affect stage-one processing time according to
TCS. Left panel: Simulated stage-one time cost as a function of number
of lures depending on number of candidates. No significant modulation by
number of candidates was visible. Parameter values: T0 = 4, σ = 10, klure=
20, kcandidate= 0.25. Right panel: Number of distractors that entered stage-
two processing versus actual number of distractors in the simulation. Data
for candidates fall on the y=x line, indicating all of them entered stage two. In
contrast, data for lures fall on the y=0 line, meaning they were all rejected

during stage one. This simulation is meant to illustrate an ideal case where
the accumulation rates are sufficiently different, and the time-out not too long
or too short, to allow accurate triage of the stimuli. As mentioned in the text,
a stimulus that is treated as a candidate in the periphery may be screened as a
lure when presented close enough to fixation, if the distractor-target similar-
ity is not too high. Similarly, lures that are presented sufficiently far in the
periphery may have accumulation rates so low that they end up being can-
didates for eye movements (see the text for more details)

Fig. 7 Simulated stage-one time cost (in arbitrary units) according to TCS
as a function of set size and the accumulation noise parameter σ. As the
noise parameter increases, so does the slope of the logarithmic curve.
Fixed parameter values: T0 = 6, k = 25. R-Square values indicate the
strength of the logarithmic fit for each condition

406 Atten Percept Psychophys (2020) 82:394–425



simulations where k and σ were kept constant, while T0 was
varied. These simulations illustrate a search condition with one
fixed target and varying numbers of lures. The simulation
shows that the likelihood that locations are passed on to stage
two rises dramatically for small time-out values. But, as time-
out values increase, this likelihood drops to near zero. This
function shows a “diminishing returns” situation: increasing
the time-out parameter does decrease false alarm rates, but be-
yond a certain point, the reduction in false alarm rates is perhaps
not justified in terms of the costs of additional waiting. For
example, whereas increasing T0 by two-time units from 2 to 4
cuts false alarm rates by more than half, increasing T0 by the
same two units from 6 to 8 only cuts false alarm rates by an
almost negligible fraction. Thus, one can expect that the visual
system ought to calibrate itself for intermediate values that pro-
duce small enough false alarm rates at the shortest possible T0.

Figure 8 (right panel) illustrates simulations where T0 and σ
were kept constant while k was varied. As one can intuit, the
smaller the accumulation rate, the larger the likelihood that
accumulators will not reach threshold and will thus be passed
on to stage two. Figure 8, therefore, illustrates conditions
where we can anticipate that observers will move their eyes
towards lures (rather than to the target). For example, every-
thing else being equal, as a stimulus is presented farther and
farther into the periphery, the speed of evidence accumulation
for that stimulus decreases (e.g., Carrasco & Frieder, 1997;
Wang, Lleras, & Buetti, 2018). Thus, when the time-out pa-
rameter is not overly long (in the figure, less than 6 arbitrary
units), the likelihood that the same visual stimulus might not
reach threshold before the time-out elapses increases with
stimulus eccentricity. Because the evidence accumulation rate
is a function of lure-target similarity, this set of functions also
predicts that, given a fixed eccentricity and a time-out param-
eter that is not overly long, more similar lures will be more

likely to trigger an eye movement than less similar lures be-
cause more similar lures have smaller accumulation rates.
Finally, the left panel of Fig. 8 also suggests a solution to avoid
eye movements being directed to lures: increasing the time-
out parameter. Indeed, as the time-out increases, the likelihood
that lure accumulators will not reach the threshold collapses to
zero.

In sum, when the time-out parameter is not overly long,
TCS predicts that the likelihood of eye movements that are not
directed to the target will: (i) increase with target eccentricity
and (ii) increase with lure-target similarity. Further, TCS pre-
dicts that with sufficiently long time-outs (iii) eye movements
(or attentional selection) of non-target elements should be near
zero. In the section below, we present evidence consistent with
these predictions. The prediction that eye movements to non-
target elements will be zero in efficient search (prediction iii)
is not new and is actually made by all search models.
Nonetheless, TCS makes novel specific predictions for the
conditions that ought to lead to eye-movements being directed
to non-target elements in efficient search conditions. Further,
TCS predicts both the occurrence of eye-movements to non-
target elements as well as the absence of such eye movements,
with variations in a single parameter (the time-out). In this
fashion, we believe we have introduced a parameter that adds
flexibility to our model in a way that previous models do not.

Converging evidence from eye-movement
data in efficient search

In the present section, we present eye-movement data that
support some of the predictions made by TCS in the preceding
section. Recently, Ng et al. (2018) published the first study
that examined eye movements in an efficient search task that

Fig. 8 Simulated false alarm rates according to TCS, as a function of the
time-out parameter (left panel) and the accumulation rate (right panel).
False alarms are instances where a stimulus that ought to have been
rejected during the parallel evaluation of the scene is instead passed on

as a possible target for an eye movement or for focused attention. Left
panel fixed parameter values: k = 16.67, σ = 12.91. Right panel fixed
parameter values: T0 = 6, σ = 12.91
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included target-distractor similarity manipulations as in Buetti
et al. (2016). The stimuli were simple geometric shapes that
were presented in a circular grid organization to minimize
crowding with eccentricities of 4.2, 7.7, and 14.3° of visual
angle (Madison et al., 2018; Wang et al., 2018). The goal of
the study was to demonstrate that eye movements themselves
were not the cause of the logarithmic patterns observed in
Buetti et al. (2016). Indeed, previous data from Zelinsky
(2008) had shown that, under some experimental conditions,
the number of eye movements can increase with set size, in a
negatively accelerated fashion (like a logarithmic curve). Thus,
it was important to test whether the logarithmic RT patterns in
Buetti et al. (2016) were not an artifact arising from the eye
movement system, but rather do reflect the sort of parallel,
stochastic accumulation of evidence posited. Participants com-
pleted the search task both under a free-viewing condition (as in
Buetti et al., 2016, and most search tasks, in general) and under
a fixed-viewing condition (where they were required to main-
tain fixation throughout the entire trial).

The results of Ng et al. (2018) showed that even when
participants did not move their eyes during search, RTs con-
tinued to increase logarithmically as a function of set size
(average R-square of 0.89 across all experiments and lure
types). This indicated that the lures that we used were suffi-
ciently different from the target such that they could all be
confidently rejected via peripheral analysis. In addition, the
eccentricity chosen also allowed participants to find the target
without moving their eyes. The presence of eye movements in
the free-viewing condition would thus be indicative of an
internal decision to move the eyes but not of a need to move
the eyes caused by limitations in peripheral vision. Indeed,
when eye movements are allowed, there seems to be a trade-
off between continuing to gather evidence through the parallel
evidence accumulation process (while maintaining fixation)
and moving the eyes to a peripheral location that corresponds
to an accumulator that has not reached threshold.

Target-distractor similarity impacts eye behavior in efficient
search Analyses reported in Ng et al. (2018) indicated that
when target-distractor similarity was low, the viewing condi-
tion (free- vs. fixed-viewing) did not have a meaningful im-
pact on search efficiency. This follows because in low simi-
larity conditions, participants made fewer eye movements all
together than in high similarity conditions and the number of
eye movements tended not to be influenced by set size (Fig.
13, bottom, dotted lines). This result is informative regarding
the evidence accumulation process and participants’ strategy
during efficient search: when searching in a display where
distractors are very dissimilar from the target, participants
seem to take advantage of the fast and parallel accumulation
process to find the target. In contrast, when the target-
distractor similarity was higher search was more efficient
(i.e., logarithmic slopes were smaller) in the fixed-viewing

condition (e.g., 35 ms/log unit in Experiment 1B) than in the
free-viewing condition (65 ms/log unit). This result suggests
that participants sometimes prefer to stop the parallel accumu-
lation process and execute an eye movement. This preference
might reflect participants’ level of confidence on the quality of
the evidence being accumulated, that is, a sense of how well
they are sampling the display. When evidence accumulates
overly slowly, they may feel that it is more beneficial to redi-
rect the eyes at potential target locations and accelerate these
rates. That said, this strategy comes with an increased cost
associated with the time needed to execute an eye movement.3

It is not surprising that participants choose to incur those costs,
given that they are likely unaware of them (e.g., Clarke,
Mahon, Irvine, & Hunt, 2017; Hunt & Cavanagh, 2009;
Mahon, Clarke, & Hunt, 2018) and because in the context of
every day’s life, we spontaneously move the eyes in these
circumstances.

This pattern of results is consistent with TCS.When target-
distractor similarity is low, TCS predicts that the accumulation
rate of distractors will be high and that all distractor accumu-
lators will reach threshold before the time-out parameter
elapses (for most time-out parameter values). On the other
hand, when target-distractor similarity is relatively high,
TCS predicts an increased likelihood that the time-out will
elapse before all accumulators have reached threshold (Fig.
8, right). This in turn triggers an eye movement to one of the
unresolved accumulators. Some of these eye movements will
be directed to a lure and cause a temporal cost that would not
be incurred had participants waited for all accumulators to
reach threshold, thus resulting in lower search efficiency.
Finally, the results also showed that subjects performed the
task with the same level of accuracy under free- and fixed-
viewing conditions (98.5% and 97.3%, respectively). In sum,
the results validate the decision to include a variable time-out
parameter in TCS that determines whether to keep processing
information in parallel or whether to move the eyes to an
unresolved accumulator. Finally, it is worth remembering that
all these results were obtained even though all conditions test-
ed fall within the “efficient” range of search efficiency: all
linear slopes observed in the Ng et al. (2018) experiments
were smaller than 7 ms/item.

Where do the eyes go in efficient search According to TCS,
when the time-out elapses prior to all lures having reached
threshold, there are multiple possible unresolved accumulators
that can be targeted for an eye movement (Fig. 8). Thus, TCS
makes a set of specific predictions.

3 This tradeoff does not necessarily mean that participants are behaving
suboptimally when choosing to move the eyes, rather than waiting at fixation.
There might be a difference in terms of effort involved in analyzing peripheral
information (compared to making an eye movement), and behavior might also
not be suboptimal if one considers factors other than search time, such as
accuracy, confidence, or energy expenditure.
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First, participants should show increased rates of target-
uninformed (“guess”) initial saccades when lure-target simi-
larity is relatively high. The term “target-uninformed” reflects
saccades that have been generated by information that has
accumulated at a non-target location and thus, have been di-
rected to a lure location. According to TCS, accumulators that
did not reach threshold are simply passed on as potential tar-
gets for attention, without any ranking, or prioritization (Ng
et al., submitted). TCS predicts that participants will “guess”
one location amongst this set of unresolved accumulators.

Second, the farther the target is presented into the periph-
ery, the higher the likelihood that a target-uninformed saccade
will be executed prior to the eyes moving towards the target.
This follows for the simple reason that if there are multiple
unresolved accumulators (one of them being the target), par-
ticipants will tend to preferentially move their eyes to a loca-
tion that is nearer to the current fixation (e.g., Zelinsky, 2008).
Thus, the larger the target eccentricity is, the less likely its
location will be chosen as the destination of the first saccade.

It is worth noting that, although intuitive, these predictions
are not necessarily compatible with previous models of search
(e.g., Zelinsky, 2008; Wolfe, 1992). Indeed, in efficient
search, most models predict that lures are rejected in parallel
and the first movement of attention or eye movement is sys-
tematically directed to the target. The term “pop-out” is in fact
used to characterize the implied automaticity of attentional
selection of the target in efficient search. Only when target-
distractor discriminability is low do other models predict sac-
cades that do not go directly to the target (e.g., Zelinsky,
2008). Yet, results from Ng et al. (2018) indicated that this
was not the case in our displays: target-distractor discrimina-
bility was relatively high, even when the target was in the far
periphery because participants were able to complete this
same task without moving the eyes, with similar levels of
accuracy. Furthermore, most models of attention use a priori-
tization rule, where higher activation locations (i.e., higher
TDS signals) have higher priority than lower ones. The lures
used in the current experiment have low TDS signals, which
are much smaller than the target’s. Thus, it is safe to assume
that theories relying on TDS and prioritization rule would not
predict many, if any, saccades to lures, in efficient search.

To evaluate these predictions, we performed a series of new
analyses (not previously published) on eye-movement data
from Experiments 1B and 2 in Ng et al. (2018).4 In Ng
et al.’s Experiment 1B, participants searched for a red triangle,
whereas in Experiment 2 they searched for a cyan semi-circle.
In both experiments, two sets of distractors were used: orange
diamonds and blue circles. As a result, in Experiment 1B, the
orange distractors bore high similarity and the blue distractors
bore low similarity to the red target, whereas this relationship
was reversed in Experiment 2, where orange distractors bore
low similarity and blue distractors bore high similarity to the
cyan target.

We estimated the probability of a target-uninformed
(“guess”) saccade using the MemToolbox (Suchow, Brady,
Fougnie, & Alvarez, 2013). Originally developed for estimat-
ing errors in visual working memory, theMemToolbox allows
one to quantify saccade errors as the angular difference be-
tween the landing location of the initial saccade and a “per-
fect” saccade. Here, a perfect saccade refers to a saccade in
which target location information is available such that a sac-
cade is executed toward the target. These error data are then
fed into a mixture model which assumes, in our experiments,
that there are two trial types: one in which the participant has
enough evidence to make a target-informed saccade and an-
other in which the participant does not and thus makes a
target-uninformed saccade. In this latter case, the direction
of the saccade is random with respect to the location of the
target. This follows because lures are arranged randomly
around the circular grid and there is no consistent spatial rela-
tionship between the target and any one lure in the display.

Due to the relatively low number of trials per condition
where participants moved their eyes, there were not
enough trials to model target-uninformed saccades at the
subject level and to perform inferential statistics. Here we
present the group-level data (Fig. 9) and the results clearly
pass the inter-ocular traumatic test (Edwards, Lindman,
and Savage 1963), that is, the difference is so stark that it
“hits you” between the eyes. There was a higher probabil-
ity that the initial saccade was target-uninformed (a
“guess” saccade) when lure-target similarity was high (an
average of 32.1 % and 32.3% in Experiments 1B and 2,
respectively) compared to low (9.3% and 7.5%). In addi-
tion, this probability increased with target eccentricity, par-
ticularly when lure-target similarity was high: In
Experiment 1B, the probability of guess saccades roughly
tripled from 20.8% to 57.8% from middle to far eccentric-
ities; in Experiment 2, the probability of guess saccades
more than doubled from 21% to 44.8% from middle to
far eccentricities. To complement Fig. 10, the landing lo-
cations of all first saccades of all participants are displayed
in Figs. 11 and 12 (Experiments 1 and 2, respectively). In
sum, the patterns of eye movements during free-viewing
efficient search are consistent with predictions from TCS.

To confirm the data visualized in Figs. 9, 10, and 11, a
series of inferential analyses were conducted. The goal of
these analyses was to support the finding that participants
executed more target-uninformed saccades when displays
had high similarity lures and moved more directly to the target
when displays had low similarity lures. As can be seen on Fig.
13, the average distance in degrees of visual angle between the
landing location of the first saccade and the target was larger

4 Data and code can be found on the Open Science Framework: https://osf.io/
pve8d/
The methods used in these studies can be found in the Appendix.
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when displays had high-similarity lures, compared to low-
similarity lures, in both Experiment 1B (2.4 vs. 5) and
Experiment 2 (2.1 vs. 3.9), F(1,17) = 63.54, p < .001, ωp

2 =
0.767 and F(1,35) = 65.17, p < .001,ωp

2 = 0.634, respective-
ly. This confirms that the initial saccade in low-similarity dis-
plays on average landed nearer to the target compared to high-
similarity displays, as can be seen in Figs. 10 and 11.

Furthermore, the number of fixations per trial was larger for
high than low-similarity lures in both Experiment 1B (2.9 vs. 2.5)
and Experiment 2 (2.9 vs. 2.6, F(1, 17) = 26.44, p < .001,ωp

2 =
0.572,F(1, 35) = 69.93, p < .001,ωp

2 = 0.651, respectively. This
can also be intuited from Figs. 10 and 11, as the high-similarity
lure panels show a much wider dispersion of first saccades and
the low-similarity lure panels show a much tighter concentration
of saccades near the target location. Finally, the number of fixa-
tions also increased with set-size, F(2,34) = 9.88, p< .001,ωp

2 =
0.324, F(2,70) = 37.12, p < .001,ωp

2 = 0.497, for Experiments
1B and 2, respectively. This is expected because the larger the
number of accumulators, the larger the likelihood that more ac-
cumulators will not reach threshold before the time-out. These
results are shown in Fig. 12.

General discussion

TCS is a theory that focuses on characterizing the temporal
dynamics associated with the parallel evaluation of a
scene, when an observer is searching for a specific target
in an efficient search task. TCS overcomes the major short-
comings of Buetti et al.’s (2016) model. Some key differ-
ences are: (i) TCS uses a variable time-out parameter to
terminate parallel evaluation of information, rather than
an exhaustive termination rule; (ii) under TCS, likely tar-
gets contribute linearly to RT (not logarithmically); and

(iii) evidence accumulation in TCS is driven by the mag-
nitude of the contrast signal between visual information at
a location and a target template held in mind. Further, the
new architecture in TCS is consistent with the equation
formulated by Wang et al. (2017) in its ability to predict
heterogeneous RT using parameters from homogeneous
search conditions. Finally, TCS also makes specific predic-
tions about the sort of eye movements that ought to be
observed in efficient search.

TCS is consistent with the idea that search unfolds in
sequential stages. That said, TCS places more emphasis on
the sort of processing that is used to discard non-targets
that on stages. Indeed, at the center of TCS is a differenti-
ation between the (limited) ability of peripheral vision to
process and discard unlikely items in parallel across the
scene, and the focused-attention processing whereby the
eyes are directed to likely target locations, which are
inspected with a high degree of accuracy, in a serial man-
ner. It is also important to note that we do not believe
parallel evaluation of the scene begins de novo after each
eye movement. It is quite likely that the visual system is
able to keep track of what has been inspected (and rejected)
through a series of attention pointers (e.g., Cavanagh,
Hunt , Afraz, & Rolfs , 2010; van Zoest , Lleras ,
Kingstone, & Enns, 2007). In fact, the results from eye
movement analyses are consistent with this idea: when an
eye movement was executed to a non-target location, par-
ticipants lingered there only briefly and then moved the
eyes directly to the target. Thus, it is unlikely that they
re-started accumulating evidence from scratch. Rather,
they might have simply finished accumulating evidence
about those lure items in the far periphery that had not
reached threshold, allowing them to then quickly identify
the target.

Fig. 9 Probability of making a target-uninformed (“guess”) saccade as a
function of target eccentricity (4.17, 7.73, and 14.3° of visual angle) and
lure-target similarity for Experiments 1B and 2 (left and right panels,
respectively) in Ng et al. (2018). Observers were more likely to make a

target-uninformed saccade (not directed toward the target) when lure-
target similarity was high, and, in particular, when the target appeared
at the far eccentricity

410 Atten Percept Psychophys (2020) 82:394–425



One obvious shortcoming of TCS is that it does not
have an exact analytical solution. On the other hand, a
comparable advantage is that TCS is easy to simulate,
so it can be used to predict performance (as in Lleras
et al., 2019; Wang et al., 2017). Additionally, TCS is
characterized by a set of parameters that can be studied
by analogy. For instance, one can assume that some ex-
perimental factor will impact the noise in the accumula-
tion process (e.g., crowding, Madison et al., 2018), or that
another one will impact the rate of evidence accumulation
(e.g., eccentricity, Wang et al., 2018), or that yet another
wil l impact the t ime-out rule (e .g . , ins t ruct ion
manipulations, Ng et al., 2018). The impact of these fac-
tors can be simulated and then one can compare whether
or not human data are in line with the patterns observed in
corresponding simulations.

Relation to other visual search theories

Feature Integration Theory and Guided Search Perhaps one of
the most lasting and enduring legacies of Feature Integration
Theory (and Guided Search) has been the emphasis on
feature-specific processing as a key determinant to human
performance in visual cognition tasks and as a sort of currency
for visual attention. Indeed, although FIT did not propose the
specific feature tuning of attention, this mechanism was pro-
posed as one of the first improvements on FIT’s ideas (e.g.,
Wolfe, Cave, & Franzel, 1989; Wolfe, 1994), and it has ever
since become a norm to propose that attention is given to a
specific feature value and processing of that given feature is
consequently changed.

A growing number of studies have challenged the view that
feature-specific processing (and feature-specific modulations)
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Fig. 10 Circular plot showing the angular error between the first saccade
and a “perfect” saccade in Ng et al. (2018) Experiment 1, when a red
target was used. The color of the symbols denotes the color of the lure in
that condition (blue vs. orange lures). The figure is split into columns
according to target eccentricity from central fixation (4.2, 7.7, and 14.3°
of visual angle), and rows according to lure-target similarity (blue crosses:
low-similarity lures; orange plusses: high-similarity lures). The 0 on the
circumference marks the direction where the target is located relative to

fixation (center of each plot). The radial axes correspond to the amplitude
of the initial saccade. Each point represents one trial and the total number
of initial saccades per panel is indicated above each angular plot. Note
that in most panels most of the saccades seem to be directed toward the
target (indicated by the red triangle on the 0 angular error line), making it
difficult to visualize all these correct saccades. Initial saccades were more
likely to be made away from the target when lure-target similarity was
high, especially at larger eccentricities
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guides attention or somehow improves performance in visual
search. Two decades ago, Moore and Egeth (1998) demon-
strated that attending to a specific feature failed to impact the
sensory quality of stimuli in a visual search task under data-
limited conditions (i.e., when displays were masked).
Specifically, the authors showed that attending to a specific
feature (e.g., green) failed to improve processing of items
containing that feature when the display was difficult to pro-
cess. These are exactly the conditions where one might expect
to see performance improvements, if attention to a specific
feature improved processing of that feature. Furthermore, in
the past decade, there has been growing evidence in favor of
theories of attention where the main force driving attention is
not a specific feature value but rather a value that measures a

featural difference (Becker, 2008, 2010, 2013, 2014; Becker,
Folk, & Remington, 2013; Becker, Harris, Venini, & Retell,
2014; Becker, Harris, York, & Choi, 2017; Buetti et al., 2016;
Lleras et al., 2019; Madison et al., 2018; Ng et al., 2018;Wang
et al., 2017, 2018).

There is another reason to challenge theories positing the
existence of feature maps (e.g., Treisman & Gelade, 1980;
Wolfe, 1994): the implausibility of the number of neurons
required for such maps. According to Maunsell and Treue
(2006), this number would far exceed the total number of
neurons that guide attention in the brain. In fact, most of the
color-coding neurons in the early visual system code color
contrasts, not specific colors in isolation. This color contrast
computation forms the basis for the opponent-color system
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Fig. 11 Circular plot showing the angular error between the first saccade
and a “perfect” saccade in Ng et al. (2018) Experiment 2, where a cyan
target was used. The color of the symbols denotes the color of the lure in
that condition (blue vs. orange lures). Note that the lures used in
Experiment 2 were identical to the ones used in Experiment 1 (results
shown in Fig. 10), only the target changed across experiments. The figure
is split into columns according to target eccentricity from central fixation
(4.2, 7.7, and 14.3° of visual angle), and rows according to lure-target
similarity (orange crosses: low-similarity lures; blue plusses: high-
similarity lures). The 0 on the circumference marks the direction where

the target is located relative to fixation (center of each plot). The radial
axes correspond to the amplitude of the initial saccade. Each point repre-
sents one trial and the total number of initial saccades per panel is indi-
cated above each angular plot. Note that in most panels most of the
saccades seem to be directed toward the target (indicated by the red
triangle on the 0 angular error line), making it difficult to visualize all
these correct saccades. Initial saccades were more likely to be made away
from the target when lure-target similarity was high, especially at larger
eccentricities
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(e.g., De Valois et al., 2000; Hubel & Wiesel, 1967) and is
present as early as color-coding neurons in the LGN. Most
visual features are also coded in opponent fashion. Thus, it
makes sense to build a theory of attention based on the com-
putation of feature comparisons (as opposed to absolute fea-
ture values). When observers are searching for a specific tar-
get, the comparison is made between the visual information in
the scene and the target template in mind. When there is no
goal in mind, as when free viewing a scene, the feature com-
parison might more likely be performed on a spatial, local
manner (e.g., Itti & Koch, 2000), such that attention will be
attracted to areas containing feature discontinuities. In fact, it
is possible that both types of information impact the deploy-
ment of attention either jointly or over different time scales, as
suggested by the research by Donk and colleagues (e.g., Donk
& Soesman, 2010; Donk & van Zoest, 2008; Itti & Koch,
2000; van Zoest, Donk, & Theeuwes, 2004).

TCS also represents a departure from both feature-specific
theories of visual processing because its goal is not to produce
a representation of the visual properties of distractors at each

location in the visual field, but rather to measure how different
each item is from the target.

Finally, one under-appreciated factor in the visual search
literature is the extent to which search efficiency is decreased
by the presence of distractor heterogeneity, or conversely, the
extent to which efficient search is made more efficient by the
homogeneity of the displays. Treisman and Gelade (1980)
made famous the observation that finding a target defined as
a conjunction of features takes much longer (and is less effi-
cient) than search for a target defined by a unique feature. In
many conjunction search experiments since, the observation is
simply made that conjunction search produces larger slopes
than the corresponding feature search task. The confound,
however, is that the efficient search displays tend to be inher-
ently more homogeneous (i.e., a red vertical line amongst
green vertical lines), whereas conjunction searches tend to
be tested in heterogeneous displays, by necessity (i.e., a red
vertical line amongst green vertical lines and red horizontal
lines). This confound is problematic because, as demonstrated
by Lleras et al. (2019), homogeneity facilitation provides very

High-similarity Low-similarityTarget-only

Experiment 1 Experiment 2

Fig. 12 Eye-movement data from Ng et al. (2018) Experiments 1B (left)
and 2 (right) as a function of set size and lure-target similarity. Top row:
Mean distance between the landing location of the initial saccade and the

target location (in degrees of visual angle).Bottom row:Mean number of
fixations as a function of set size. Error bars indicate the standard error of
the mean
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large improvements in search efficiency, particularly with sim-
ple geometric shapes, the kind of stimuli typically used in
conjunction search studies. Compared to homogeneous dis-
plays, heterogeneous displays are 1.8 times less efficient (in
logarithmic space). Importantly, because Equation 2 provides
a very good predictive fit for processing times in heteroge-
neous displays, one can infer that the manner in which hetero-
geneous displays are processed are not fundamentally differ-
ent from how homogeneous displays are processed (aside
from the degree of homogeneity facilitation). In other words,
one should always expect heterogeneous search displays to be
much less efficient to process. And, to demonstrate that con-
junction search performance is qualitatively different from

feature search, one should not compare the performance to
efficient, homogeneous displays. Rather, one should first eval-
uate the logarithmic slopes for each of the contrasts that make
part of the conjunction search display (i.e., the slope for red
vertical target amongst green vertical distractors and the slope
for red vertical target amongst red horizontal distractors).
Equation 2 can then be used to predict the range of expected
processing costs when all those target-distractor pairs are si-
multaneously present in the scene, that can be then plotted
against observed human data in the conjunction search condi-
tion (as in Fig. 2). Deviations from a linear fit would indicate
that conjunction search requires a different underlying archi-
tecture than the parallel evaluation reflected in Equation 2.

a

d

c

b

Fig. 13 Schematic illustrating the interplay between evidence
accumulation, eccentricity, lure-target similarity and the time-out param-
eter. Panel A: diagram illustrating the position of items with respect to
fixation, corresponding to the three eccentricities (as used in Ng et al.,
2018). Panel B: example of stochastic evidence accumulation. The hor-
izontal dotted line (in orange) represents the non-target decision thresh-
old. The vertical dashed line (in red) in the first two panels represents a
short time-out parameter (T0). In the third panel, the second vertical
dashed line (in green) represents a much longer time-out parameter
(T0’). When evidence accumulation (the solid lines) reaches threshold,
the corresponding item is discarded. For simplicity, we only illustrate one
accumulator per condition and the time-out parameter is shown as being
on a fixed location on the x-axis, but it is important to remember that the

time-out is a time interval that is reset every time a lure hits threshold, so
its onset is relative to the time lures hit threshold. Panel C: the bar graphs
illustrate the average percentage of accumulators reaching threshold be-
fore the short time-out (T0) at each eccentricity. Due to the slower accu-
mulation rate for high similarity lures, this percentage decreases much
faster for these types of lures, as eccentricity increases. Panel D: the bar
graphs illustrate the average percentage of accumulators reaching thresh-
old before the longer time-out (T0’) at each eccentricity. With sufficiently
long time-outs, all accumulators can eventually reach threshold during
efficient search. That said, the data from Ng et al. (2018) presented above
suggest that observers tend to spontaneously operate with relatively
smaller time-outs (more like T0 than T0’), which makes it look like there
is an FVF whose size is determined by target-distractor similarity
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Attentional engagement theory The attentional engagement
theory byDuncan and Humphreys (1989, 1992) most famous-
ly contributed to the literature the proposal of the “search
surface” as well as that of “spreading suppression.” The search
surface summarizes the idea that a search slope is the product
of two separate factors: target-distractor similarity and
distractor-distractor similarity. As target-distractor similarity
increases, the search slope increases and as distractor-
distractor similarity increases, the search slope decreases.
Spreading suppression is a mechanism whereby identical
distractors tend to group together and therefore get rejected
as a group, instead of as individual items, thus facilitating
target selection. TCS challenges both of these core tenants.

Regarding the concept of the search surface, TCS proposes
that there is a marked qualitative discontinuity such that for
low levels of target-distractor similarity, efficiency is logarith-
mic while for higher levels, efficiency is linear. Thus, there is
no smooth continuous change in search slope values; this
discontinuity reflects the fact that there are different process-
ing mechanisms at play when rejecting non-target items: a
parallel, unlimited capacity, resolution-limited mechanism
and a serial, limited capacity, potentially unlimited resolution
mechanism. In TCS terms, the transition point between the
two mechanisms is determined by a combination of factors.
First, the average evidence accumulation rate, which is a fac-
tor of target-distractor similarity, eccentricity, and size (Wang
et al., 2018). Second, the noise in the accumulation process,
which is a factor of the quality of the peripheral representa-
tions, and thus is impacted by factors like crowding (Madison
et al., 2018) and stimulus size (Wang et al., 2018). Third, the
time-out parameter, which is sensitive to individual differ-
ences and top-down preferences and instruction manipula-
tions (Ng et al., 2018).

The concept that distractors in efficient search are
discarded “en masse” or as a group stands in contrast with
the proposal that each distractor is processed and rejected
separately, a core component of TCS. The logarithmic re-
lationship between RT and set size emerges because of the
parallel and stochastic processing of multiple lures at the
same time. A group rejection of distractors is inconsistent
with such relationship. In addition, as demonstrated by
Wang et al. (2017), the best way to account for RTs in
heterogeneous displays is to assume that all items are ini-
tially processed simultaneously and that individual rejec-
tions are determined by each item’s degree of dissimilarity
to the target (the more dissimilar lures reaching rejection
sooner).

Duncan and Humphreys’ (1989) noted that there was a
homogeneity facilitation effect in visual search that inspired
their spreading suppression account. Wang et al. (2017) and
Lleras et al. (2019) quantified the magnitude of that homoge-
neity facilitation effect in efficient visual search (indexed byβ
in Fig. 2 and Equation 2) in a manner that was independent

from lure-target similarity (indexed by Dj in Equation 2). The
existence of this effect implies that the processing efficiency
of lures is not independent of other information in the display:
displays that contained all identical items were processed
more efficiently (by a multiplicative factor of the logarithmic
function) than what would have been expected if those lures
had been surrounded by non-identical lures. Note that
Equation 2 is based on the assumptions that each item is eval-
uated in parallel, that each item needs some time to be
rejected, and that identical neighboring items will speed up
the time required to reject those items. The success of
Equation 2 in predicting performance across subjects and in
novel display arrangements provides a very strong validation
of the underlying assumptions of TCS.

From a more general stance, it should be noted that TCS
does not include a location-based suppression mechanism,
whereby non-target items/locations are suppressed, after they
have been categorized as non-targets. Neither does it include a
feature-based suppression (or boosting) mechanism. This is
not to say that such mechanisms do not exist. Rather, at this
point, there is no need to incorporate suppression to account
for human data in efficient search.

Eye-movement based theories Several theories have focused
on the role eye movements play during visual search.

The Target Acquisition Model (Zelinsky, 2008) was devel-
oped as a computational model to predict where the eyes
would go in a scene. The model uses a similarity score for
each region in the scene based on the visual similarity between
that region and the target template to form a target-distractor
similarity map. Then, a threshold is iteratively raised along
this target map with the goal of eliminating locations that are
unlikely to contain the target. This leaves only a few locations
that have very high probabilities of containing the target, at
which point an eye movement is executed toward the most
likely location. TAM thus shows several similarities with
TCS. For one, both theories emphasize the role of parallel
rejection of non-target locations, even though the two theories
implement it in different ways. A second important similarity
between TAM (as well as it most recent instantiation MASC;
Adeli et al., 2017) and TCS is the observation that the quality
of the signal (that is the input to the visual system) is strongly
dependent on eccentricity (see Rosenholtz et al., 2012; Zhang,
Huang, Yigit-Elliot, & Rosenholtz, 2015). Indeed, in TAM,
the visual input is progressively blurred as a function of dis-
tance from fixation to mimic the visual acuity drop-off in
peripheral vision.

The differences between TAM (and MASC) and TCS are
important, however. TAM proposes a single thresholding: all
activation in the map is judged to be either larger (possible
target) or lower than this one threshold (distractor rejection).
This single threshold implies that the duration of the process to
discard below-threshold distractors is constant or negligible.
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Further, this duration is insensitive to the similarity relation-
ship between each distractor and the target. Yet, we now know
that the lure rejection process, even if it unfolds in parallel,
takes different amounts of time depending on each lure’s de-
gree of similarity to the target, even when multiple types of
lures are simultaneously present in the display (Buetti et al.,
2016; Lleras et al., 2019; Wang et al., 2017). Finally, it should
be noted that both TAM and MASC have an explicit repre-
sentation of the target-distractor similarity of each item or
region in the display. TCS does not need to represent (or even
compute) this variable. The target-contrast signal drives the
speed of the evidence accumulation without needing to be
represented or remembered, nor is it used to prioritize infor-
mation among likely candidate locations. Furthermore, TDS
maps represent activations across the visual field, with a pre-
cision that is only limited by the initial blurring of the input
image (meant to mimic the loss of visual acuity in the periph-
ery). Thus, TDS maps do use the TDS signal to rank all likely
candidate locations, implying that the visual system is capable
of accurately computing those signals, even at the higher end
of the similarity scale. TCS, instead, proposes that the visual
system has only limited ability to accurately judge the simi-
larity relation between a candidate in the periphery and the
target template.

Finally, there are important advantages that MASC has
over TCS. For one, MASC is biologically plausible, inspired
by the saccade generation mechanisms in the superior
colliculus. Second, MASC is a computational model that is
image-computable: one can provide an image and MASC can
make saccade predictions. Furthermore, it can be used tomod-
el both free-viewing and visual search tasks by relying on two
distinct methods to compute the TDS map: a saliency map in
free-viewing and a true TDS map when features about the
target are generally known. That said, it seems to us that
MASC and TCS are not fundamentally incompatible. It ap-
pears quite plausible that the temporal dynamics of peripheral
processing that are the focus of TCS could be implemented
into the parallel processing stage of both TAM and MASC.
This observation applies more generally at most theories of
search that have neglected to model the temporal dynamics of
the parallel rejection process in peripheral vision.

A second prominent theory of eye movements and visual
search was recently put forward by Hulleman and Olivers
(2017), who proposed that performance in inefficient visual
search is mostly determined by the size of the functional view-
ing field (FVF, the area around fixation from which useful
information can be obtained without eye movements). The
authors proposed that the width of this area is not fixed – it
decreases as target-distractor similarity increases. As a result,
when target-distractor similarity is low, the width of the FVF
is large and many items can be processed and discarded as
non-targets in parallel. As target-distractor similarity in-
creases, the width of the FVF decreases, reducing the number

of elements that can be processed in parallel and increasing the
need for eye movements to find the target. When target-
distractor similarity is high, the area of the FVF is small and
only a small number of items (sometimes only one) can be
processed and discarded as non-targets during a fixation.

This theory is in many ways compatible with TCS, which
was focused mostly on efficient search. For example,
Hulleman and Olivers (2017) did not specify any processing
cost (or any architecture) for the parallel stage where items are
processed within the FVF. Thus, a TCS-style architecture
could easily be incorporated into their model to make more
precise predictions for the temporal costs incurred in search. In
fact, the time-out parameter in TCS has functionally a spatial
analog. Since evidence accumulation rates decrease with ec-
centricity, for any given time-out parameter, lures of lower
similarity will be able to be processed over a larger area
around fixation than lures of higher similarity. This is illustrat-
ed on the right-hand side of Fig. 13c: for a small time-out
parameter, low-similarity lures at all three eccentricities can
be rejected in parallel, producing performance that would be
consistent with an FVF that encompasses all eccentricities. In
contrast, for the same time-out, high-similarity lures tend to
fail to reach threshold at the farthest eccentricity, thus produc-
ing performance that would be consistent with a smaller FVF
that only encompasses the inner and medium eccentricities.

One shortcoming of Hulleman and Olivers’ theory, though,
is that it is not clear how it would be adapted to heterogeneous
search displays. As proposed, the magnitude of the FVF is
determined by distractor-target similarity, which in a way as-
sumes that all distractors are identical or at least share the same
overall level of target-distractor similarity. It is impossible,
however, to make specific predictions for what this theory
would propose when items of different levels of similarity to
the target are simultaneously present in the display. Would the
FVF be determined by the itemwith the highest similarity? Or
would the average level of similarity in the display determine
the FVF? It is unclear. Notice, however, that TCS does make
specific predictions for each of these instances. For lure-
heterogeneous displays, Equation 2 makes specific predic-
tions for how long processing times will take. For displays
combining lures and candidates, we know that candidates will
not impact stage-one processing times, only the lures. For
displays containing different levels of candidates (some more
similar to the target than others), TCS makes the prediction
that what matters is the overall number of to-be-inspected
locations, not so much the level of similarity of any one can-
didate to the target (Ng, et al., submitted).

In sum, although TCS shares a number of similarities with
the FVF-oriented proposal of Hulleman and Olivers, we view
TCS as a theory that is consistent with their proposal but has the
added benefit of making more specific predictions. This is not
necessarily a criticism of Hulleman and Olivers’ theory since
their goal was not so much to propose an exact architecture of
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visual search, but rather to sketch out the skeleton of what a
good theory of visual search (that more fully embraces ocular
constraints) ought to look like. That said, TCS does not impose
an FVF of any given size (see also Rosenholtz, 2017 for a
similar idea). As shown in Fig. 13, the combination of variations
in the accumulation rates and the time-out parameter produce
results that are consistent with an FVF that is changing in size as
a function of target-distractor similarity. The fact that observers
end up processing the scene in what looks like different spatial
extents is an emerging property of TCS. Note too, that, as indi-
cated by the eye movement analyses, participants who sponta-
neously behave as in Fig. 13C (with a smaller FVF for high
similarity lures than for low similarity lures) can switch to be-
having as in Fig. 13D (where FVFwould include all locations in
the display), with instruction manipulations. This is easily ac-
commodated by changes in the time-out parameter in TCS and
would perhaps be harder to accommodate under Hulleman and
Olivers’ proposal.

As a final note, it is also worth mentioning that various
aspects of TCS bear similarity to models of saccade genera-
tion. Indeed, models like CRISP (Nuthmann, Smith, Engbert,
& Henderson, 2010), and the model by Laubrock, Cajar, and
Engbert (2013) propose that peripheral analysis of the scene
occurs in parallel across the entire scene. These models also
include a foveal analysis of the information currently being
fixated that takes place concurrently. Another commonality
with these models is the idea that evidence is being accumu-
lated in random walk fashion towards a decision to generate a
saccade and the timing of that saccade is determined by a
saccade timer. The saccade timer can be shortened (saccade
towards periphery occurs sooner) or elongated (eyes remain at
the current location) as a function of factors like the amount of
foveal activation (which inhibits saccades by increasing the
saccade timer) or the amount of peripheral activation (which
disinhibits saccades by shortening the saccade timer). The
time-out parameter in TCS is conceptually similar to the sac-
cade timer in that it can prompt decisions to move the eyes
away from the current fixation (although, in efficient search
tasks, eye movements are not necessary and the task can be
completed without them). These models incorporate factors
that can elongate the current fixation, as a function of the
difficulty of the processing at fixation, for example, or the
duration of recent saccades (Trukenbrod & Engbert, 2014).
Thus, these timers and our time-out are both sensitive to pro-
cessing demands. It seems that the architecture of these sac-
cade generation models could very well be integrated with
TCS by having TCS drive the dynamics of the peripheral
processing, and including some of the factors that impact the
time-out as potential factors modulating the duration of the
saccade timer.

A final note regarding target-distractor similarity theories of
attention TCS distinguishes itself frommany similarity-based

models of attention (e.g., Bundesen, 1990; Duncan &
Humphreys, 1989, 1992; Zelinsky, 2008) on two fronts.
First, TCS posits that the evidence accumulation at each loca-
tion is driven by target-defining information. The evidence
accumulation process consists of an evaluation of the extent
to which properties at each location differ from the set of
properties that define the target. Properties of the distractor
that are not present in the target are ignored. This is a departure
from most target-distractor similarity signals (TDS), which
typically involve a convolution that compares all target fea-
tures to all distractor features. As a result, traditional TDS
signals are symmetrical: they are equally driven by properties
in the distractor as they are by properties in the target. In TCS,
the target-distractor relationship is asymmetric, such that the
contrast signal of a distractor stimulus X to a target stimulus Y
is not the same as the contrast signal of a distractor stimulus Y
to a target X. This allows TCS to account for the well-known
search asymmetry effect first studied by Treisman and Souther
(1985): the finding that locating a target Q amongst Os is
efficient, whereas finding a target O amongst Qs is not.
When the target is a Q, the contrast signal computed at each
location will evaluate to what extent the object evaluated is
different from the round shape of the Q as well as different
from the straight line of the Q. As a result, all Os in the display
produce a large contrast signal along the second of the evalu-
ated properties because it is clear that Os do not have any
straight line in them. So, finding a Q amongst Os can be done
in parallel (to the degree that the straight line can be resolved
in peripheral vision). In contrast, when the target is an O, the
contrast signal associated with the processing of the Q
distractors will be very low. Indeed, all location contain a
round shape. Because “roundness” is the only property of
the target, it is also the only property that will be queried in
the evidence accumulation process. As a result, the search will
be inefficient because no accumulators will reach non-target
threshold.

Second, TDS-based theories also propose that early vision
computes a TDS map of the scene (often with no time cost)
and use activation values on that map to drive attention and the
eyes. TCS proposes that computing an accurate TDS signal is
not necessary to understand efficient search, and in fact, given
the processing limitations in peripheral vision, accurate TDS
signals might not even be computable by the visual system.
Thus, because TCS does not represent the precise similarity
relation between candidates and target, likely target locations
(i.e., those locations that did not reach threshold before the
time-out) should all be equally likely selected by overt or
covert attention. We have provided evidence in favor of these
lack-of-prioritization in a separate paper (Ng, et al.,
submitted). In that paper, displays contained two different
types of candidates. Somewere extremely similar to the target,
while the others were less so. In spite of the large differences
in target-candidate similarity between the two types of
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candidates, we failed to find any evidence that the more sim-
ilar candidates were prioritized over the less similar candi-
dates. Indeed, performance in mixed displays were perfectly
predicted by a model that assumed random examination of the
candidates, irrespective of target-candidate similarity.

Conclusion

To conclude, a new architecture for early parallel peripheral
processing is proposed to predict performance in efficient vi-
sual search conditions where participants have a fixed target in
mind. The key insight is that this model is based on the com-
putation of a contrast signal between the internal target tem-
plate representation and visual information at each location in
the scene. In doing so, the model moves away from the tradi-
tion of feature-specific attentional models and even from
visual-contrast based models (e.g., Itti & Koch, 2000). The
model also emphasizes that even for extremely fast and effi-
cient visual search tasks, what determines how focused atten-
tion is deployed in a scene is neither the result of an automatic
computation of what visual signals are present in the scene,
nor even the computation of local visual contrasts. Instead,
focused attention is deployed as the result of an active com-
putation, where the visual system computes a difference score
in goal-oriented fashion between an internal representation
and the visual stimulation. The new model is a significant
improvement of Buetti et al.’s (2016) initial model and thus
is capable of explaining a wider range of results (like the
occurrence of randomly-directed eye movements in efficient
search). Finally, we hope to have demonstrated that the rela-
tive ease with which the TCS architecture can be modeled is a
boon for both testing as well as developing theoretical predic-
tions that can be precisely tested.
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Appendix 1: Why Accumulate Contrast?

Typically, the way contrast has been understood to impact
visual attention is by using it to denote a visual difference
between two nearby regions in the scene (Itti & Koch,
2000). The rationale is that local spatial contrast indexes

conspicuity and that conspicuity attracts attention
(e.g., Northdurft, 1991, 1992). Although this approach has
had some success in predicting eye movements in free-
viewing tasks (Itti & Koch, 2000; Peters, Iyer, Itti, & Koch,
2005), visual conspicuity (or salience) has been shown to play
only a minimal role in goal-directed visual search (e.g.,
Clarke, Dziemianko, & Keller, 2014; Donk & Soesman,
2010; Donk & van Zoest, 2008; Itti & Koch, 2000; Tatler,
Hayhoe, Land, & Ballard, 2011; van Zoest, Donk, &
Theeuwes, 2004). In comparison, the contrast computed by
TCS does not compare neighboring regions but rather visual
information at a location to the internal representation of the
target template.

Below, we present a series of theories and findings that
challenge the idea that visual search for a specific feature is
achieved by tuning attention to that specific feature. One
early proposal along those lines was put forward by
Navalpakkam and Itti (2007), who demonstrated that when
searching for a target defined as the most extreme feature
along a continuum (e.g., searching for a purple target
amongst blue distractors, the purple being the reddest ele-
ment in the display), because of the width of neural tuning
curves, it would be more efficient to “boost” a more ex-
treme feature along the blue-violet axis such as red, than
to boost (or tune to) the target feature (here, purple). This
follows because the boosting of any specific feature actual-
ly results in the boosting of all features along the entire
tuning curve of the tuned-to feature (see also, Lee, Itti,
Koch, & Braun, 1999; Scolari & Serences, 2010 for other
optimal tuning accounts). In other words, if the distractor
feature value is sufficiently close to the target feature,
boosting the target feature also results in the unintended
boosting of the distractor feature. Navalpakkam and Itti
(2007) proposed a better strategy in terms of improving
signal-to-noise ratio: they proposed that an optimal feature
to boost would be a feature more extreme than the target
feature itself along the distractor-target feature continuum.
In that way, one can theoretically find an optimal feature
that is sufficiently far from the distractor feature so as not to
boost it, while being sufficiently close to the target feature
to boost the target feature, thereby improving the signal-to-
noise ratio. The key insight here was that, even in theories
that propose feature-based tuning of attention, the optimal
strategy is not to boost the target-feature itself, but rather, a
more extreme (and actually unseen) visual feature. This
insight implies that the attention system computes the
featural difference between the shown target and distractor
stimuli and an unseen feature. This difference signal is then
used to optimally tune perceptual processing and efficiently
guide attention to the target.

More recently, target-feature and optimal-feature boosting
accounts have been challenged by findings suggesting
that attention is not tuned to a specific feature but rather to a
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feature relation (e.g., Becker, 2014). In the example above,
this is equivalent to saying that attention is neither tuned to
purple (target-feature boosting) nor to red (optimal-feature
boosting), but rather to “redder” because the target is uniquely
defined as the element containing the most amount of red in
the scene. As a result, attention will be guided to the redder
item in a display, irrespective of the specific feature values of
the items in the scene. In our example, attention would be
captured by a purple stimulus amongst blue distractors, just
like it would be by a red stimulus amongst purple distractors
because both stimuli are “redder” than their contextual
distractors. The “relational” account of attentional tuning has
received substantial empirical support (e.g., Becker, 2008,
2013, 2014; Becker, Folk, & Remington, 2013; Becker,
Harris, Venini, & Retell, 2014; Becker, Harris, York, &
Choi, 2017). A detailed discussion of the merits of that theory
is beyond the scope of the current paper, but we do want to
highlight that a key insight in this theory is the idea that atten-
tion is not guided by the salience of a specific feature (boosted
or not). Rather, attention is guided by the output of a compar-
ison process that first scores items in the scene along an inter-
nally decided feature direction (in our example, the blue-to-
red continuum) and then selects the item that scores the
highest in this axis irrespective of its underlying (absolute)
feature value. In sum, the relational theory is consistent with
the idea that attention is guided by a contrast signal along a
goal-defined feature axis (in a manner that is independent of
the feature values themselves that are used to compute that
difference score).

A different set of proposals also focused on computing
differences between items such as the work on SDT “relative
coding” models (e.g., Palmer, Verghese, & Pavel, 2000;
Rosenholtz, 2001). These theories proposed that items in the
display would be compared against each other and this
comparison, in turn, would drive attention. This work was
partly inspired by the work of Northdrurft (1991, 1992,
1993) who demonstrated that local differences were more im-
portant in search than actual feature values themselves.
Rosenholtz (2001) introduced the “relative coding with refer-
ence” model, in which the majority of the time, items are
compared to other items in the display and in some fraction
of the time items are compared to the target template in mind.
TCS follows this tradition but in a more extreme fashion pro-
posing that in goal-directed search, all comparisons are to the
target template.

It is also worth noting that in computer vision, most models
no longer use a “target template” representation to guide pro-
cessing. Rather, these models use target discriminators that
basically differentiate the target from other objects. These tar-
get discriminators are, in fact, computing something akin to
the target-contrast computation proposed by TCS by trying to
extract unique differences that help to categorize the target as
different from the other elements in the scene.

Finally, we should note that the data in Buetti et al. (2016)
also casted doubt on a naïve interpretation of target-feature
boosting. Indeed, as shown in Fig. 1, there is a systematic
increase in the time it takes to process displays as the lure-
target similarity increases. For instance, displays containing
one red target and several yellow distractors are processed faster
than displays containing one red target and orange distractors.
The issue here is that feature boosting is typically implemented
as an increase in the accumulation rate for the boosted feature
(or attended signal, more generally). That is, an increase in the
accumulation rate ought to result in the processing of the item
containing that feature to be accelerated, thus, take less time.
Unless additional assumptions are made, a target-feature
boosting account would necessarily predict that a display with
only one boosted item would necessarily take longer to process
on average than a display where all items are boosted. For
instance, when searching for a red target among orange
distractors, both target and distractors will receive some red-
related boosting. In contrast, when searching for a red target
among yellow distractors, only the target will receive red-
related boosting. As a result, the red and orange display ought
to be processed faster than the red and yellow display. In sum,
target-feature boosting would predict that as target-lure similar-
ity increases, processing efficiency for the entire display in-
creases, thereby decreasingRTs. Yet, our findings indicated that
overall RT increase, not decrease, with increasing similarity.
Thus, whereas target-feature boosting might be an appealing
and intuitive concept, there are a number of reasons to doubt
that it actually plays a role in efficient search.

In sum, the foundational idea behind TCS is that visual
search performance is determined by the computation of a
difference signal between the internal representation of the
target template and the stimuli in the visual scene. This pro-
posal is grounded on similar ones in the literature that have
moved away from feature-oriented processing accounts into
more relational accounts where the visual system is actively
computing a difference signal to guide attention. It is also
worth noting that the visual system is a large contrast comput-
ing system (see Adelson&Bergen, 1991). Visual contrasts are
computed even before visual information leaves the eyeball
(Burkhardt & Fahey, 1999). Contrast is the currency of all
lateral inhibition signals (Solomon, Sperling, & Chubb,
1993), of the color system (Ekroll & Faul, 2012), of boundary
detection (Mareschal & Baker, 1998), and perhaps even of
visual categorization (Macé, Thorpe, & Fabre-Thorpe,
2005). Thus, we view TCS as largely consistent with various
properties of the architecture of the visual system, such as
parallel and unlimited capacity processing of visual stimula-
tion, and the known processing limitations in peripheral vi-
sion. In addition, the computations performed by TCS are the
sort of computations performed by the visual system, such as
such as contrast computations and accumulation of evidence
over time.
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Appendix 2: GeneralMethods fromNg, Lleras,
and Buetti (2018)

Two experiments were carried out using the same general
method. In the first experiment, participants searched for a
red triangle target, while in the second one, they searched
for a cyan semi-circle target. A different target was used in
the second experiment to demonstrate that lure-target similar-
ity, rather than the stimuli themselves, modulates the evidence
accumulation process (as Buetti et al., 2016, Experiments 1A
and 1B). Both experiments were pre-registered on Open
Science Framework (Ng, Buetti, & Lleras, 2016, https://osf.
io/pve8d/).

Inclusion-exclusion criteria

The following inclusion-exclusion criteria were pre-registered
on OSF (Ng, Buetti, & Lleras, 2016, https://osf.io/pve8d/).
First, participants who completed less than 90% of
the experiment were excluded. These were usually
participants who had trouble fixating on the center of the
screen or took long breaks. Then, those with less than 90%
overall accuracy were excluded. Participants who had
overall mean RTs that were 2 standard deviations away
from the group mean were then excluded. Participants
were also excluded on the basis of eye movements (more
elaboration regarding this will be provided in the next
section). Lastly, only the first 18 (Experiment 1) or 36
participants (Experiment 2) that met these criteria were
included in the analyses.

Participants

Undergraduate students from the University of Illinois at
Urbana-Champaign participated in the experiments in ex-
change for either course credit in a psychology class or an
$8 monetary compensation. All participants had normal or
corrected-to-normal vision, and were determined to be non-
colorblind by using the Ishihara color plates. The sample size
for both Experiment 1 and Experiment 2 were determined
from a power analysis from a pilot experiment (Experiment
1A, Ng et al., 2018).

In Experiment 1, we ran 26 participants (21 females, mean
age = 20 years). All participants had overall accuracy levels
above 90%. Three participants were removed for excessive
eye movements in the fixed-viewing condition (15% of the
trials) and two were removed for having overall RTs that were
2 standard deviations away from the group mean. Out of the
remaining 21 subjects, there were two who did not have any
eye movements in at least one experimental condition. The
first subject did not make any eye movements in the target-
only condition; the second did not make any eye movements
in two out of three setsizes (4 and 32) in the low-similarity

condition, and one out of three (set size 4) in the high-
similarity condition. We reasoned that it made little sense to
include these participants in the analyses since it would result
in missing values and an inability to conduct analyses of var-
iance. We thus removed them, leaving us with 19 participants.
It should be noted that this criterion was not included in our
pre-registration as we did not foresee it. Since we declared that
we will only use 18 participants in our pre-registration, we
only took the first 18 participants from the non-excluded
participants.

In Experiment 2, the two viewing conditions (free-viewing
and no eye movements conditions) were counterbalanced
to evaluate effects of practice, with each order having a
target sample size of 18 participants (Ng et al., 2018). We
ran 54 participants (30 females, mean age = 20 years). We
excluded nine participants who did not complete at least
90% of the experiment, five participants who made eye
movements in more than 30% of the trials in the fixed-
viewing condition, and two subjects who had overall RTs
beyond two standard deviations from the mean. Of the re-
maining 38 participants, there was one participant who did
not make any eye movements in the target-only condition.
As before, we removed this participant, and analyzed the data
from only the first 36 remaining participants that met our
inclusion criteria.

Stimuli and apparatus

The lure stimuli were blue circles and orange diamonds. In
Experiment 1, the target was a red triangle and in Experiment
2, the target was a cyan semicircle. The stimuli were
distributed across a circular array with 36 locations. The array
was made up of three concentric rings spanning 4.17, 7.73,
and 14.3° of visual angle. This circular array was utilized to
minimize crowding (Bouma, 1970; Madison et al., 2017; Pelli
& Tillman, 2008). The distribution of the stimuli across the
array was pseudo-random, with the constraint that all stimuli
will be distributed equally across the four quadrants of the
screen. The quadrants and the concentric rings were used only
in the creation of the search array and were not visible to
participants.

The search arrays were first created using Psychtoolbox for
MATLAB (Brainard, 1997). These were then exported as .png
image files to be used with Experiment Builder for use with
the Eyelink 1000 eye-tracker. The search array was presented
on a black background on a 22-in, (400 × 300 mm) cathode
ray tube monitor at a refresh rate of 85 Hz and a resolution of
1,024 × 768 pixels. Each stimulus item subtended .833° of
visual angle. Participants viewed the display from a distance
of 59 cm with their head on a chin rest. Eye movements were
recorded using a tower-mounted EyeLink 1000 eye-tracker at
a 1,000 Hz resolution.
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Design and procedure

The three independent variables were: lure type (high- or low-
similarity), set size (1, 4, 12, 32), and viewing condition
(fixed-viewing vs. free-viewing). There were 14 instead of
16 cells as there was no lure type for the target-only condition
[2 × (2×3 + 1) = 14]. There were 32 trials per cell, with a total
of 448 trials in the experiment. Viewing condition was
blocked (i.e., all trials within the same block were either
fixed-viewing or free-viewing), and all trials were randomized
within each block. The fixed-viewing block was included to
demonstrate that logarithmic search slopes are not artifacts of
eye movements but rather an inherent property of stage-one
processing (Ng et al., 2018). In Experiment 1, participants
always started with the free-viewing block first. In
Experiment 2, half the participants started with the free-
viewing block first and the other half started with the fixed-
viewing block first. We further subdivided each block into
eight mini-blocks with 28 trials each. The trials in each
mini-block had the same distribution of conditions (i.e., two
trials of each condition).

Before the start of the experiment, participants underwent a
fixation training exercise (Guzman-Martinez, Leung,
Franconeri, Grabowecky, & Suzuki, 2009). In this fixation
training, participants viewed a rapidly alternating display that
was made up of an equal number of randomly distributed
black and white pixels. On each alternation, the color of the
pixel reversed such that all white pixels now became black
and vice versa. Participants were instructed to maintain their
fixation on the center of this display. As long as their eyes
were stationary, this rapidly alternating display appeared as a
uniformly grey display due to perceptual averaging. Any eye
movements caused the perceptual averaging to be disrupted
and resulted in the emergence of a random black-and-white
dot pattern. This fixation training lasted approximately 2 min.

In the free-viewing block participants were instructed to
fixate the central cross at the start of each trial. They were then
free to move their eyes once the search array was presented. In
the fixed-viewing block participants were instructed to fixate
the central cross throughout the trial. In order to ensure that
participants were fixating at the central fixation cross before
each trial, the experiment was programmed such that re-
calibration was performed if they were not doing so after 3 s
upon the appearance of the central fixation cross. Participants
were told that they were free to move their eyes during the
blank inter-stimulus interval to prevent fatigue. Before each
block, a pseudo-random 9-point calibration was performed.
Participants were given a self-paced rest period every 28 trials
(i.e., after each mini-block), after which drift correction was
performed before resuming the experiment. Participants were
also given a short rest between each experimental block.

Each trial began with a central fixation cross which was
presented for 1 s, followed by the search array. Participants

were instructed to report the identity of the target by pressing
‘z’ when the target was pointing to the left, or ‘/’ when the
target was pointing to the right. The search array remained on
the screen until a response was made. Feedback was given
only for an incorrect response, in the form of a loud beep.
Appendix 3. Limitations of TCS

One practical problem is that while ideally predictions can be
made with mathematics, some mathematical relations be-
tween the hypothesized cognitive process and the outcome
variables can be analytically intractable. For a wide range of
cognitive processing models, there are no explicit equations
relating model parameters that characterize the actual mecha-
nism to observable parameters that describe the behavioral
results. For example, it has been shown that, while the ex-
Gaussian distribution appears to be a good-fitting model for
human RT data (Dawson, 1988; Palmer, Horowitz, Torralba,
& Wolfe, 2011), it is generally incorrect to directly interpret
the parameters in the fitted distribution as each specifying a
certain aspect of the underlying processing mechanism
(Matzke & Wagenmakers, 2009; although such attempts
have still been made, e.g., Moutsopoulou & Waszak, 2012;
Steinhauser & Hübner, 2009). TCS also suffers from this
problem, mainly because of the hypothesized parallel process-
ing architecture. Under this architecture, the model’s predic-
tion for the overall time cost of stage-one processing is com-
puted as the maximum of N independent random variables
(before a time-out is reached). So, even in cases when the
time-out is not a factor (i.e., all lures complete before the
time-out is ever reached), the analytical solution for the distri-
bution of the maximum exists only in some specific cases, for
example, when the processing time for all items follow the
same exponential distribution (which implies all items are
equally similar to the target under our current model). With
our current assumption that processing time is sampled from
an Inverse Gaussian distribution, this problem appears unsolv-
able. If we consider the case of heterogeneous search (i.e.
distractors with different visual features/similarity to the tar-
get), then an analytical solution is unavailable even if we were
to use the simpler exponential distribution.

On the other hand, the computational model is easy to
simulate, which is an advantage of TCS. One can easily sim-
ulate a number of accumulators (even with varying accumu-
lation rates) to mimic factors like display heterogeneity or
eccentricity changes. For example, the equations that predict
heterogeneous search RTs in Wang et al. (2017) and Lleras
et al. (2019) were first tested in simulations and then tested on
human data. While simulated numerical results are not an
exact analytical solution, they can still reliably represent prop-
erties of the model and predictions that the model would
make. More importantly, it is necessary and convenient to
use simulations to understand our current model since it was
constructed with a probabilistic nature. Simulation methods

Atten Percept Psychophys (2020) 82:394–425 421



can also be more flexibly adapted to different situations, for
example, to simulate results from a group of individuals. They
can also be easily adapted to incorporate factors such as inter-
trial contingencies (e.g., when colors repeat vs. change across
trials) and individual differences (e.g., in terms of default time-
out parameters). We know these are important factors to con-
sider (Awh, Belopolsky, & Theeuwes, 2012), though we have
yet to study them. At this time, we simply assume that these
sorts of effects will average out across trials. Thus, in our
analysis we have taken the average group data as the most
representative pattern of human behavior and compare that
pattern (rather than individual subject data) to the mean pat-
terns observed in the simulations.

A second limitation is that, as of now, TCS is not yet an
image-based computational model. We do not see this as an
insurmountable issue. Every aspect of the model should be
able to be implemented such that the model ought to be able
to: identify the number of accumulators to evaluate on any
given trial, and compute contrast signals based on a known
set of target-defining features. The evidence accumulation
rates are proportional to that overall signal, so they need not
be determined a priori by the user. When similarity is high,
some samples will contain very little or no contrast informa-
tion, whereas when similarity is low, every sample will likely
provide positive evidence that this item is not like the target,
allowing to reach threshold in fewer steps.

A third limitation is that the model has yet to instantiate a
mechanism for distractor-distractor similarity effects. What
we know so far is that lure-lure similarity effects are sensitive
to the spatial distribution of the lures and that the magnitude of
this interaction might depend on the complexity of the stimuli
(Lleras et al., 2019), but muchwork remains to be done on this
front. One might imagine that lure-lure facilitation might oc-
cur when identical lures are nearby one another and there
might be a limit to the how close together the lures need to
be for the advantage to arise. Or, rather than a spatial limit,
what might be more important is that there are no other inter-
vening lures in between two identical lures. What appears to
be the case is that candidate-candidate similarity effects are of
a different nature, that deserve their own study. An initial
examination of this topic suggests that candidate homogeneity
might reduce the likelihood of revisitations during the serial
part of the search (i.e., when candidates are being scrutinized,
see Ng et al., submitted). An additional factor that will likely
play an important role in distractor-distractor similarity effects
is stimulus complexity. Indeed, as suggested by Lleras et al.
(2019), stimulus complexity might play a role in the strength
of distractor-distractor similarity effects, with simpler stimuli
(colored geometric shapes) yielding stronger homogeneity fa-
cilitation effects than more complex stimuli (images of real-
world stimuli). This might result from the fact that simpler
stimuli will have a chance to interact along more levels of
the ventral pathway in the brain than more complex objects,

which require processing from more anterior regions of the
brain like IT. In sum, distractor-distractor similarity effects
deserve further study and more precise modeling.

A fourth limitation is that TCS is currently mostly focused
on parallel processing and efficient search. More work is
needed to flesh out what happens after parallel evidence ac-
cumulation is stopped and several target likely locations need
to be inspected. Finally, as mentioned above, TCS has not yet
integrated a role for visual contrast (or salience) even though
data suggest that salience drives very fast eye movements
even in goal-directed efficient search.

A final limitation of TCS is that it does not include much
detail regarding the selection of individual target-likely loca-
tions in stage two. We assume that as demonstrated by TAM
(Zelinsky, 2008), the visual system is likely to prefer making
an eyemovement to a somewhat nearby location rather than to
a farther location. At this point, we rely on randomization of
stimuli locations in the experiment to avoid any systematic
impact of those types of preferences on the results. In that
context, current results from our lab do suggest that all
target-likely locations are equally likely to be selected. That
is, there is no prioritization of some candidates over others, at
least not based on their degree of similarity to the target (Ng
et al., submitted).
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