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Abstract

In 1968, Guzman showed that the myriad of surfaces composing a highly complex and novel assemblage of volumes can readily
be assigned to their appropriate volumes in terms of the constraints offered by the vertices of coterminating edges. Of particular
importance was the L-vertex, produced by the cotermination of two contours, which provides strong evidence for the termination
of'a 2-D surface. An X-junction, formed by the crossing of two contours without a change of direction at the crossing, played no
role in the segmentation of a scene. If the potency of noise elements to affect recognition performance reflects their relevancy to
the segmentation of scenes, as was suggested by Guzman, gaps in an object’s contours bounded by irrelevant X-junctions would
be expected to have little or no adverse effect on shape-based object recognition, whereas gaps bounded by L-junctions would be
expected to have a strong deleterious effect when they disrupt the smooth continuation of contours. Guzman’s roles for the
various vertices and junctions have never been put to systematic test with respect to human object recognition. By adding
identical noise contours to line drawings of objects that produced either L-vertices or X-junctions, these shape features could
be compared with respect to their disruption of object recognition. Guzman'’s insights that irrelevant L-vertices should be highly

disruptive and irrelevant X-vertices would have only a minimal deleterious effect were confirmed.

Keywords Perceptual organization - Shape perception - Vertices - Nonaccidental properties

An impressive feat of scene perception is that people can view
an unfamiliar complex assemblage of partially occluded vol-
umes, such as those shown in Fig. 1, and segment the mass
readily and rapidly into individual volumes by assigning each
surface to its appropriate volume. As is evident from this
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example, this achievement of perceptual organization can be
executed monocularly from a line drawing alone, without the
need for adjacent volumes to differ in surface properties, such
as color or texture, to facilitate their segmentation.

We will use the term vertex to refer to the configuration
created by the cotermination of two or three contours." The
basis for this segmentation, solely using monocular shape
cues, was described by Adolfo Guzman in his seminal 1968
dissertation, in which he showed that vertices formed by the
cotermination of two or three contours were sufficient to ac-
count for the appropriate assignment of surfaces to volumes.
(The volumes in Guzman’s work were polyhedra, volumes
with flat polygonal faces, straight edges and sharp corners.)
The term junction will refer to the meeting or crossing of two
or more contours, without the cotermination of any pair.
Figure 2 shows the most common (and important) of
Guzman’s set of vertices and junctions. The dashed lines

! We reserve the term vertex for the pattern formed from the cotermination of
two or three contours. We use the term junction to refer to the pattern formed
by two or more contours meeting without terminating at a common point.
Typically, junctions will be formed by the crossing of contours without a
change of direction at their crossing, as in an X-junction. Another type of
junction is the T-junction, where one contour terminates on another contour,
but not at its termination.
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Fig. 1 Guzman’s “bridge.” Observers can readily assign surfaces to their
appropriate volumes in novel scenes (redrawn from Guzman, 1968, with
permission). The L-vertices, such as those at the top right of surface #15
and the bottom right of surface #29, are of great importance for
segmenting scenes, in that they signal the termination of a surface—that
is, where one surface is partially occluding the background

indicate which surfaces are to be grouped to the same volume.
The pair of T-junctions in Fig. 2D do not depict cotermination.
Instead, the stem of each of the two Ts terminates at the
bounding contours of a surface that serves to occlude the
smooth continuation of the collinear stems of the Ts.
Consequently, the collinear stems of the Ts provide evidence
that their contours should be grouped behind the occluding
surface. In Fig. 1, matching T-junctions promote appropriate
groupings of surface #9 with #21 and #12 with #27, and the
“fork” (or Y) vertex promotes the grouping of surfaces #13,
#14, and #15 to the same, single volume.

a

Fig. 2 A subset of Guzman’s vertices. (A) An L-vertex. (B) A fork ver-
tex. (C) An arrow vertex. (D) Matched T-junctions. (E) An X-junction.
The dashed links indicate what surfaces are to be grouped to the same
volume. If a surface is not to be grouped with another surface to a

C
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Common vertices and their grouping
constraints

The grouping constraints from vertices were formally derived
for polyhedra by Clowes (1971) and Huffman (1971), and
extended by Waltz (1975) to include shadows, the classifica-
tion of edges as concave, convex, obscuring (i.e., a depth
discontinuity), or a crack, and the disambiguation caused by
“accidental alignments.” Here we describe common vertices
and the grouping constraints that follow.

The L-vertex is the pattern created from the cotermination
of two contours and is likely the most common of the vertices,
as it is characteristic of both 2-D and 3-D shapes. It is of the
greatest importance for segmenting scenes, in that it provides
strong evidence for the termination of a surface—that is,
where one surface is partially occluding the background, as
at the upper right L at surface #15 and the lower right L of
surface #29 of Fig. 1.

Another important junction for segmentation is the T-junc-
tion, where a contour terminates on another contour (rather
than coterminating on the end of a contour as in the L or Y
vertices). The nonterminating contour is a partially occluding
surface (or surfaces) along the shaft of the terminating con-
tour, as illustrated where the contour at the edge (an orienta-
tion discontinuity) between #9 and #12 terminates on surface
#3, defining a T-vertex at that point (Fig. 1). Similarly, the
contour at the edge between #21 and #27 terminates at #20,
also defining a T-junction in Fig. 1 (Fig. 1). That the stems of
these two T-junctions are collinear promotes the grouping of
surface #9 with surface #21 and surface #12 with #27,
allowing the volumes defined by surfaces #9 and #21 to be
grouped together and interpreted as being partially occluded
by the volume whose upper surface is #3.

Unlike L, fork, or arrow vertices, the two contours defining
X- and T-junctions do not have to be at the same locus in
depth. Consequently, a rotation in depth of the viewpoint
can produce drastic changes in the position of the junction,
or even its complete disappearance. The dependence of these
junction types on viewpoint suggests that they are not

e

common volume, there is no dashed link. The two surfaces of the L
(inside vs. outside the vertex) are, therefore, not to be grouped as part
of the same volume. (Redrawn from Guzman, 1968, with permission.)
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nonaccidental shape properties (Biederman, 1987; Lowe,
1985), unlike the L, fork, and arrow vertices, which are de-
fined by their cotermination at a common point in depth.

Accidental alignments Accidental alignments can create local
ambiguities, as in the lower right L-vertex of surface #2 in Fig.
1 coterminating with the occluding edge of surface #3, creat-
ing an accidental Y vertex (Fig. 2) that would imply
(incorrectly) that surfaces #2 and #3 and the background be-
long to the same volume. The accidental collinearity of the
contour between #21 and #22 with the contour between #28
and #29, which creates matching T-junctions (Fig. 2) with
surface #27, leads to the incorrect (and ambiguous) local
grouping of surfaces #21 and #29.

In contrast to the importance of the L-vertex for the per-
ceptual organization of shape is the X-junction, formed when
two contours cross without a change of direction at the cross-
ing point, as is shown in Condition OX in Figs. 3 and 6 below.
Guzman noted that the X-junction was of no import for
segmenting scenes.

Does the addition of L-vertices interfere
with object recognition more than
the addition of X-junctions?

We tested an implication of Guzman’s work on shape segmen-
tation that derives from his observation that X-junctions are
irrelevant for segmenting scenes. Specifically, we assessed
whether the addition of an irrelevant (noise) contour that pro-
duced L-vertices (which are relevant to segmentation by sig-
naling, in this case, inappropriate terminations of a surface)
would be more disruptive to object recognition than when the
same irrelevant contours produced X-junctions (which are not
relevant). Guzman’s scheme achieved a grouping of surfaces
to volumes and the segmentation (separation) of individual
volumes from each other. He did not claim that such a repre-
sentation was sufficient for recognition, but by some accounts
(e.g., Biederman, 1987), the segmentation of an arrangement
of surfaces to separate volumes constitutes a key bottom-up
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Fig. 3 An example of the stimuli in each of the five experimental
conditions for two objects. O = original intact image, OX = original
image with X-junctions, CD = contour-deleted image, CDX = contour-

stage leading to the recognition of objects, where the individ-
ual volumes constitute the simple parts of the object. Such
accounts require that the relations between the volumes also
be defined in order to yield a structural description (Lescroart
& Biederman, 2012), consisting of an object’s simple parts
and the relations between these parts.

In the present experiment, we had observers view briefly
presented masked line drawings of objects that they were to
name as quickly and as accurately as possible. The contours of
some of the images had midsegment gaps that, in the contour-
deleted (CD) condition (Fig. 3), could readily be bridged by
the Gestalt routine for “smooth continuation.” Segments were
added to other image variants so that they coterminated with
the end points, thus bridging the gap with L-vertices, as shown
in the contour-deleted with L-vertices (CDL) condition (Fig.
3). The L-vertices, in signaling the termination of a surface,
would thus suppress the smooth continuation that would oth-
erwise allow grouping across the gap. Other images had seg-
ments that crossed the contours midsegment, producing X-
vertices, as in the original with X-junctions (OX) and the
contour-deleted with X-junctions (CDX) stimulus conditions
shown in Fig. 3.

Would the insertion of L-vertices that inappropriately sig-
naled the termination of an object’s surface, as shown in ex-
ample CDL in Fig. 3, interfere with the recognition of that
object, as compared to the CD or CDX condition? Would
the insertion of contours that produced inappropriate X-
junctions have only a minimal effect on the speed or accuracy
of recognition, as illustrated in OX and CDX in comparison to
O and CD, respectively, in Fig. 3, beyond what might be
expected from the addition of the irrelevant noise segments
themselves?

Method
Stimuli

The stimuli were 56 line drawings of common objects present-
ed on an iMac 27-in. screen (2,560 x 1,440 pixel resolution)

DX

~ i e ?@
R AEVR S

N a bt
oy B e <P S
= o ST
e LA

deleted image with X-junctions near the gaps, CDL = contour-deleted
image with the gaps bridged by L-vertices
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using Psychtoolbox-3 (Kleiner, Brainard, & Pelli, 2007).
Drawings of animals were excluded, as their eyes provided
critical information about the object out of proportion to the
extent of their contours. All drawings were sized to 600 x 600
pixels and subtended a visual angle of approximately 13.1° at
arm’s length. The contour-deleted (CD) condition (Fig. 3) was
produced by deleting approximately 50% of the contours at
their midpoint, to produce gaps that left the original vertices of
the image intact. The contour-deleted L-vertex condition
(CDL) was produced by adding the end points of line seg-
ments of half the extent of the deletions to each end of the
contour at the gaps at approximately 90° to the endpoints to
create the L shape as illustrated in Fig. 3, along with the other
stimulus conditions. The two added segments on each side of
the gap thus added approximately the same number if pixels as
the deleted segment. If the addition of a segment for the L-
vertex at 90° were to create another vertex or junction, then the
segments were rotated until the added segment only produced
an L-vertex. The contour-deleted X-vertex condition (CDX)
was produced by moving the segments added in the CDL
condition away from the gap and centering it over the original
contour such that it produced an X-vertex. The OX stimuli
were created by simply inserting the segments added in the
CDX condition to the original images so that the added seg-
ment intersected the line from the existing drawing, creating
an X-vertex. This ensured that the segments added to the
CDL, CDX, and OX stimuli had identical numbers of pixels.

Subjects

Forty-eight University of Southern California students (15
males, 33 females; mean age = 19.9 years, range 18-25) par-
ticipated in the experiment for credit in psychology courses or
for monetary compensation. All subjects had normal or
corrected-to-normal vision. The work was carried out in ac-
cordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki). All subjects gave in-
formed consent in accordance with the procedures approved
by University of Southern California’s University Park
Institutional Review Board.

Method and procedure

Subjects viewed line drawings of objects in a dimly lit room
with a lamp facing away from the computer. Each object was
presented for a maximum of 5 s, followed by a mask, but trials
were advanced when a response was detected. All trials were
separated by an interstimulus interval of 1,000 ms. The mask
was a random appearing assemblage of straight lines. Subjects
were instructed to name each object as quickly and accurately
as possible as soon as the image appeared on the screen.

@ Springer

Reaction times (RTs) were measured by a microphone that
stopped the computer clock started by the stimulus presenta-
tion. The response threshold for the microphone was
recalibrated for each subject on the basis of a set of sample
trials that did not include stimuli from the main experiment.
Error rates were determined by the experimenter, postsession,
on the basis of a series of criteria for each object—for example,
the cup was considered correct if it was named as “mug” or
could reasonably designate the basic-level class of the stimulus.
Subjects were told to avoid prevocalizations, such as “um,” or
from making any extraneous noise that would exceed the mi-
crophones threshold and thus would be falsely record as a
response. Following microphone calibration, subjects per-
formed six practice trials with simple geometric shapes (circle,
square, etc.) to familiarize themselves with the procedure. If the
subject did not satisfactorily perform the practice trials—by, for
example, answering too quietly or uttering prevocalizations—
the subject was instructed as to the desired response amplitude
and performed the practice trials again.

Each subject viewed the 56 line drawings in a given con-
dition only once, with the restriction that the first presentation
of a given object was not the intact original (O) version of the
object, which might have diminished the effects of the other
conditions. The order of the images was shuffled and
counterbalanced across subjects so that the average trial num-
ber, across subjects, of each object in each condition (save for
the O condition) was the same: 140. Due to an error in the
script, five of the 56 objects were viewed in only four of the
five conditions. Thus, each subject was only presented with
276 of a possible 280 trials. This error constituted only 1.4%
of possible trials, and an analysis that excluded those objects
departed only negligibly from the data, so the objects were
retained in the final analysis.

Trials in which subjects made extraneous noise that was
incorrectly recorded as their answer for that stimulus, and that
therefore did not represent either the subject’s reaction time or
their intended response, were not included in the analyses. The
average number of usable trials was 271.4 (of a possible 276).
In our analysis of reaction times, we further restricted our
analysis to trials in which the subject made the correct re-
sponse. The average number of trials used in this analysis
was 256 of a possible 276 (92.8%).

Data analysis

The correct reaction times (RTs) and error rates were analyzed
separately using generalized linear mixed-effect models
(GLMMs). This type of linear regression allowed better satis-
faction of normality assumptions than a typical log transforma-
tion of reaction time (Lo & Andrews, 2015), and also allowed
the inclusion of subjects and stimuli as random effects (Judd,
Westfall, & Kenny, 2012). The RT data were modeled using as
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an inverse Gaussian distribution with the identity link function.
Only correct trials were used in the RT analyses. For the accu-
racy analysis, the correct and incorrect responses were modeled
as a binomial distribution using the logit link function. The
odds ratio is reported as the effect size for the error rate results.
The Holm—Bonferroni method was used to correct for multiple
comparisons separately for RT and accuracy models.

To model the effect of seeing each object multiple times,
albeit under different conditions, the number of times a stim-
ulus had been shown, including the current trial, was counted
and labeled the “repetition” for that trial. For example, the first
time seeing a cup would have repetition value of 1, and the
next viewing of the cup would have a repetition value of 2.
Because one expects repetition effects to eventually saturate,
repetition was modeled as (1 — x %), where x is the number of
times the stimulus had been seen. Thus, the repetition values
of (1, 2, 3, 4, 5) were transformed into (0, .65, .81, .88, .91).
Various exponentiations were evaluated, and anywhere be-
tween x %> and x 2 produced nearly equal model fits, in terms
of Akaike information criterion and R*. For both the RT and
accuracy analyses, the transformed repetition value and the
condition (e.g., CD) were included as fixed effects, and the
subject ID and base object were included as random effects
with random intercepts.

All analyses were done using R (R Core Team, 2018) and
RStudio (RStudio Team, 2016). The following R packages
were used: Ime4 for the GLMM analysis (Bates, Méchler,
Bolker, & Walker, 2015), sjPlot for viewing the GLMM out-
put and obtaining confidence intervals (Lidecke, 2018),
multcomp for the corrected pairwise comparisons between
each condition (Hothorn, Bretz, & Westfall, 2008), ggplot2
for plotting the data (Wickham, 2016), and tidyverse for man-
aging the data (Wickham, 2017).

Results

Adding irrelevant segments forming X-junctions to the
contours of an intact line drawing (OX — O) resulted in
a small (28 ms), but reliable (p = .01) cost to RTs (Fig. 4).
Deleting the contours midsegment (CD — O) resulted in a
similar cost of 31 ms (p < .001). The cost of adding X-
vertices and deleting midsegment contours (CDX — O)
was 59 ms (p < .001). This was identical to the additive
costs of the X-vertices (OX — O) and the contour deletion
(CD — O) conditions alone (28 + 31 = 59 ms), suggesting
separate linear contributions of each effect. (The strict
additivity did not arise as a consequence of a calculation
error, in that fractional millisecond values of the factors
departed slightly from strict additivity.) Critically, when
the segments identical to those forming X-vertices were
shifted to form L-vertices at the gaps of the contour-
deleted image (CDL — O), the increase in RT relative to
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Fig. 4 Effects of the four conditions of image manipulations relative to
the original, intact image (Condition O) on correct reaction times (RTs).
Error bars indicate the 95% confidence intervals. ¢, p < .1; ** p < .01;
##% p < .001, Holm—Bonferroni corrected

the intact image grew to 130 ms (p < .001), more than
double the cost of the CDX condition. This was accom-
panied by a doubling of the odds of making an error,
relative to the intact images (log odds = .6865, p <
.001). Only the CDL condition produced a significant
change in error rates (Fig. 5).

Repetitions

Across the five presentations of the same base object, repeti-
tion effects decreased RTs by 189, 236, 256, and 265 ms, and
decreased the odds of making an error by .52, .44, .41, and .40
for the second, third, fourth, and fifth viewings of the stimulus,
respectively.
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Fig. 5 Effects of the four conditions of image manipulations, relative to
the original, intact image (Condition O), on the odds ratio for errors. Error
bars indicate the 95% confidence intervals. In the present context, an odds
ratio of 1 means that there is no difference in error rates between the two
conditions—for example, the probability of an error for condition OX is
equal to that of condition O. An odds ratio of 2 means that the condition—
that is, condition CDL—has twice the likelihood of an error as in condi-
tion O. », p <.1; ** p < .01; *** p < .001, Holm—Bonferroni corrected
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Discussion

Guzman and other early workers in computer vision demon-
strated that sufficient constraints emanate from the vertices
and junctions of novel, complex rectilinear objects to assign
the surfaces to their appropriate volumes. This segmentation
could be achieved solely on the basis of monocular shape,
without any need to appeal to surface properties such as color
or texture or to binocular vision or motion. The present study
provides some evidence that the visual system gives high pri-
ority to vertices that make a strong contribution to segmenta-
tion, such as the L-vertex, and largely ignores those junctions,
such as the X-junction, that are irrelevant to segmentation.

Adding extraneous contours to form L-vertices to suppress
the smooth continuation of an extended contour of an object
produced sizeable costs to that object’s recognition speed and
accuracy, whereas adding the same segments so that they
formed X-vertices with the object’s contours incurred only a
minimal cost. Even this modest deleterious effect in the CDX
condition may have been exaggerated in the present stimuli, as
the added segments to produce X-vertices not infrequently
crossed into a nearby contour in dense regions of the object,
suggested a near-accidental L-vertex or occluding relevant
contour, as can be witnessed with the pipe in the CDX condi-
tion of Fig. 3.

The lack of potency of X-vertices to serve as visual noise
has been confirmed by author I.B. in another task, that of
detecting targets in RSVP sequences. Subjects (members of
his class) viewed RSVP sequences of line drawings of com-
mon objects with each image presented for 84 ms. Prior to
each sequence, a target was specified by name. On some trials,
the preceding and following frames consisted of a dense array
of a spaghetti of contours that, at the frame rates, appeared to
be superimposed over the object images, forming X-junctions
somewhat similar to those illustrated in Fig. 6. There was no
loss of identifiability of these images as compared to se-
quences without any noise.

Fig. 6 An illustration that the addition of a large array of uninterpretable
contours forming only X-vertices has only a minimal effect on an object’s
identification

@ Springer

X- and T-junctions

Vessel, Biederman, Subramaniam, and Greene (2016), report-
ed an experiment with a similar task and design to the present
experiment. Their subjects named contour-deleted objects in
which the gaps in the contours could be bounded by T-
junctions or L-vertices. As would be expected from
Guzman’s analyses, naming RTs and error rates were higher
for the gaps bounded by L-vertices—which suppressed the
smooth continuation of the contours—than for the T-junc-
tions, where the gaps were now interpreted as occluding sur-
faces behind which the contours could be grouped. T- and X-
vertices thus are similar with respect to their lack of potency,
relative to L-vertices, for suppressing smooth continuation of
contours.

What determines the potency of the L-vertex
for signaling the termination of a surface?

The line drawings of objects in the Vessel et al. (2016) exper-
iment were depicted as either white or black contours on a
gray background. Those authors demonstrated a critical con-
dition for the L-vertex to retain its potency to signal the ter-
mination of a surface: the two legs of the vertex defining the L
must have the same direction of contrast (both darker or both
lighter than the background). If one leg of the L was darker
and the other leg was lighter than the background, then RTs
and error rates for images with gaps bounded by Ls were
equivalent to when the gaps were bounded by Ts. Both seg-
ments of the L-vertices in the present stimuli had the same
direction of contrast in that both legs were always darker—
that is, black—than the white background. It would appear
that the visual system has incorporated that statistical regular-
ity as a necessary condition for the L-vertex to signal the
termination of a surface. The consistency of directions of con-
trast in L-vertices is, statistically, a strong characteristic of L-
vertices, in general, which can be readily confirmed by
looking at such vertices in the reader’s environment.

Why is partial occlusion typically not disruptive
to perceptual recognition?

A more pervasive phenomenon than the recognition of
contour-deleted objects is likely relevant to the minimal inter-
ference of Xs and Ts relative to Ls, in the present experiment
and that of Vessel et al. (2016). We often view objects and
scenes through partially occluding surfaces, such as light fo-
liage or lace drapery. These occluding surfaces rarely result in
any noticeable decrement in the perception of the scene. An
explanation from the present perspective (derived from
Guzman and Lowe) is that when such lightly occluding sur-
faces are randomly projected onto a scene, it would be rare or,
more specifically, an accident, for contours of the occluding
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surface to coterminate with the contours of the scene to pro-
duce an L-vertex. That is, the cotermination of contours (that
define an L) is a nonaccidental property (Lowe, 1985).

Accidental vertices

As we noted previously, vertices produced by cotermination,
such as Ls, forks, and arrows, are instances of nonaccidental
properties. Accidental alignments can mimic these vertices
and create local ambiguities, as in the accidental collinearity
ofthe contour in Fig. 1 between surfaces #21 and #22 with the
contour between #28 and #29 creating matching T-junctions
with surface #27, leading to the incorrect local grouping of
surfaces #29 with #21 and #28 with #22. The ambiguous
groupings produced by accidental alignments may itself be
taken as evidence for the ubiquitous role played by these junc-
tions and vertices in the perceptual organization of shape.

Neural correlates of shape-based object
representations

What might be the locus of Guzman’s bottom-up account of
shape segmentation, as viewed from the perspective of current
research in the neuroscience of shape-based object recogni-
tion? Guzman’s account made no appeal to prior familiarity
with the object. Recent studies of the neural correlates of ob-
ject recognition provide strong support for this aspect of
Guzman’s scheme. The lateral occipital complex (LOC) is a
cortical region, consisting of the lateral occipital cortex and
the posterior fusiform gyrus, that has been shown to be critical
for object recognition, in that its bilateral lesioning renders an
individual unable to recognize shapes of any kind—objects,
faces, or print—while sparing the perception of color, texture,
and motion (James, Culham, Humphrey, Milner, & Goodale,
2003). LOC can be localized with fMRI as the cortical region
that shows a greater BOLD response to intact objects than to
their scrambled versions, resembling texture (Malach et al.,
1995). Margalit et al. (2016; Margalit, Biederman, Tjan, &
Shah, 2017) compared the magnitude of the LOC BOLD re-
sponse to familiar objects, depicted as an arrangement of
geons, to when the same set of geons were rearranged so that
they appeared as a novel assemblage. The magnitude of the
BOLD response in LOC was completely unaffected by wheth-
er or not the object was familiar. Thus, the exclusion of prior
familiarity in Guzman’s predictions is consistent with the ac-
tivity of object-selective regions in the brain.

The work in computer vision in the 1970s and 1980s that
proved to be so inspiring to both computational and biological
vision had, as its goal, a model of explicit shape-based object
recognition grounded in projective geometry. Despite the
great insights gained from this work, the study of geometric-
based explicit shape representation appears to have fallen by
the wayside, in favor of learning by deep networks which

currently give greater weight to surface properties (Geirhos,
2019). It would be of interest to see whether such networks,
without being explicitly trained to employ the vertices for
segmentation, nonetheless reflect the constraints offered by
the vertices. In the present experiment we focused on only
one class of these insights, but the clear results and the inter-
pretations offered by the seminal work in computer vision
suggest that this work still has much to offer to those studying
the biology and psychophysics of visual shape recognition.

Open Practice Statement The data have been deposited in the Open
Science Framework, osf.io.
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