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40 YEARS OF FEATURE INTEGRATION: SPECIAL ISSUE IN MEMORY OF ANNE TREISMAN

Evidence that within-dimension features are generally processed
coactively

Anthea G. Blunden1 · Piers D. L. Howe1 ·Daniel R. Little1

Abstract
In this paper, we examine whether information about an item’s category, provided by the same dimension type presented
across multiple spatial locations (which we term within-dimension features), is processed independently or pooled into
a common representation. We use Systems Factorial Technology (SFT; Townsend & Nozawa, Journal of Mathematical
Psychology, 39, 321–340, 1995) and fit parametric logical rule-based models to diagnose whether information processing is
serial, parallel, or coactive. The present work focuses on expanding the scope of categorization response time (RT) models
by synthesizing recent work in perceptual categorization with theories of visual attention. Our results show that for the
majority of participants, processing occurs coactively (i.e., is pooled into a single decision process). For the remainder, other
processing strategies were found (e.g., parallel processing). This finding provides new insight into decision-making using
within-dimension features presented in multiple locations. It also highlights the importance of both featural information and
spatial attention in categorization decision-making.
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Every day we make decisions by identifying, discriminat-
ing, comparing, and categorizing objects that have different
visual features which come from the same dimension (e.g.,
colors, sizes, shapes etc.). To give a few examples of this
everyday decision-making, imagine you wish to select a ripe
banana from a bunch: How do you decide which banana is
the most preferable? An obvious approach is to compare the
color of the bananas, preferring the bright yellow bananas
while avoiding the green and overripe brown bananas. Like-
wise, a food safety inspector may need to comply with
federal guidelines on the color of meat in order to decide
whether the rib eye is safe, and must therefore compare
the color of the rib eye with a meat safety color chart. A
navy ship office may need to identify and interpret the color
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combination of the signal flags of an approaching vessel.
Understanding how we make categorization decisions using
stimuli that vary on the same type of feature is a fundamen-
tal question in the psychology of perception and cognition.
Our interest in these examples and the present paper is not
how we identify the color, but rather how that color satisfies
some criterion that informs some decision: Is this the ripest
banana? Is the meat fresh enough? What is the other ship’s
intention?

Recent work has utilized rule-based theories of cate-
gorization incorporating theories of response time (RT),
not only to characterize decision-making, which necessi-
tates the integration of a range of different features (e.g.,
size, color, shape) and their configurations, but also to
answer more fundamental questions regarding perception,
attention, and decision-making (Griffiths, Blunden, & Lit-
tle, 2017; Little, Nosofsky, & Denton, 2011; Fifić, Lit-
tle, & Nosofsky, 2010; Little, Nosofsky, Donkin, & Den-
ton, 2013; Moneer, Wang, & Little, 2016). One critical
question regards the underlying architecture of decision-
making. Here, architecture refers to the organization of
mental processes, or the way in which we combine informa-
tion (Kantowitz, 1974; Sternberg, 1969; Schweickert, 1993;
Townsend, 1984). More technically, it refers to distinguish-
ing between serial, parallel, and coactive processing. For
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example, when selecting a banana do you make a decision
on the color of each banana one at a time (i.e., serially)?
Or alternatively, do you do so simultaneously, in separate
decision-making channels (i.e., in parallel), or do you pool
all your perceptual information into one single decision-
making channel and make one overall decision (i.e., by
processing the colors coactively; (Miller, 1982); see Fig. 1)?

Beyond identifying the processing architecture, which is
not always straightforward due to pervasive model mimicry
in many tasks (Townsend, 1990), a further question is
what factors affect the processing architecture of decision-
making? For example, characteristics such as whether
or not features or dimensions can be attended to in
isolation, and the configurations of these dimensions, such
as spatial separation, have been shown to play a key role
in determining how information from different dimensions
is integrated (Moneer et al., 2016; Little et al., 2011).
For example, it is difficult to attend to hue, brightness, or
saturation independently. It would be therefore impossible
to judge the ripeness of a banana based on the hue of its
color alone, while ignoring saturation or brightness. Instead,
information about these three dimensions must be pooled in
order to make a categorization decision. On the other hand,
judging which variety of bananas to buy (e.g., the Cavendish
or the Lady Fingers, two popular Australian varieties) might
require comparison of two separate dimensions, which
are easy to attend to in isolation: freshness and price.
Such information is likely to be located in two different
spatial locations requiring attention to be independently
deployed to each, with categorization decisions made
independently. The ability to diagnose the underlying
processing architecture is therefore crucial as it provides

Fig. 1 Schematic illustration of the three processing architectures:
serial, parallel, and coactive. This example uses a hypothetical stimulus
with two dimensions: X and Y. In a serial model, decisions about
each dimension are made sequentially, one after the other. In a
parallel model, decisions are made simultaneously, but in independent
processing channels. In a coactive model, the information from both
stimuli is combine into a single processing channel from which a
decision is made

information about the role of spatial attention and selective
attention in the sequencing of dimensions for processing.
Here we use spatial attention to refer specifically to the
allocation of attention across space, while selective attention
refers to the more general process of weighting specific
stimulus attributes, potentially including distance. Many
paradigms for studying attention focus on accuracy, choice
data, or mean RT alone (for example, spatial cuing tasks, see
e.g., Posner, Snyder, & Davidson, 1980, or visual search,
see e.g., Treisman and Gelade (1980)); however, these
paradigms are often limited in their ability to differentiate
serial, parallel, and coactive architectures from each other.

We seek to add to the growing body of work on
visual processing in categorization by testing an important
configuration of multidimensional stimuli such as those in
the introductory examples: stimuli which are composed of
dimensions separated in space but which comprise differing
levels of the same type of feature, henceforth referred to as
within-dimension features (see Fig. 2 for some examples).
This type of stimulus is interesting from the perspective
of visual attention as it has features that would appear
on the same feature map, for instance, in Treisman and
Gelade’s (1980) Feature Integration Theory (FIT). In our
experiments, the features are separated spatially and take
on different luminance values but can be continuously
transformed from one to another. By contrast, this would
not be the case for features conceived to be on different
feature maps (e.g., shape vs. color), which we term between-
dimension features (see Fig. 2). This is a key distinction in
many theories of visual search, which find differences in
performance between the two stimulus types (Wolfe et al.,
1990). It is therefore possible that FIT may foreshadow
a difference in categorization strategy for between and
within-dimension stimuli.

Theories of visual attention such as FIT (Treisman &
Gelade, 1980) and Guided Search (Wolfe, 1994a, 2007) pro-
vide useful insight into how attention operates as a function
of which features are present in the visual scene. Although
these theories do not explicitly address categorization,
they propose that focused visual attention is driven by an
early pre-attentive parallel processing stage. In this stage,
different visual dimensions (e.g., luminance, orientation,
spatial frequency, etc.) are registered separately and only
later combined or bound to form a visual representation
of an object or visual scene. Guided Search, for example,
suggests that different dimensions are represented in sep-
arate maps which are summed together to form a master
salience map that subsequently guides attention to relevant
areas of a visual scene. Because of this guidance, when
a target does not share any features with the distractors
(e.g., a red square among green squares), search occurs
efficiently, and purportedly in parallel. In these cases, the
target “pops out”, and search time is generally fast and
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Fig. 2 Examples of different feature types. Left panel: Examples of
two experiments utilizing between-dimension stimuli which are sepa-
rable. The stimuli are between-dimension as they incorporate features
which would be located on separate feature maps (namely, color and
line position). The stimuli are separable as each dimension can be eas-
ily identified in isolation from the other (i.e., the color is red, and the
line is to the left). Both of these characteristics hold whether the stim-
uli are co-located (bottom), or separated in space (top). Middle panel:

Examples of stimuli which are within-dimension. These stimuli are
within-dimension as they incorporate features which would be located
on the same feature map (in these examples, luminance and orienta-
tion). By definition, these cannot be overlapped in two-dimensional
space. Right panel: An example of an integral stimulus. Color is con-
sidered integral as its comprising dimensions (i.e., hue, saturation, and
brightness) cannot be readily identified in isolation

independent of the number of distractors. If, however, there
is not a sufficient difference between the target and the
distractors to cause “pop out”, search is not efficient (see
e.g., Duncan & Humphreys, 1989) and is instead driven by
effortful, attentive processing, which is purportedly more
serial in nature (Wolfe, 1994a, 1998, 2007). Importantly, these
theories emphasize attention as being driven by the specific
features involved in the task, and therefore these tasks are
often used to infer how features are processed. Given that
we are using within-dimensions features, we may expect
that these are combined pre-attentively into the same feature
map, which then provides a single signal for decision-
making. This would mean decision-making would occur
coactively. Independent processing (e.g., serial or parallel)
may be more consistent with between-dimension stimuli
from different feature maps (indeed, this is what we see in
the categorization literature; see e.g., Fifić et al., 2010).

To assess the processing of within-dimension features
in perceptual categorization, we utilized Systems Factorial
Technology (SFT; Townsend & Nozawa, 1995; Little,
Altieri, Fifić, & Yang, 2018). Specifically, we investigated
stimuli of opposite luminance polarity in separate locations
of a visual display in a categorization decision-making task.
Several previous studies of visual attention (Duncan &
Humphreys, 1989; Wolfe et al., 1990; Mordkoff & Yantis,
1993) have also examined within-dimension features, and
we return to these studies in our discussion; we first review
related work in perceptual categorization and then present
our current experiments.

Dimensional processing in categorization

The diagnosis of processing architecture during decision-
making using visual information has been the focus of
recent work in categorization (Blunden, Wang, Griffiths,
& Little, 2015; Cheng, Moneer, Christie, & Little, 2017;
Fifić et al., 2010; Little et al., 2011, 2013; Moneer et al.,
2016). This literature draws on theories of visual attention
to investigate how information from multi-dimensional
sources is integrated during decision-making. The goal of
this work is to provide a quantitative and detailed diagnosis
of mental architecture using the logical rules modeling
framework (Fifić et al., 2010), which complements the SFT
analyses (Townsend & Nozawa, 1995; Little et al., 2018) in
order to yield patterns of RTs across the entire time course
of information processing.

To date, this work has focused on the integration of
information from between-dimension features and has been
successful in characterizing the underlying architecture of
this process using a variety of different dimension types
and configurations. Most relevant to the current work is
the seminal paper by Fifić et al. (2010) introducing the
logical rule models. Fifić et al. (2010) presented participants
with two rectangles separated in space, one of which
varied in saturation, and the other of which varied in
the position of a line contained within the rectangle.
Because these dimensions could easily be attended to
independently (i.e., because they are separable—see e.g.,
Garner and Felfoldy, 1970, Garner, 1974—and physically
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separated), these dimensions could be processed in serial
when participants were instructed to do so. Serial processing
was also found for spatially separate dimensions when
participants were allowed to adopt their own categorization
strategies (Little et al., 2011). However, when two separable,
between-dimension features were presented in a spatially
overlapped fashion (Experiment 2, Little et al., 2011),
processing was more parallel.

These findings are interesting as they highlight the
importance of spatial configuration and attention in deter-
mining the architecture that underlies categorization. Before
the introduction of the logical rule models, all models of
categorization RT, including the successful exemplar-based
random walk model (Nosofsky & Palmeri, 1997), stochas-
tic general recognition theory (GRT; Ashby, 2000), and
decision-bound models (Ashby, Boynton, & Lee, 1994;
Maddox, 1992; Maddox & Ashby, 1996), assumed that
the features of objects were pooled together into sin-
gle objects (i.e., which we term coactivity). In both of
the cases described above, both used separable dimen-
sions, but having features positioned in separate locations
induced serial processing, whereas overlapping the features
in space produced more parallel processing. This would
suggest that feature type is not necessarily a key component
affecting processing strategy in categorization decision-
making tasks but rather that location of the features is
primary. Following this logic, we would expect our within-
dimension luminance stimuli to require selective attention
to resolve the feature values at each location, and con-
sequently, categorization decision should proceed serially
with separate micro-decisions made at each location com-
bined using logical rules to determine the final response.

On the other hand, there are likely additional factors that
may determine how features are processed. For instance,
not all features can easily be attended to independently
or selectively (Garner, 1974; Shepard, 1987; Nosofsky,
1988); these types of features, termed integral features, are
thought to be processed holistically or configurally (e.g.,
hue, saturation, and brightness of colors in the Munsell color
space; Lockhead & King, 1977; Nosofsky, 1988). Using
the same categorization methodology, Little et al. (2013)
found that the categorization of colors varying in saturation
and brightness was best described by a coactive process
(see also Blunden et al., 2015). Instead of making decisions
separately along the brightness dimension and saturation
dimension, participants instead pooled information about
these dimensions into a single decision-making channel. In
contrast to Fifić et al. (2010) and Little et al. (2011), the
type of dimension—that is, the fact that the dimensions
were integral rather than separable—played a key role in
determining the processing architecture.

Integral dimensions necessarily occupy the same spatial
location. However, Moneer et al. (2016) investigated

categorization of whole-object features, which are features
that comprise an entire object, and therefore spatially
co-located, but are notionally separable, such as shape
and size or shape and color. These whole-object features
are between-dimension features in the sense that they
would activate different feature maps,1 but, despite being
comprised of separable features, these features have been
traditionally been characterized as integral (Biederman &
Checkosky, 1970; Smith & Kilroy, 1979). Using the logical
rules paradigm, Moneer et al. (2016) showed that these
dimensions elicit independent, multichannel processing
(i.e., serial or parallel processing). Similar results have
been found with composite faces, which have also been
traditionally treated as holistic (Cheng, McCarthy, Wang,
Palmeri, & Little, 2018). Hence, the processing of different
feature types not only in the same spatial location but
comprising the whole object, depends on whether those
features are separable or integral.

A natural question arising from these experiments con-
cerns the categorization of within-dimension but spatially
separated features of the type which are often used in
studies of visual search (e.g., a red pop-out target in a
field of green distractors). In the present paper, we use
the strong inferential methods to answer this question.
Within-dimension stimuli, such as luminance discs, pro-
vide an important point of investigation. Likely, because
these within-dimension features are presented in separate
locations, selective attention will be required to resolve the
feature values. Consequently, spatial configuration will play
a stronger role in determining processing strategy, and we
expect processing to proceed serially as a result. On the
other hand, these luminance values would be represented
by the same feature map (Treisman & Gelade, 1980) and
so it is possible that they would instead be processed coac-
tively. While parallel processing seems somewhat unlikely,
it is nonetheless worthy of consideration as a possible means
for processing the within-dimension features. For exam-
ple, in simple redundant target detection of two luminance
targets, processing appears to proceed in parallel but with
limited capacity (Townsend & Nozawa, 1995; Yang, Lit-
tle, & Hsu, 2014). Visual attention, stimulus configuration,
and dimension type, may all play key roles, and none of
the candidate models (serial, parallel, and coactive) can
be ruled out a priori. In the remainder of the introduc-
tion, we provide a detailed explanation of the categorization
decision-making paradigm and logical rule models which
we utilize to uncover how within-dimension features are
processed.

1Technically, size could be considered within the same dimension
as shape as it is an aspect of shape; when varied orthogonally in a
restricted stimulus set, size and shape are nonetheless separable in the
sense that they satisfy empirically observable markers of separable
(e.g., Garner, 1974).
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Logical rules design

In order to differentiate the processing architectures, we
utilize a design that provides strong diagnostic contrasts
between the predictions of each of the candidate architec-
tures. It is useful to describe these predictions with reference
to Fig. 3, which shows a variant of the double facto-
rial design proposed by Fifić et al. (2010). In this design,
individual stimuli are comprised of the orthogonal combi-
nation of two dimensions, each of which vary over three
levels. This generates nine stimuli, each of which comprise
different levels of the two dimensions. While the double
factorial paradigm has previously been implemented using
single items which comprise both dimensions (e.g., halves
of a face; Cheng et al., 2018, or two parts of a lamp; Fifić
et al., 2010) the within-dimension feature stimuli used in the

present experiment have different values of the same fea-
ture at different respective locations in space. Hence, each
stimulus comprises a pair of discs, with each disc varying
on three levels of saliency with respect to the background.

The upper-right quadrant comprises the target category
(category A) stimuli. The dotted line represents the
category boundary between the target category and the
contrast category (category B). Items that lie closer to the
category boundary should be more difficult to discriminate
(Ashby & Gott, 1988; Nosofsky, 1986); hence, stimulus
dimensional values of either high discriminability (H) or
low discriminability (L) combine to form four stimuli which
are defined by their relative difficulty in discriminability:
HH, HL, LH, and LL.

The contrast category stimuli are also identified by their
location in the category space. The redundant stimulus, R,

Fig. 3 Top left panel: Schematic diagram of the stimulus space. Stim-
uli are comprised of two dimensions (dimension X, the right disk,
and dimension Y, the left disk). Each dimension varies on three levels
which combine orthogonally to form a nine-item stimulus space. Top
right panel: Schematic diagram showing discriminability and category
membership. The target category (A) includes positions of high (H)
and low (L) salience items and is defined by a conjunctive (“AND”)
rule. The contrast category (B) is defined by a disjunctive (“OR”) rule
and includes internal (I), external (E), and redundant (R), stimuli. The

dotted line represents the decision boundary. Bottom panel: Stimulus
space showing example stimuli. Discs are comprised of three different
salience levels (1 = Low Luminance, 2 = Medium Luminance, and
3 = High Luminance), for both black (darker than the background) and
white (lighter than the background) levels of luminance. Note: each
pair of discs forms one stimulus. Stimuli to the right and above of the
decision boundary (indicated by the dotted line) belong to the target
category. All other stimuli belong to the contrast category
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satisfies both of the boundary decisions necessary to classify
a stimulus as belonging to the contrast category (i.e., it
is both to the left and below the decision boundary). The
stimuli adjacent to R are termed the interior stimuli, IX

and IY , whereas the stimuli at the far edges are termed the
exterior stimuli, EX and EY .

In order to correctly classify a target category stimulus,
a conjunctive rule on both dimensions must be satisfied.
That is, a stimulus must have a value on both dimension
X and Y that exceeds the horizontal and vertical decision
boundaries, respectively. Specifically, the luminance of both
disks must have a value of 2 (medium luminance) or
higher. Hence, stimuli from the target category must be
processed exhaustively (both dimensions must be processed
before a correct decision can be made). Stimuli belonging

to the contrast category can be correctly classified using
a disjunctive rule (i.e., stimuli need only be below or to
the left of the horizontal and vertical decision boundaries,
respectively).

Note that these rules, used to instantiate the categories
in the task, do not presume any sort of processing archi-
tecture. The fact that both dimensions must be processed
exhaustively to correctly classify a target category stimu-
lus, does not preclude this processing from being carried out
one dimension at a time in serial, or simultaneously in par-
allel, or indeed pooled into a single integrated percept. The
following section describes how the predictions from each
of these models (and combinations of stopping rules) varies
across both categories. The important point to note is that
the model predicts that processing will be exhaustive for the

Fig. 4 Illustrative RT predictions for each mental architecture. These predictions were generated from simulations but are proven to hold under
mild assumptions (Townsend & Nozawa, 1995). Left panel: predictions for target category, category A. Right panel: predictions for contrast
category, category B. Each row represents one of the candidate architectures. D1 = First processed dimension. D2 = Second processed dimension.
EBRW = Exemplar-based random walk
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Fig. 4 (continued)

target category when responding is correct, but processing
may be self-terminating or exhaustive for the contrast cate-
gory. Of course, a participant might self-terminate and still
be accurate when responding to a contrast category item.

Target category predictions

Discriminating target category discs that are close to the
decision boundary should be slower than discriminating
discs that are further away (Ashby & Gott, 1988). The way
in which these discriminations are combined varies for each
model, and qualitatively different mean RTs are predicted
by each model architecture for the target category stimuli
(shown in the left panel of Fig. 4). These RTs are readily
summarized by the mean interaction contrast (MIC). The
MIC is calculated by finding the difference between the
difference of the low and high discriminability values on

one dimension and the difference of the low and high
discriminability values on the other dimension:

MIC = (RTLL − RTLH ) − (RTHL − RTHH ) (1)

Serial models predict an additive pattern of mean RTs
(MIC = 0), parallel models predict an under-additive
pattern of mean RTs (MIC < 0), and coactive models
predict an over-additive pattern of mean RTs (MIC > 0;
Townsend & Nozawa, 1995). A brief explanation for these
predictions is outlined below; however, for a more detailed
outline, please see Fifić et al. (2010).

Serial models predict an additive pattern as both LH and
HL items will show some slowing relative to the HH item
due to their lower discriminability on one of the dimensions.
The increase of RT for the LL item compared to the HH
item is simply the sum of the individual sources of slowing.
Parallel models predict an under-additive pattern because
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the RTs for the target category items are determined by the
slower of the two decisions (i.e., the maximum processing
time). The LH and HL stimuli will be therefore much
slower than the HH stimuli. The LL stimulus will be only
slightly slower than either the LH or HL stimuli. Finally,
Townsend and Nozawa (1995) provide a mathematical proof
demonstrating coactive models result in an over-additive
pattern of results. This finding has been corroborated
by simulations done by Fifić, Nosofsky, and Townsend
(2008a). The predictions outlined above are non-parametric
in that they do not depend on the particular forms of the RT
distributions; hence, the qualitative contrasts apply to the
entire class of serial, parallel, and coactive models.

Further diagnostic evidence for processing architecture
from the target category can be found by calculating the
survivor interaction contrast (SIC). The SIC is calculated
using the survivor function for each stimulus, at each time
value, t:

SIC(t) = [SLL(t) − SLH (t)] − [SHL(t) − SHH (t)] (2)

where the survivor function, S(t), is the complement of the
cumulative distribution function, F(t), and represents the
probability that a response has not been made by time, t .

Different mental architectures also produce qualitatively
distinct predictions for the SIC (Townsend & Nozawa, 1995;
see Fig. 5) when using an exhaustive stopping rule (as
is necessary for correct responses in the target category).
Serial models predict an initially negative function which
becomes positive, with the entire function integrating to
zero (i.e., the MIC equals zero). Parallel models predict an
entirely negative function. Coactive models predict an initial
negative blip, with the majority of the SIC being positive.
Coactive models do not integrate to zero but rather integrate
to a positive value (note that since the target category
uses an AND rule, all of the serial and parallel models,
including those with a self-terminating rule, must predict an
exhaustive SIC as shown in Fig. 5).2

Contrast category predictions

The contrast category stimuli can also be used to make
diagnostic judgments using mean RTs (Fifić et al., 2010;

2Note that self-terminating serial and parallel models make different
SIC predictions; however, since our factorial stimuli in the target
category require exhaustive processing (i.e., both dimensions must be
processed before a correct decision can be made), self-terminating
strategies applied to the target category would be accompanied
by higher error-rates. As described in the method and results, we
encouraged highly accurate responding throughout. Therefore, we
only consider self-terminating strategies when considering the contrast
category results.

Fig. 5 Schematic of the survivor interaction contrast (SIC) predictions
for serial, parallel, and coactive architectures

see also Little, Eidels, Fific, & Wang, 2015, 2017).
Illustrative predictions for each model are shown in Fig. 4.
For example, consider the predictions of a fixed-order
serial self-terminating model, in which dimension x is
processed first followed by, if necessary, dimension y
(for reference see Fig. 3, left panel). The presentation of
items which satisfy the disjunctive contrast category rule
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on dimension x (i.e., x0y0, x0y1, x0y2) will lead to a
decision without further processing. If, however, x1y0 or
x2y0 are presented and x is processed first, then further
processing of dimension y is necessary in order to make
a correct categorization decision. This leads to a general
prediction that RTs for the first processed dimension will
be approximately equivalent, whereas RTs for the second
processed dimension are comparatively slower (as they
need to wait for the completion of the first processed
dimension). Further, the exterior item (x2y0) is processed
faster compared to the interior item (x1y0) because the first
processed x dimension for the exterior stimulus is further
from the decision boundary and therefore easier to judge as
not belonging to the contrast category.

For mixed-order self-terminating models, the first-
processed dimension may be dimension x on some trials
and dimension y on other trials. It follows that the redundant
stimulus has the greatest processing advantage, as both
dimensions satisfy the disjunctive decision rule. Further,
these models predict that exterior items will be processed
faster than interior items on both dimensions. Averaged
across trials, where participants switch from one dimension
to the other, the time preceding the switch is shorter for
exterior items.

For a parallel self-terminating model, the RT for a con-
trast category item is determined by the minimum process-
ing time needed to make a categorization decision. More
specifically, in the current task, the processing time will
be determined by the dimension which yields a contrast
category response. The redundant stimulus therefore has a
processing advantage in this case as both dimensions yield
contrast category responses, allowing for statistical facilita-
tion between the dimensions (Raab, 1962).

In the case of exhaustive models, both dimensions are
processed regardless of whether the disjunctive rule is sat-
isfied or not. For a serial exhaustive model, this means that
total RT comprises the sum of RTs on each single dimen-
sion. This leads to a prediction that the redundant stimulus
will have the slowest RT (as it lies closest to both decision
boundaries), with interior items being processed slower than
exterior items. The parallel exhaustive model predicts that
the total RT is determined by the maximum processing time
needed to make a categorization decision. Again, redundant
and interior items are slower as they lie closer to the decision
boundaries compared to the exterior items.

Finally, a general prediction of the coactive architecture
is that the interior stimuli will be processed faster than the
exterior stimuli. The intuition is that the interior items are
located closer to the left-most corner of the decision space,
and therefore when the dimensions are pooled, interior
items pool more evidence for a contrast category response

compared to exterior items (where the evidence for one of
the pooled dimensions is comparatively more diagnostic of
a target category response).

This design offers considerable diagnosticity as data
from each item can be used to differentiate architectures and
associated stopping rules. As the analysis is non-parametric
it does not rely on assumptions regarding the underlying
probability distributions of the RTs. Further inferences are
provided by formally instantiating each of the candidate
architectures in a parametric RT model. In this model,
the representation of each stimulus is instantiated as a
multivariate signal detection model (e.g., using General
Recognition Theory; Ashby & Townsend, 1986). This
representation is used to derive rates of accumulation which
are passed to a sequential sampling model (or pair of models
for the serial and parallel models) to model the RT. These
models, described fully below, allow us to account for
correct and error RTs across all of the items simultaneously.

Current study

In the present study, we sought to determine the processing
architecture underlying categorization decisions about
luminance discs of different polarity in different spatial
locations (e.g., lighter on the left, darker on the right).
Requiring the discs to have different polarity ensured we
would be able to manipulate the brightness of each disc
independently without participants relying on the overall
brightness of the display. However, due to the nature of the
discriminability manipulation, it is possible that participants
could make categorization decisions based on the overall
contrast polarity (see Fig. 3); that is, the difference between
the left and right disc luminance is greater for the target
category stimuli compared to the contrast category stimuli.
Consequently, a correct target category decision could be
made based on high contrast polarity and a correct contrast
category decision could be made based on a low contrast
polarity. As we were interested in how participants made
decisions based on individual luminance levels, rather than
an overall evaluation of the contrast of the presented stimuli,
we included a set of catch trial stimuli. These stimuli have
high contrast polarity (now lighter on the right, darker on
the left; essentially the reversal of the four target category
items) but are associated with a contrast category response.
This manipulation ensured participants could not make
categorization decisions based on contrast, and instead
necessitated that participants use the individual luminance
levels of each disc.

We ran two versions of this experiment. In Experiment 1,
the screen was divided by a series of boundary discs
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whose luminance levels were randomly sampled from the
possible luminance levels of all discs in the category space.
This was done to reduce the probability that items were
grouped into a single object. These discs were removed in
Experiment 2. Experiment 2, therefore, provides an almost
direct replication of Experiment 1 but with a single minor
methodological difference.

Experiments

General method

Participants

For Experiments 1 and 2, respectively, seven participants
from the University of Melbourne community (14 in total,
ten females and four males, aged between 19 and 26
years) with normal or corrected-to-normal vision completed
the study. Participants were recruited via advertising
placed on notice boards within the Melbourne School of
Psychological Sciences and through the school’s online
recruiting system. All participants were naı̈ve to the purpose
of the experiment. Participants provided informed consent
and were reimbursed $10 per session, plus an extra $3
bonus for accuracy within a session greater than 90%. The
participants from Experiment 1 are referred to as B1 - B7 (B
denoting “boundary”), and participants from Experiment 2
are referred to as NB1 - NB7 (NB denoting “no boundary”).
Testing was approved by the Melbourne Human Research
Ethics Committee (Approval Number 1034866).

As we were interested in the individual-level decision
mechanisms, we adopted an expert observer paradigm in
which each observer acted as an independent replication of
the experiment (see e.g., Little & Smith, 2018; Normand,
2016). Following relevant precedents, we collected a large
number of trials for each individual item (N ≈ 300) in
order to estimate the RT distribution for each item. As
demonstrated in Smith and Little (2018), this approach
has considerable advantages over traditional group designs
which tend to be underpowered. Our goal is therefore not
to estimate a population level parameter but is to test the
predictions of each of the models.

Stimuli and apparatus

Illustrative examples of the stimuli used in Experiments 1
and 2 are shown in Fig. 3. Stimuli were presented at a
monitor resolution of 1280 × 1024 and participants viewed
the screen at a distance of approximately 60 cm. Stimuli
were nine sets of two discs of different luminance levels
presented on a gray background (RGB color space values
[128 128 128]). The discs subtended a visual angle of 1.91◦

with centers 11.34◦ of visual angle to the left and right of
fixation (the center of the screen).

For each stimulus, there was a white disc on the left and
a black disc on the right. The specific level of luminance
was varied. The set of stimuli was created by orthogonally
combining the luminance level of the left disc and the
luminance level of the right disc. These follow the logical
rules design introduced by Fifić et al. (2010), whereby the
discriminability manipulation was achieved by varying the
luminance level of both discs by three possible increments
in comparison to the background.3 RGB coordinates were as
follows for each salience manipulation: High salience black:
[64 64 64], mid salience black: [88 88 88], low salience
black: [112 112 112], high salience white: [200 200 200],
mid salience white: [178 178 178], and low salience white:
[156 156 156]. An additional four pairs of discs were added
to act as catch trial stimuli. For these discs, the contrast
was an orthogonal combination of high or mid salience
black and white; however, the left disc was now darker
than the background, and the right disc was lighter than the
background (i.e., the contrasts were reversed compared to
the primary experimental stimuli).

In Experiment 1, the screen was divided by a boundary
of 29 discs (also subtended at a visual angle of 1.91◦ at
60-cm viewing distance) presented as a central vertical
column. The luminance values of the boundary discs were
randomized from trial to trial using six possible RGB color
space values (drawn from the values used to implement
the salience manipulation). This boundary was removed in
Experiment 2. All other aspects were the same. RTs for
categorization were collected using a calibrated RT box (Li,
Liang, Kleiner, & Lu, 2010).

Procedure

For Experiment 1, two participants completed five one-hour
sessions of categorization on consecutive or near consecu-
tive days.4 The remaining participants from Experiments 1
and 2 completed six sessions. At the beginning of the task,
participants were shown experimental instructions, as well
as an example of the stimuli. Each session consisted of
867 trials (17 practice trials and 850 experimental trials).
The contrast category stimuli (nine in total, including the
catch trials) were presented five times per block, and the
target category items (four in total) were presented ten
times per block (i.e., 85 trials per block). This was done to

3The luminance values were determined from pilot testing which
aimed to find values which resulted in high and low salience
manipulations which had the expected ordering of RTs when combined
into pairs.
4After the first two participants, we elected to expand the experiment
to six sessions.
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Fig. 6 First panel: Trial order for Experiment 1. Second panel: Trial order for Experiment 2. The repeated fixation cross indicates the start of the
subsequent trial

minimize the development of a response bias for contrast
category items. All stimuli were presented in randomized
order within blocks. In between each block, participants
were shown their percent correct on the current block and
given the option to take a short break. During each trial,
a fixation cross was presented for 1500 ms. A stimulus
was then presented and participants were asked to decide
whether the stimulus belonged to either category A or cat-
egory B. Stimuli were presented for 5000 ms or until a
response was made. Feedback was presented for incorrect
responses. For responses greater than 5000 ms, the feed-
back “Too Slow” was presented and the trial was removed
from the analysis. An example of a single trial for both
experiments (with and without boundary discs) is shown in
Fig. 6.

Data analysis

To analyze the target category, we focused on individual
participant ANOVAs, using the interaction effect in a 2 × 2
factor design to assess the MIC. We used a series of planned
t-tests to assess the pattern of contrast category RTs. These
analyses follow relevant precedents (Fifić et al., 2010;

Little et al., 2011, 2013), and allow us to make inferences
about the specific processing patterns for each individual
participant. Two shortcomings of this method are apparent.
First, each analysis only considers a subset of the data.
That is, even though the models make predictions across
all of the items, an ANOVA across all nine items would be
unwieldy and difficult to interpret. Second, each analysis
only considers correct RTs. Although accuracy is high for
most participants, a more complete analysis would also
take into account patterns of error RTs. In order to deal
with these issues, we complement our statistical analyses
with computational model fitting in which we fit parametric
instantiations of each of the models of interest (and relevant
extensions) to the correct and error RT distributions for all of
the items simultaneously. We then use model selection (i.e.,
the Deviance Information Criterion, DIC; Gelman, Hwang,
& Vehtari, 2014) to select the model that provides the best
explanation for our data. In summary, our analysis proceeds
in two passes. We first use the non-parametric SFT analyses
coupled with statistical tests to rule out specific models; we
then instantiate the remaining models parametrically and
fit them to the data comparing how well each fits the data
taking into account the complexity of the model.
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Experiment 1

Results

For all participants, the first session was considered practice
and was excluded from further analysis. This was done to
ensure participants had appropriately learned the categories
and had developed a stable categorization strategy. Addi-
tionally, RTs less than 200 ms or greater than 3000 ms were
excluded. These cut-offs are commonly used in the RT lit-
erature (see e.g., Donkin, Brown, & Heathcote, 2011). Less
than 1% of trials in total were removed using this
method. Mean correct RTs, mean error RTs, and error
rates are presented in Table 1. Error rates tended to be
low across all participants excepting in some cases for
the LL, EX, EY , and IY stimuli. While the analyses
of SFT assume perfect accuracy (Townsend & Nozawa,
1995), Townsend and Wenger (2004) support the robust-
ness of the SIC functions up to an error rate of 30%,
which is much higher than that usually seen in studies uti-
lizing the double factorial paradigm. The simulations of

Fifić et al. (2008a) further demonstrate that esti-
mates of the SIC are robust to violations of this
assumption.

In order to interpret the SIC functions, it is necessary
that the Survivor functions are ordered such that SHH (t) ≤
SHL(t) ≈ SLH (t) ≤ SLL(t) with the strict inequality
holding for at least one time point (Townsend & Nozawa,
1995). A series of Kolmogorov–Smirnov (KS) tests (Houpt,
Blaha, McIntire, Havig, & Townsend, 2013) were used to
check that each participant’s survivor functions followed
this ordering. If the assumption of stochastic dominance
holds, the first four columns of Table 11 should be
significant, whereas the last four should not. No violations
of stochastic dominance were found for this experiment (see
Appendix A, Table 11). Survivor functions are shown in
Appendix A, Fig. 14.

Target category

Figure 7 shows the mean RTs and corresponding MICs. All
the MICs are near zero but in the positive direction.

Table 1 Observed mean correct and error RTs (ms), and error rates for individual stimuli for each participant in Experiment 1

Items

Participant Variable HH HL LH LL EX IX EY IY R CHH CHL CLH CLL

B1 RT correct 914.12 1059.6 986.51 1136.2 1075.2 1053.6 1155.9 1191 947.91 747.87 703.29 738.37 804.64

RT error 982.51 1030.6 1223 1273.8 1202.6 1032.3 1081.6 1225.7 1248.4 * * * *

p(error) 0.004 0.033 0.041 0.112 0.082 0.057 0.251 0.158 0.004 * * * *

B2 RT correct 618.08 650.13 678.17 716.02 653.44 618 770.04 718.56 589.62 541.74 496.78 530.68 545.46

RT error 514.77 463.84 834.93 1020.8 1384.1 1131.8 1017.6 1240.8 * 769.58 410.05 836.56 384.74

p(error) 0.016 0.016 0.034 0.076 0.012 0.024 0.076 0.041 * 0.004 0.008 0.016 0.004

B3 RT correct 509.15 542.44 534.14 574.46 538.19 508.03 548.51 538.91 449.16 445.17 457.87 464.59 452.46

RT error 522.27 392.8 598.75 548.59 701.73 566.27 1017.4 628.66 689.94 558.7 376.23 * 464.45

p(error) 0.006 0.014 0.016 0.032 0.012 0.012 0.016 0.02 0.004 0.004 0.004 * 0.004

B4 RT correct 619.74 681.55 673.79 759.13 655.61 651.61 690.3 713.51 580.97 606.12 621.71 646.85 594.5

RT error 854.57 841.25 1009.6 974.05 962.25 825.5 605.29 695.71 * 640.12 * * *

p(error) 0.004 0.023 0.006 0.027 0.008 0.004 0.037 0.033 * 0.008 * * *

B5 RT correct 1004.6 1113.5 1079.6 1200.2 1004.1 1077.5 1197.1 1310.1 957.71 981.65 1020.3 1029.6 1044.9

RT error * 715.08 1124.5 1194.6 661.44 * 1442.4 1167.5 * * 871.24 * *

p(error) * 0.006 0.019 0.017 0.004 * 0.033 0.025 * * 0.008 * *

B6 RT correct 538.98 596.49 681.48 793.83 699.7 693.81 785.15 747.92 535.82 469.89 479.81 493.83 508.92

RT error 467.23 580.77 1253.3 1029 967.27 1008.7 1083 1038.2 * 429.6 415.05 * *

p(error) 0.003 0.014 0.034 0.058 0.122 0.061 0.155 0.109 * ¡.001 ¡.001 * *

B7 RT correct 579.23 644.07 618.43 688.69 620.21 612.14 653.75 605.4 553.83 438.83 443.22 448.57 452.21

RT error 574.71 689.15 660.49 749.3 581.55 597.31 853.48 786.51 * * * 368.26 *

p(error) 0.008 0.015 0.018 0.051 0.015 0.015 0.101 0.025 * * * 0.005 *

* indicates error-free performance; B1 = Boundary participant 1; CHH = catch trial stimulus which is high salience black on the left and high
salience white on the right
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Fig. 7 Observed target category mean RTs and MICs for individual participants in Experiment 1. The two left-hand points represent low
discriminability on the left disc and the two right-hand points represent high discriminability on the left disc. The solid line represents low
discriminability on the right disc, and the dotted line represents high discriminability on the right disc. Error bars represent one standard error
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Table 2 Target category statistical results for individual participants in Experiment 1

Variable df F p df F p df F p df F p

B1 B2 B3 B4

Session 4 17.28 < .001 4 18.31 < .001 4 47.95 < .001 4 11.18 < .001

Left 1 16.31 < .001 1 49.15 < .001 1 27.92 < .001 1 41.98 < .001

Right 1 66.56 < .001 1 15.48 < .001 1 44.07 < .001 1 52.9 < .001

Session x L 4 1.46 0.211 4 0.36 0.840 4 3.11 0.015 4 0.63 0.640

Session x R 4 4.55 0.001 4 0.31 0.868 4 0.63 0.644 4 2.11 0.078

Left x Right 1 0.05 0.830 1 0.17 0.683 1 0.46 0.499 1 1.33 0.250

Sess x L x R 4 1.92 0.105 4 0.26 0.903 4 0.19 0.945 4 1.37 0.243

Error 1838 1864 1909 1908

B5 B6 B7

Session 4 85.60 < .001 2 151.35 < .001 3 8.44 < .001

Left 1 15.92 < .001 1 237.52 < .001 1 42.2 < .001

Right 1 32 < .001 1 57.41 < .001 1 109.12 < .001

Session x L 4 2.57 0.040 2 21.23 < .001 3 0.34 0.793

Session x R 4 6.36 < .001 2 5.02 0.007 3 0.67 0.57

Left x Right 1 0.03 0.854 1 6.17 0.013 1 0.16 0.686

Sess x L x R 4 0.67 0.614 2 1.50 0.225 3 0.25 0.862

Error 1889 1132 1526

To analyze the target category RTs, we conducted a series
of 5 (sessions: 2-6) × 2 (left disc: L or H) × 2 (right disc:
L or H) ANOVAs on the Target Category RTs for each
individual participant (see Table 2).5

We first summarize the results which were common
across all or most participants:

1. There was a main effect of session, indicating that RTs
become faster over the course of the experiment.

2. There was a significant main effect of disc discrim-
inability for both discs indicating that the discriminabil-
ity manipulation was effective.

3. For some participants, session interacted with one or
both of the dimensions indicating for some sessions the
left disc was processed faster than the right and vice
versa.

4. The three-way interaction was not significant, indicat-
ing a stable relationship between target category items
across sessions. That is, participants were not changing
processing strategy from session to session.

5As two participants completed only five sessions a 4 × 2 × 2
ANOVA was used for these participants. In the case of participant
B6, the initial ANOVA indicated a significant three-way interaction
effect, suggesting that the processing architecture may have changed
across sessions. After excluding the first two sessions, the three-way
interaction was no longer significant, suggesting a stable strategy after
the first two sessions. Hence, we removed the second session as well,
and a 3 × 2 × 2 ANOVA was conducted for this participant.

5. With the exception of participant B6, the Left Disc ×
Right Disc interaction (see Fig. 7) was not significantly
different from zero. Although the MIC was positive,
a non-significant interaction is consistent with serial
processing. The test of the interaction in the present
case is a test of the point prediction of the serial model,
which predicts that the interaction term should equal
zero (cf. Sternberg, 1969). This presents a different goal
to the typical null hypothesis significance testing case,
where the goal of the significance cut-off is to place
some criteria on the false-positive rate. In the present
case, an alpha criterion of .05 is biased toward the serial
model (Fox & Houpt, 2016). Consequently, caution
must be taken when interpreting a non-significant result
in this context.

Figure 8 shows the SICs. When considering the model
predictions presented in Fig. 5, it can be seen that in all cases
the SICs have a large positive portion, ruling out parallel
processing for target category stimuli. Generally, the SICs
also appear to have a greater positive region than negative
region. This is most consistent with a coactive pattern of
results.

Using two one-sided KS-Tests from Houpt’s (2013) SFT
analysis package, we also sought to determine whether
the positive and negative portions of the SICs were
significantly different to zero. Two null-hypothesis tests
were performed: one which determines whether the largest
value of the SIC is significantly greater than zero (D+)
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Fig. 8 Observed target category SICs (red line) for individual participants in Experiment 1. Blue lines represent 95% bootstrapped confidence
intervals

and one which determines whether the lowest value of
the SIC is significantly lower than zero (D-; see Houpt
& Townsend, 2010). Like the MIC, the null hypothesis
for the Houpt–Townsend statistic is SIC(t) = 0 for all
times t , a conservative significance level biases the test

toward retaining the null hypothesis (i.e., a serial model).
We therefore adopted a less conservative cut-off of α = .33.
This value has been shown to work well in model recovery
tests using this statistic (Fox & Houpt, 2016). Both positive
and negative D-tests are displayed in Table 3.
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Table 3 Directional KS-tests for individual participants in
Experiment 1

Participant D+ p D− p

B1 0.073 0.270* 0.06 0.419

B2 0.079 0.216* 0.023 0.882

B3 0.070 0.300* 0.081 0.198*

B4 0.069 0.312* 0.063 0.378

B5 0.067 0.334 0.060 0.423

B6 0.117 0.140* 0.078 0.407

B7 0.076 0.319* 0.074 0.341

* indicates a significant difference with an alpha level of .33. D+ tests
whether the SIC is significantly greater than zero. D− tests whether
the SIC is significantly lower than zero

For most participants, the positive deflection in the SIC
is significantly greater than zero, whereas the negative
deflection was not. This provides support for the coactive
processing architecture. For B3, however, both positive
and negative values were significant, which is indicative
of either serial processing or coactive processing. For B5
neither value was significant.

Contrast category

The mean RTs for the contrast category are displayed
in Fig. 9. For the majority of participants the interior
stimulus was faster than the exterior stimulus, on at least
one of the dimensions, which is suggestive of coactivity.
No other model predicts a faster interior item compared to
an exterior item on any dimension. Consequently, coactive
processing provides a potential explanation for the contrast
category items for most of the participants. Nonetheless,
participant B1, despite having a faster interior compared
to exterior item on one dimension, shows the reverse
pattern on the other, which could be indicative of serial
processing. For B4, the RTs seem more consistent with
a fixed-order serial model, with the interior item being
slower on one dimension, and the exterior and interior being
approximately equal on the other. Further, for B5 both
interior items were slower than exterior items, suggesting
mixed-order serial self-terminating processing.

For contrast category items, we conducted a series of
planned t tests comparing interior and exterior items on both
dimensions and comparing the redundant stimulus to the
other contrast category items (see Table 4). Except for two
instances, the redundant stimulus was processed signifi-
cantly faster than the other stimuli, providing evidence against
an exhaustive stopping rule for the contrast category.6

6The left interior stimulus vs. redundant stimulus comparison for B2
and the left exterior stimulus vs. redundant stimulus comparison for
B5 were not significant.

Although a smaller mean RT was recorded for the interior
items compared to the exterior items for the majority of
participants, as expected under coactive processing, this
pattern was only significant for B2 and B7 for the right
dimension and B3 for the left dimension. Nonetheless, this
pattern of faster interior than exterior items is not predicted
by any other model. However, parallel processing cannot be
ruled out since that model predicts no significant difference
between the interior and exterior items. For B4 and B5, the
exterior items were faster than the interior items, suggesting
serial processing. However, again, this pattern was only
significant for B5 on the right dimension.

Discussion

Taken together, the target category results for the majority
of participants tend towards coactivity. While the MICs
are positive for all participants except B5, the non-
significant interaction between left and right dimensions in
the target category is consistent with serial processing for
all participants. When coupled with the SICs, however, a
clearer pattern of coactivity emerges. First, the SICs all have
a greater positive portion than negative portion which rules
out parallel processing. Further, the positive portion of the
SIC appears greater than the negative portion, suggesting
coactive, rather than serial processing. This interpretation is
supported by the directional KS-tests for most participants
(excluding B3 and B5). Nonetheless, the target category
data do not clearly rule-out serial processing.

Generally, the contrast category results also somewhat point
to coactivity with the interior item being faster than the
exterior item at least on one dimension for four of the seven
participants. For three participants (B1, B4 and B5), an
interior item was slower than an exterior item, which could
indicate serial processing (although B1 also shows the oppo-
site pattern on the other dimension, which is more indica-
tive of coactive processing). We defer further discussion of
these results until after the presentation of Experiment 2.

Experiment 2

Results

In Experiment 2, we removed the column of discs with
randomly varying luminance that separated the left and right
targets. Again, for all participants, the first session was
considered practice and was excluded from further analysis.
Additionally, RTs less than 200 ms or greater than 3000 ms
were excluded. Less than 1% of trials in total were removed
using this method. Mean correct RTs, mean error RTs, and
error rates are presented in Table 5. Error rates tended to be
low across all participants except for the LL and EY stimuli
in some cases.
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Fig. 9 Observed contrast category mean RTs and MICs for individual participants in Experiment 1. Error bars represent one standard error. R =
redundant stimulus, I = interior stimulus, E = exterior stimulus

A series of KS-tests (Houpt et al., 2013) were used
to check that each participant’s survivor functions were
ordered to allow interpretation of the SFT analyses

(Townsend & Nozawa, 1995, see Table 6). The survivor
functions are shown in Appendix B, Fig. 15. Although
the assumption held for most participants, there are some
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Table 4 Contrast category statistical results for individual participants in Experiment 1

Stimulus pair Mdiff t df p Mdiff t df p Mdiff t df p Mdiff t df p

B1 B2 B3 B4

ELeft - ILeft 21.64 0.61 451 0.542 35.44 1.80 479 0.073 30.15 2.31 482 0.021 4.00 0.20 481 0.845

ERight - IRight − 35.10 − 0.84 391 0.404 51.48 2.04 464 0.042 9.60 0.67 481 0.500 − 23.21 − 1.24 469 0.215

ELeft - R 127.33 3.74 461 < .001 63.82 3.31 481 0.001 89.03 7.28 485 < .001 74.64 4.14 485 < .001

ILeft - R 105.69 3.29 468 0.001 28.38 1.61 478 0.108 58.88 5.40 483 < .001 70.64 4.58 488 < .001

ERight - R 208.02 6.07 423 < .001 180.41 8.04 469 < .001 99.36 8.75 483 < .001 109.33 7.79 481 < .001

IRight - R 243.12 6.47 446 < .001 128.94 6.30 475 < .001 89.76 6.85 484 < .001 132.54 7.71 480 < .001

B5 B6 B7

ELeft - ILeft − 73.33 − 1.78 478 0.075 5.89 0.19 266 0.851 8.07 0.75 384 0.455

ERight - IRight − 112.96 − 2.27 467 0.024 37.23 0.87 254 0.383 48.35 3.30 369 0.001

ELeft - R 46.43 1.22 472 0.222 163.88 6.86 275 < .001 66.38 6.95 389 < .001

ILeft - R 119.75 2.98 478 0.003 157.99 7.62 285 < .001 58.31 5.91 387 < .001

ERight - R 239.40 5.57 466 < .001 249.33 8.37 271 < .001 99.92 7.70 374 < .001

IRight - R 352.36 7.94 473 < .001 212.10 7.53 277 < .001 51.57 4.86 387 < .001

Table 5 Observed mean correct and error RT (ms) and error rate for individual stimuli for each participant in Experiment 2

Items

Participant Variable HH HL LH LL EX IX EY IY R CHH CHL CLLH CLLL

NB1 RT correct 740.49 861.43 784.64 935.58 935.67 907.25 937.47 874.33 806.23 632.97 628.12 633.25 631.79

RT error 728.76 622.56 938.09 1153.5 1035.8 684.4 935.9 1085 * 500 449.96 964.24 *

p(error) 0.008 0.006 0.021 0.012 0.037 0.004 0.041 0.033 * 0.004 0.004 0.004 *

NB2 RT correct 594.99 635.64 640.03 719.75 717.56 726.74 900.22 709.05 558.42 464.34 451.73 477.62 480.25

RT error 439.95 903.1 769.94 875.98 1001 1083.3 1188 1034 * 475.66 * 1666.7 1401.1

p(error) 0.022 0.030 0.04 0.126 0.028 0.024 0.284 0.081 * 0.004 * 0.004 0.004

NB3 RT correct 687.46 698.89 706.04 790.53 797.15 759.14 824.41 780.84 676.54 671.82 684.33 694.02 700.09

RT error 880.57 * 1363.20 1233.90 980.04 578.05 1224.60 852.62 * * * * 1156.50

p(error) 0.004 * 0.002 0.012 0.012 0.004 0.064 0.004 * * * * 0.004

NB4 RT correct 697.95 724.16 726.24 809.64 844.63 850.66 735.48 805.03 687.01 694.07 684.39 720.82 701.15

RT error 585.16 * 1085.10 1036.10 918.16 819.77 1958.2 1153.00 * * 659.86 * *

p(error) 0.002 * 0.012 0.014 0.033 0.008 0.008 0.020 * * 0.004 * *

NB5 RT correct 784.01 853.99 873.08 928.82 886.01 806.02 917.59 768.38 628.53 626.35 641.94 653.49 678.92

RT error 1572.4 956.1 1276.3 1342.1 1634.8 1239.9 1407.7 1010.7 739.94 518.28 561.4 * 1825.1

p(error) 0.010 0.016 0.029 0.100 0.078 0.033 0.065 0.061 0.008 0.008 0.004 * 0.004

NB6 RT correct 647.66 752.24 701.59 812.44 494.56 476.38 657.41 720.21 505.82 526.86 536.71 558.59 542.4

RT error 596.39 848.22 772.93 664.62 * * 946.48 1251.50 * * 1640.70 * *

p(error) 0.010 0.027 0.025 0.056 * * 0.110 0.074 * * 0.004 * *

NB7 RT correct 698.78 751.91 850.35 827.91 950.92 954.24 943.63 914.95 732.31 689.45 678.72 656.07 655.54

RT error 1295.40 888.18 1323.50 1157.30 1541.80 1304.70 1031.10 1113.80 1025.10 389.66 331.35 947.02 1083.50

p(error) 0.008 0.014 0.0371 0.054 0.086 0.045 0.062 0.045 0.008 0.004 0.004 0.008 0.012

* indicates error-free performance; NB1 = No boundary participant 1; CHH = catch trial stimulus which is high salience black on the left and
high salience white on the right
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Table 6 p-values from KS-tests of stochastic dominance in Experiment 2

Participant Dominance test for selective influence

HH > HL HH > LH HL > LL LH > LL HH < HL HH < LH HL < LL LH < LL

NB1 < .001 0.017 < .001 < .001 1.000 0.998 0.967 1.000

NB2 0.003 < .001 < .001 < .001 0.992 0.968 0.998 0.998

NB3 0.264 0.115 < .001 <.001 0.739 0.751 0.982 0.951

NB4 < .001 0.004 < .001 < .001 0.905 0.930 0.998 1.000

NB5 < .001 < .001 < .001 < .001 0.935 0.999 1.000 9.320

NB6 < .001 < .001 < .001 < .001 1.000 0.812 0.966 0.967

NB7 0.060 < .001 < .001 0.393 0.260 0.968 0.980 0.233

Violations of stochastic dominance are indicated in bold

Fig. 10 Observed target category mean RTs and MICs for individual participants in Experiment 2. The two left-hand points represent low
discriminability on the left disc and the two right-hand points represent high discriminability on the left disc. The solid line represents low
discriminability on the right disc, and the dotted line represents high discriminability on the right disc. Error bars represent standard error
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notable violations. Namely, for NB3, the HH stimulus is not
significantly higher than the HL and LH stimuli, and for
NB7, the LH stimulus is not significantly greater than the
LL stimulus. Consequently, we omitted these participants
from further analysis.

Target category

Figure 10 shows the mean RTs and corresponding MICs.
Except for NB5, all the MICs are positive which is
indicative of coactive processing.

To analyze the target category RTs, we again conducted
a series of 6 (sessions: 2-6) × 2 (left disc: L or H) × 2 (right
disc: L or H) ANOVAs on the Target Category RTs for each
individual participant (see Table 7).

For all participants, the results indicated that:

1. There was a main effect of session, indicating RTs
became faster across sessions.

2. There was a significant main effect of disc discrim-
inability for both discs across all participants.

3. For some participants, session interacted with one or both
of the dimensions indicating for some sessions the left
disc was processed faster than the right and vice versa.

4. The three-way interaction was not significant, indicat-
ing a stable relationship between target category items
across sessions.

5. The Left × Right interaction was significant for
participants NB2, NB4 indicating that the MIC was
significantly positive, which supports the inference of
coactivity. For all other participants, the non-significant

interaction is consistent with serial processing, although
again caution must be exercised when interpreting this
result (Fox & Houpt, 2016).

Figure 11 shows the SICs. When referenced to the model
predictions shown in Fig. 5, the majority of the SICs in
Experiment 2 have a large positive area, ruling out parallel
processing for the target category stimuli. Further, for these
participants, the SICs appear to have a greater positive
region than negative region. This is most consistent with a
coactive pattern of results.

Using two one-sided KS-tests from Houpt et al. (2013)’s
SFT analysis package, we also sought to determine whether
the positive and negative portions of the SICs were
significantly different to zero. We again adopted a less
conservative cut-off of α = .33 to avoid bias toward
the serial model; most participants showed significant
differences at this level. Both positive and negative D-tests
for Experiment 2 are displayed in Table 8.

For most participants, the positive deflection was signifi-
cantly higher than zero, but the negative deflection was not.
This provides further support for coactive processing. For
NB5, however, both deflections were significant, suggesting
serial processing or coactive processing. For NB6 neither
the positive nor negative deflection was significant.

Contrast category

The mean RTs for the contrast category are displayed
in Fig. 12. For most participants, the interior stimulus is
faster than the exterior stimulus on at least one dimension,

Table 7 Target category statistical results for individual participants in Experiment 2

Variable df F p df F p df F p

NB1 NB2 NB4

Session 4 33.61 < .001 4 15.69 < .001 4 25.65 < .001

Left 1 23.26 < .001 1 56.26 < .001 1 28.97 < .001

Right 1 124.46 < .001 1 48.34 < .001 1 27.01 <.001

Session x L 4 0.08 0.989 4 1.89 0.109 4 0.96 0.430

Session x R 4 3.42 0.009 4 0.74 0.567 4 2.74 0.027

Left x Right 1 1.39 0.238 1 5.24 0.022 1 7.59 0.006

Sess x L x R 4 0.30 0.879 4 1.93 0.104 4 0.23 0.923

Error 1908 1845 1925

NB5 NB6

Session 4 22.79 < .001 4 27.53 < .001

Left 1 23.30 < .001 1 22.41 < .001

Right 1 14.19 < .001 1 81.52 < .001

Session x L 4 2.16 0.071 4 0.31 0.872

Session x R 4 2.96 0.019 4 4.71 0.001

Left x Right 1 0.06 0.806 1 0.06 0.810

Sess x L x R 4 0.84 0.500 4 0.15 0.963

Error 1857 1875
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Fig. 11 Observed target category SICs (red line) for individual participants in Experiment 2. Blue lines represent 95% bootstrapped confidence
intervals

which supports an inference of coactivity. For NB4 and
NB6, the contrast category RTs seem more consistent with
a fixed-order serial model, with the interior item being
slower on one dimension, and the exterior and interior being
approximately equal on the other.

For contrast category items, we conducted a series of
planned t-tests comparing interior and exterior items on
both dimensions, and comparing the redundant stimulus
to the other contrast category items (see Table 9). With
the exception of one comparison,7 the redundant stimulus

7The left exterior item was not significantly slower than the redundant
stimulus for NB6.

Table 8 Directional KS-tests for individual participants in
Experiment 2

Participant D+ p D− p

NB1 0.101 0.083* 0.026 0.849

NB2 0.109 0.053* 0.040 0.677

NB4 0.131 0.015* 0.026 0.847

NB5 0.068 0.323* 0.138 0.009*

NB6 0.045 0.604 0.039 0.687

* indicates a significant difference with an alpha level of .33. D+ tests
whether the SIC is significantly greater than zero. D− tests whether
the SIC is significantly lower than zero
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Fig. 12 Observed contrast category mean RTs and MICs for individual participants in Experiment 2. Error bars represent standard error. R =
redundant stimulus, I = interior stimulus, E = exterior stimulus

was processed significantly faster than the other stimuli
providing evidence against an exhaustive model for the
contrast category.

The interior item was significantly faster than the exterior
item on the left dimension for NB5, and on the right
dimension for NB1, NB2, and NB5 which is suggestive of
coactive processing. For NB4 and NB6, the exterior item
was significantly faster than the interior item for the right
dimension which is indicative of serial processing for these
participants.

Discussion

As was the case with Experiment 1, the target and contrast
category results for Experiment 2 support a tentative

inference of coactivity for most participants. However, there
were differences across participants that make it difficult to
clearly infer the architecture based on the non-parametric
results. Although the SICs, for the most part tended to
be positive and looked like the coactive prediction, the
MICs were typically not significant. However, as indicated
above, the typical NHST cutoff of .05 is biased toward
the serial model, and this result should be interpreted
cautiously. For the contrast category, there was substantial
variability in the pattern of mean RTs, although we note
that the predictions shown in Fig. 4 are only illustrative
based on simulations from one set of model parameters.
In general, however, a coactive model is the only model
under consideration that can predict faster interior than
exterior processing (Little et al., 2015; Little & Smith,
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Table 9 Contrast category statistical results for individual participants in Experiment 2

Stimulus pair Mdiff t df p Mdiff t df p Mdiff t df p

NB1 NB2 NB4

ELeft - ILeft 28.41 0.95 474 0.341 − 9.19 − 0.48 477 0.630 − 6.03 − 0.25 480 0.803

ERight - IRight 63.14 1.97 468 0.049 191.17 6.85 405 < .001 − 69.55 − 2.78 480 0.006

ELeft - R 129.44 4.86 479 < .001 159.14 11.34 484 < .001 157.62 7.72 479 < .001

ILeft - R 101.02 3.82 485 < .001 168.32 10.52 485 < .001 163.65 7.20 485 < .001

ERight - R 131.24 4.75 479 < .001 341.80 15.06 424 < .001 48.47 2.37 482 0.018

IRight - R 68.10 2.45 479 0.015 150.63 9.22 473 < .001 118.03 5.00 482 < .001

NB5 NB6

ELeft - ILeft 79.99 2.25 460 0.025 18.18 1.83 485 0.068

ERight - IRight 149.22 4.46 457 < .001 − 62.80 − 2.72 442 0.007

ELeft - R 257.48 8.99 462 < .001 − 11.26 − 0.96 486 0.339

ILeft - R 177.49 6.44 474 < .001 − 29.44 − 2.60 485 0.010

ERight - R 289.06 10.04 466 < .001 151.58 9.06 460 < .001

IRight - R 139.85 5.67 467 < .001 214.39 10.90 468 < .001

2018).8 Nevertheless, the nonparametric analyses only take
into account a subset of the data. They do not, for instance,
account for error rates or error RT distributions, nor do
they consider data from both the target category and the
contrast category simultaneously. The SFT analyses further
require meeting an assumption of stochastic dominance of
the target category RTs. For these reasons, we also fit a
set of computational models that parametrically instantiate
our assumptions for the serial self-terminating, parallel
self-terminating, and coactive models.

Computational modeling

We fit the models using differential evolution Markov
chain Monte Carlo (Turner, Sederberg, Brown, & Steyvers,
2013). We then compared the models using the Deviance
Information Criterion (DIC) which provides an estimate of
model fit with a penalty for model complexity (Gelman
et al., 2014). The DIC can be thought of as a Bayesian
version of a maximum likelihood-based fit statistic like
the Akaike Information Criteria (AIC; Akaike, 1974).
A detailed discussion on the implementation of the
computational models and calculation of the DIC is reported
in Appendix C. As the contrast category RTs conclusively
rule out exhaustive processing, we focused on fitting the
self-terminating version of both serial and parallel models
as well as the coactive model. We included the parallel
model since, although this model is not supported by the

8This prediction relies on the assumption that the processing of each
dimension is equivalent across levels of the other dimension. If this
assumption is violated then other models may also make this prediction
(Cheng et al., 2018).

SIC analyses, it cannot be ruled out on the basis of the
contrast category results. Because the models do not rely
on the assumption of stochastic dominance, we also fit the
model to observers NB3 and NB5, who were omitted in
our previous analyses. The computational modeling thus
provides the strongest test of architecture since it utilizes all
of the data including both correct and error RTs across all
items simultaneously.

To summarize the models, the serial and parallel
models are based on the assumption that observers make
independent decisions about stimulus values along each
dimension and then combine these using logical operations
such as OR and AND; hence, we term these models
the logical rule models. Decisions about the values of
each of the discs are modeled as independent evidence
accumulation processes. In the past, we have used random
walk processes to model the RTs (Fifić et al., 2010; Luce,
1986; Ratcliff, 1978). Here we utilize the linear ballistic
accumulator (LBA; Brown & Heathcote, 2008). To generate
the drift rate for each of the LBA channels, we used GRT
(Ashby & Townsend, 1986), which is a multivariate
generalization of signal detection theory, and decision-
bound theory (Ashby & Gott, 1988). Each stimulus is
represented by a bivariate normal distribution representing
the variability in the perception of the stimulus from
moment to moment. The assumption is that, from moment
to moment, samples are drawn from this distribution and
used to drive the sequential sampling process. When a
sample falls in the target category region, the evidence
increases in the accumulator for the target category, and
likewise for the contrast category. The LBA approximates
this process and provides an efficient method for predicting
the decision time for each disc. We generate drift rates
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for the LBA by integrating the perceptual distributions
with respect to the decision boundary within each category
region. The decision times for each accumulator are then
either, for example, summed for the serial model or used to
find the maximum time prediction for the parallel model.
For the coactive model, rather than modeling the perceptual
distributions independently, the variability of the perception
of both discs is modeled as a bivariate normal distribution.

In the coactive model, as for the serial and parallel models,
we assume that the means for the left and the right discs
are aligned to a grid (as shown, e.g., in Fig. 1). That is, we
assume that the technical property of perceptual separability
holds (Ashby & Townsend, 1986). To minimize reliance
on this assumption, we also fit a highly flexible model in
which we freely estimated a drift rate for each stimulus. This
model can, for instance, capture coactive patterns which
are accompanied by violations of perceptual separability.
However, the free drift model should incur a high penalty for
complexity. The free drift model is therefore an important
comparison model because it includes many existing single-
channel categorization models as special cases including the
Exemplar-Based Random Walk model (Nosofsky & Palmeri,
1997) and stochastic GRT (Ashby, 2000). The DICs for each
individual participant and model are shown in Table 10. The
preferred model is the model with the lowest DIC.

In both experiments, the coactive model or the more flex-
ible free drift model provided the best fit for most partici-
pants. This supports the general conclusion that processing

Table 10 DIC values for each individual participant and candidate
model across both Experiments 1 and 2. Lower values indicate better
fit

Model

Subject Serial ST Parallel ST Coactive Free drift

B1 4071.5 4151.5 3894.7 3922.7

B2 − 971.27 − 1076.6 − 1113.7 − 1054.8

B3 − 4245 − 4289.4 − 4362.9 − 4307.5

B4 − 1340.7 − 1517.5 − 1483.9 − 1438.4

B5 3948.6 4035.1 3796.2 3826.8

B6 −258.99 − 335.52 − 388.92 − 396.36

B7 −2772.1 − 2832.3 − 2810.3 − 2845.5

NB1 1146.6 1169.8 1111.7 1162.4

NB2 98.664 − 46.4 − 142.7 − 197.78

NB3 −161.47 − 313.41 − 339.39 −319.86

NB4 −391.83 − 436.68 − 468.81 −453.93

NB5 2558 2417.3 2468.9 2489.9

NB6 −342.17 − 316.69 − 323.22 −315.85

NB7 2513.7 2386.4 2424.9 2492.9

Best fitting models indicated in bold

of both discs tended to be pooled into a single coactive channel.
The model-based analysis of each individual also provides
some characterization of the differences in processing
between each individual. Observers B4, NB5, and NB7
were best fit by the parallel self-terminating model while
participant NB6 was best fit by the serial self-terminating
model. Along with model comparison estimates, it is essen-
tial to provide an estimate of how well a model fits the
data to ensure that the model is capturing the data well
(Heathcote, Brown, & Wagenmakers, 2015). In the interest
of space, we present the posterior predictions of the coac-
tive model and for the best fitting models (when this was
not the coactive model) for each item along with posterior
parameter estimates of the parameters in our supplementary
material. In Fig. 13, we show the model predictions for
one participant (observer B2) to show that the model does
provide a good fit to the data. The Supplementary Material
shows that the fits to the other participants are comparable.

General discussion

In this paper, we have shown that decisions about
spatially separated luminance discs appear to be processed
coactively for most individuals (10 of 14). This pattern
of coactivity was consistent with non-parametric analyses
of MIC and SIC results for the target category in both
Experiments 1 and 2 (see Figs. 7 and 8, and Figs. 10 and 11,
respectively). This interpretation is supported statistically
via the directional KS-Test results for both Experiments 1
and 2 (Houpt & Townsend, 2012). Further, the mean RT
results for the contrast category also tended towards a
pattern of coactivity (with some individual variation) in both
Experiments 1 and 2 (see Figs. 9 and 12, respectively).
Finally, although there is individual variation in the data,
the computational modeling provides strong evidence that
the majority of participants favored a strategy in which
information was pooled into a single channel.

Implications for RT theories of categorization

This finding has implications for current RT theories of
categorization and, in particular, the growing body of work
utilizing the logical rule-based models. First, we add to the
literature examining categorization decisions using visual
stimuli by demonstrating that within-dimension luminance
features are pooled together into a single decision channel.
This finding is novel because it is not commensurate with
the idea that spatially separated dimensions need to be
resolved serially due to limits on the spatial aspects of visual
attention as one might conclude from the results of Little
et al. (2011). However, a limitation of the current study is
the inability to characterize the specific effects of spatial
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Fig. 13 Posterior predictions from the coactive model for Observer B2 from Experiment 1. The data are shown as bars. The solid blue line is the
posterior mean prediction, and the red lines are draws from the posterior predictive distribution

attention and in particular, distinguish between space-based
and object-based attention. Further investigation into spatial
configuration is therefore an interesting avenue for future
research. It should also be noted, that since the stimuli were
displayed until a response, at least one participant may have
adopted a serial strategy. With brief presentations, we would
expect a stronger tendency toward coactivity since this
would limit the ability to make several eye saccades which
could induce serial processing. We therefore also highlight
that pooling of information, while commonly used, may
not be mandatory at the time scale of presentation that we
used. Given the possible effect of time-scale on processing
architecture, investigating decisions which are time limited
as well as those which are time unlimited is therefore a
worthwhile pursuit for future research

The key point of difference from earlier perceptual
categorization work is that features that belong to the
same feature type can be pooled across space whereas
features of different dimension types need to be attended to
independently. In terms of our banana example, this means
that you can select the ripest banana by considering the
bunch as a whole, but in order to compare both ripeness and
price, you would need to attend separately to the price tag
and the bunch. Along with recent results by Moneer et al.
(2016) and Cheng et al. (2018), we highlight the important
role that visual attention plays in perceptual categorization.

Implications for theories of visual attention

Visual search

In visual search, the difference between within-dimension
and between-dimension features is central to the efficiency
of the search. For instance, visual search for items com-
prising the conjunction of two between-dimension features
(e.g., searching for a red vertical line among distractors
which are red horizontal lines and green vertical lines) can
still be guided via parallel feature guidance modules. How-
ever, guidance in search for feature conjunctions which
comprise two within-dimension features (e.g., search for a
red-green target among red-blue and blue-green distractors)
is not as efficient. While a guidance module may be able
to preferentially direct search to all red items, thus reducing
the number of items to be searched, this is still not as effi-
cient as search involving conjunctions of different feature
types. In a series of experiments, Wolfe et al. (1990) showed
that searches for conjunctions which were within-dimension
(e.g., color × color and orientation × orientation) in a
field of within-dimension distractors, were significantly less
efficient than between-dimension searches (e.g., color ×
orientation) in a field of between-dimension distractors.

It is tempting to link the efficiency (i.e., speed and
accuracy) with which the target is found, to the underlying

Atten Percept Psychophys (2020) 82:193–227 217



architecture of processing. Indeed there are strong indica-
tions that an invariance of RT across set sizes is indicative
of parallel processing (Wolfe, 2016; Townsend, 2016). On
the other hand, it is well known that the increase in mean
RT with increasing set size cannot be taken as an indica-
tor of serial processing. The issue is that a limited capacity
parallel model can yield identical inefficient set size func-
tions to the serial model (see Townsend, 1971). Changes
in processing due to a change in set size therefore give an
indication of capacity (i.e., the efficiency at which a system
can process information given varying workloads) which
should be considered independently to that of questions of
architecture (this concept is covered in further detail in the
following section). Our present work uses a factorial combi-
nation of item difficulty in order to address the question of
architecture directly thereby circumventing methodological
issues with other methods (Little, Eidels, Houpt, & Yang,
2017). Although our focus is on perceptual categorization,
our results can provide additional insight into other per-
ceptual tasks like simple visual search, where the primary
question is whether a target is present or not, instead of is
this target a type A or a type B.

A limitation of the current methods, however, is that we
are unable to locate the specific stage (i.e., pre-attentively
or attentively) in which the pooling of information occurs.
Guided Search (Wolfe 1994a, 2007) proposes that feature
maps are created and combined into a master salience map
at a pre-attentive parallel processing stage and that this
map subsequently guides attention. Commensurate with this
theory, it seems likely that, given they belong to the same
feature-map, within-dimension features could be pooled
pre-attentively forming a single signal which drives the
decision-making process. However, it could also be that
pooling occurs at an attentive stage. Indeed, given that
highly similar perceptual operations can yield a variety
of experimental results, it may be expected that different
tasks such as visual search, identification, categorization,
detection might also diverge. Investigating the locus of
pooling of information, and more broadly investigating
different task types utilizing the same experimental stimuli
and ideally, the same participant pool, would be a
worthwhile pursuit for developing a unified view of visual
perception and cognition. This could be tested within the
methodology of SFT but would require manipulations of
salience thought to operate solely at the pre-attentive stage.

While in simple visual search the focus is on target
presence or absence, for complex visual search tasks, target
type may actually be of vital importance. For example, a
radiologist may need to conduct a visual search of an x-ray
to search for a potential cancerous tumor. This process may
involve not only a search for a potential target, but also a
categorization decision regarding the tumor. This decision
may form a part of the search (does this part of the image

constitute a malignant tumor or distracting information) or
be somewhat independent from the search process itself (is
this tumor, once found, malignant or benign?).

Fifić, Townsend, and Eidels (2008b) have successfully used
SFT to investigate the processing architecture of the search
process, and whether processing architecture changes under
varying experimental manipulations. They investigated
search for letters versus non-letters, while also accounting
for how feature complexity (number of features per item)
and target-distractor similarity may additionally affect
processing architecture. Overall, they found that target-
distractor similarity (as modulated by feature complexity)
rather than linguistic composition changed the processing
architecture of the search. They proposed this was likely
achieved through positively interacting parallel channels.

The use of SFT in this instance is interesting as
it builds on the foundation of work by Duncan and
Humphreys (1989) who provide an alternative view to
theories incorporating feature maps (Treisman & Gelade,
1980; Wolfe, 1994a, 2007). Their theory focuses on
stimulus similarity as a determinant of efficiency in visual
search paradigms. Here, search efficiency increases with
increased similarity between non-targets, and decreases
with increased similarity between targets and non-targets.
Duncan and Humphreys (1989) propose that all items in the
display are processed in a parallel first stage which provides
a structured representation of the input. In this parallel stage,
items are thought to be organized in a part-whole structure
whereby items which share properties (such as same color,
same shape, same motion, or even simply proximity) are
linked together via gestalt grouping. This is followed by a
selection process whereby the input from the parallel stage
is matched against a template of the information needed to
complete the search. Finally, information enters into visual
short-term memory (VSTM) and thus reaches conscious
awareness and allows for a response to be initiated.

As access to VSTM is limited, items must compete for
entry. Increasing attentional weight to one structural unit,
or gestalt group, must therefore naturally lead to a decrease
in attentional weight to another. It is further assumed
that items gain and lose attentional weighting together via
a process called weight linkage. This means that items
which are strongly grouped will tend to be either selected
together or efficiently rejected together if they are non-
targets which do not match the target template. Thus, search
efficiency is determined by two factors: the degree to which
targets and non-targets match the target template and the
degree of similarity between items allowing for spreading
suppression or activation of groups. For example, increasing
non-target and target similarity will reduce search efficiency
as the weight of each non-target depends on its match
to the target template. Decreasing the similarity between
non-targets will further reduce search efficiency as the
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opportunity for spreading suppression is decreased. Indeed,
this effect of target-distractor similarity was shown to
modulate processing architecture in Fifić et al. (2008b).
When also considering the current work in the context of
Duncan and Humphreys (1989), the notion that items of
the same color would be grouped together as a whole is
consistent with our finding of coactivity, however, as their
theory does not include a temporal component, or specify
an underlying architecture, it could also be seen to be
consistent with other accounts.

The question of decision-making, independent from the
search process itself, has been investigated by Wolfe et al.
(1990) who had participants complete a “search” with a set
size of one (i.e., a simple identification task). In contrast
to a standard visual search where they found a process-
ing advantage for between-dimension features, they found
that there was no difference in RT for identifying whether
a color × color conjunction was a target versus a color
× orientation conjunction was a target. This suggests that
there is no cost to identifying whether or not a conjunction
is a target for within-dimension conjunctions versus con-
junctions which comprise different features. However, this
result alone does not address whether the individual col-
ors in a color × color target are processed independently
or not. Our results show that for many individuals, these
color × color targets are treated as a single source of
information. The current methods could therefore be use-
fully extended to fully characterizing decision-making in
complex visual search task which necessitate target catego-
rization, for example when asking “is this item a gun or a
hair-dyer?” in baggage screening (Wolfe, Horowitz, & Ken-
ner, 2005), or “is this tumor malignant or benign?” in cancer
screening (Drew, Evans, Võ, Jacobson, & Wolfe, 2013).

The current findings, and SFT more generally, can
therefore be used to inform the underlying architecture of
decision-making in complex visual search. This applies to a
variety of settings including security baggage-screening and
visual search of medical images, as well as other complex
searches such as foraging studies (Wolfe, 2013), and visual
search of natural scenes (Wolfe, 1994b), familiar scenes
(Hout & Goldinger, 2010), and in everyday life (where
are my wallet and car-keys?; Wolfe, Alvarez, Rosenholtz,
Kuzmova, & Sherman, 2011).9

Encoding, selection, and VSTM

Within-dimension feature stimuli have also been investi-
gated in studies of visual selection, visual encoding, and
VSTM (see e.g., Huang, Treisman, & Pashler, 2007; Mance,
Becker, & Liu, 2012; Sewell, Lilburn, & Smith, 2014).
However, most models of visual attention do not explicitly
speak to how decisions are actually made, and thus the

9We thank A/Prof Michael Hout for raising these points

current findings provide an interesting insight for these
models. For example, this finding is consistent with Smith
and Sewell (2013)’s conceptualization of visual informa-
tion, perhaps represented in VSTM, feeding into a single
diffusion process. In Smith and Sewell (2013)’s multi-stage
model of visual attention, different stages of processing
may be subject to different capacity limitations and, conse-
quently, governed by different architectures. In their model,
although the information retained by VSTM is determined
by the selection and encoding stages which occur in paral-
lel, with competitive interaction, the decision-making stage
accumulates noisy samples from a single VSTM trace
until a criterion is reached. Our coactive model embodies
a similar set of assumptions. Smith and Sewell (2013)’s
implementation of selection as a competitive parallel pro-
cess is also consistent with theories of visual search (Wolfe,
1994a, 2007) which propose that attentional selection of
color × color conjunction targets cannot occur efficiently
as they belong to the same feature map and attention, there-
fore, cannot be effectively guided to the target location. In
Smith and Sewell (2013)’s model, when performing tasks
such as visual search, items which contain task-relevant
attributes or features excite the “where” pathway of atten-
tional selection and in turn, mutually inhibit each other via
competitive interaction. These relevant attributes or features
further self-excite, modulated by attention. In a color ×
color conjunction search task, distractor items also contain
task relevant attributes and therefore compete with the tar-
get for selection, leading to inefficient search that can be
completed only with the application of attention.

Smith and Sewell (2013) state that little is currently
known about capacity limitations and the processing
architecture of decision-making. The logical rules approach
is useful in this regard as it provides a way to investigate
decision-making independently of sensory and memory
representations. In our task, the stimuli are presented supra-
threshold and are available to participants until a response
is made. Given this manipulation, sensory and memory
load are held constant while only the decisional difficulty
is varied factorially. Although our findings do not speak
explicitly to items held in VSTM, they are nonetheless
consistent with Smith and Sewell (2013)’s analysis of
briefly presented, multi-element displays.

While our design is useful in that it holds constant
memory load, it does this by not requiring the retention
of any information at all, removing the need to encode
information and hold it in VSTM. It is consequently difficult
to know whether decision-making which is driven by
information held in VSTM is equivalent to decision-making
using stimuli which remain present in the visual scene.
For example, in the current design, participants are able
to accumulate information from the available scene until a
decision is reached. In VSTM experiments, however, the
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information needed to make a decision must be accumulated
from a potentially imperfect memory representation which
could alter the decision strategy used.

We set as a goal for future research to investigate deci-
sions in a VSTM task, again, holding constant sensory and
memory load and factorially varying the difficulty of
decision-making. Some progress has been made towards
this using a SFT change detection paradigm (Yang,
2011; Yang, Hsu, Huang, & Yeh, 2011; Yang, Chang,
& Wu, 2013). However, these investigations have only
investigated single item displays and have systematically
varied sensory information such as relative saliency
of changes between dimensions and the probability of
changes. In order to accurately isolate the decision-
making stage for multi-element displays, environmental
cues and stimulus properties that guide attention such
as relative saliency of the changes and probability of
changes should be held constant. Further, changes in two
or more items should be investigated. This is the current
focus of our research group.

Relationship to the racemodel inequality

Several studies (Mordkoff & Danek, 2011; Mordkoff
& Yantis, 1993; Poom, 2009) have used an alternative
measure, violations of the Race Model Inequality (Miller,
1982), to infer coactive processing of certain visual features
and their location in space. Given our inference of coactivity
using SFT in the present work, some further discussion
of the connection to the RMI is warranted. The RMI is
typically measured using a redundant target task (see Egeth
& Mordkoff, 1991; Snodgrass & Townsend, 1980). In this
task, two locations (e.g., left and right) are monitored for
the onset of stimuli or targets. These targets can appear
in one of the two locations, as well as both locations, or
neither location. In one condition (an OR task), participants
are instructed to respond in the affirmative whenever any
target is present in either or both locations. RTs are
compared between the double target displays (i.e., displays
containing a redundant target) and single target displays.
An RT advantage for detecting the redundant target could
arise solely due to statistical facilitation in an independent
parallel race model (i.e., the minimum time expected for
the detection of two possible targets is smaller than the
detection of any single target alone; Raab, 1962). On the
other hand, faster redundant target detection times could
also be due to what Miller (1982) refers to as “coactivity”,
where both items contribute to a target present response.
To distinguish these two accounts (Miller, 1982) formulated
the RMI, which provides an upper limit on the speeding
of responses which can be accounted for by statistical
facilitation. According to Miller (1982) violation of the RMI
therefore provides evidence for coactivity.

Mordkoff and Yantis (1993) used a modification of the
redundant targets detection task to investigate single objects
comprising two between-dimension features (i.e., color
and shape), as well as these between-dimension features
separated in space. This task is different to detection in that
it requires participants to provide a stimulus identification
in the presence of distracting information using a go/no-
go response. For example in the first experiment, stimuli
comprised of green and purple X’s and O’s and participants
were required to respond to the presence of the color
green, or the letter X (a green X therefore constituted the
double target, whereas a purple O required no response).
In Experiments 2 and 3, the features were separated in
space. For example, in Experiment 3 shape was represented
by a white letter presented at fixation, and color was
represented as a colored border surrounding this shape. This
was further compared in Experiments 4 and 5 to a within-
dimension version of the experiment in which two letters
or colors separated in space were presented either side of
fixation (drawn from a pool of six, two of which were
given target designations). Overall, they found a violation of
the RMI for all versions of the experiment using between-
dimension stimuli (regardless of location), but not for the
within-dimension stimuli separated in space. They therefore
concluded that decisions requiring the integration of
between-dimension occurred coactively, whereas decisions
requiring the integration of within-dimension interactions
can be explained by statistical facilitation.

However, Feintuch and Cohen (2002), suggested that
Mordkoff and Yantis’ (1993) findings could be accounted
for by perceptual grouping (Duncan, 1984). That is, the
between-dimension items which were thought to coacti-
vate were actually being perceived as part of the same
object, whereas items which did not coactivate (i.e., which
happened to be within-dimension) were perceived as two
separate objects. Feintuch and Cohen (2002) therefore sug-
gested that grouping, rather than feature type was respon-
sible for the coactivation of information in Mordkoff and
Yantis’ work. In Feintuch and Cohen’s experiments, between
and within-dimension items were presented as both sepa-
rated in space (e.g., in the between-dimension condition, a
color and shape were presented either side of fixation and in
the within-dimension condition two colors were presented
either side of fixation), and as parts of the same object
(achieved simply by drawing an ellipse around the two
items). They found that features which were considered as
part of a single object (and therefore were contained in a sin-
gle locus of attention) were processed coactively, regardless
of feature type, whereas features which did not comprise a
single object were not. This interpretation was later confirmed
by Mordkoff and Danek (2011) in a follow up study.

While a cursory consideration of the findings of Feintuch
and Cohen (2002) and Mordkoff and Danek (2011) seem
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counter to the current work, it is important to take a number
of factors into account. A violation of the RMI is not
isomorphic with the concept of coactivity used in SFT. In
SFT, coactivity refers to pooling of information and can
be conceptualized as an interactive model with a complete
facilitation between decision-making channels. In Miller
(1982), Mordkoff and Danek (2011), and Feintuch and
Cohen’s (2002) work, coactivity is defined as any process
violating the RMI (although pooling of information to form
a decision is often also therefore inferred). However, there
is now a large body of work showing that the RMI can be
violated by models which decidedly do not show complete
pooling: serial exhaustive models (Townsend & Nozawa,
1997), models violating the assumptions of the RMI (Cheng
et al., 2017; Otto & Mamassian, 2016; Yang, Altieri, &
Little, 2018), and for exhaustive models in the presence of
distractors (Little et al. 2015, 2017). Consequently, the link
between the RMI and architecture is not one-to-one and
these concepts should be treated independently.

In SFT, violation of the RMI is instead isomorphic
to the concept of super-capacity. In SFT, capacity refers
to the efficiency of information processing when work-
load varies (i.e., the amount of information that needs
to be processed increases or decreases; (Townsend &
Ashby, 1983; Wenger & Townsend, 2000)). Capacity is
also measured using a redundant target detection task.
By using the expected minimum processing time of the
parallel independent race model as a baseline, perfor-
mance can be evaluated as either less efficient than
expected or more efficient than expected (Townsend &
Ashby, 1983; Townsend, Fific, & Neufeld, 2007; Wenger
& Townsend, 2000). A violation of the RMI there-
fore indicates that workload efficiency is more efficient than
expected under an independent parallel race model. Super
capacity and violations of the RMI have recently been shown
to be formally related: the RMI provides a bound on the
super capacity expected from an unlimited capacity paral-
lel system (Townsend & Eidels, 2011). The experiments of
Mordkoff and Danek (2011) and Feintuch and Cohen (2002)
can therefore be better interpreted in the context of the cur-
rent paper as measures of workload capacity. These papers
therefore provide evidence for super capacity processing for
between- and within-dimension features comprising a sin-
gle object, and unlimited-capacity processing for between-
and within-dimension features separated in space. How-
ever, coactivity in the single object condition is only one
explanation for the difference between these conditions.

Caution should also be exercised when interpreting these
results as both non-target and single target displays in these
experiments necessarily include irrelevant/distracting infor-
mation and therefore do not constitute a pure single-target
as per redundant target detection tasks. Cheng et al.
(2018) and Little et al. (2015, 2017) have shown that

utilizing capacity (and hence the RMI) in the presence
of distractors is not straightforward due to distracting
information potentially slowing responses for single target
items leading to an overestimation of capacity and which
can also lead to violations of the RMI. Nonetheless,
Feintuch and Cohen’s (2002) finding that within-dimension
stimuli do not violate the RMI warrants further investigation
and characterizing the capacity of within-dimension stimuli
independent from distracting information would be a worth-
while pursuit for future work.

Measuring the capacity of the current within-dimension
stimuli would also be a worthwhile target for future work.
The current work assumes channel independence, however,
there is a possibility that the luminance level of one disc may
affect the processing speed of the other disc. Eidels, Houpt,
Altieri, Pei, and Townsend (2011) describe a series of par-
allel models which allowed for facilitatory and inhibitory
interaction between the two channels and showed that a
combination of SIC and capacity coefficients could allow
for the identification of particular interactive systems. Mea-
suring capacity would therefore allow for an even more
comprehensive characterization of processing and would
assist further investigations into the possibility of interac-
tions between processing channels in the current work.

Conclusions

In summary, the current study adds to the body of literature
investigating perceptual categorization and provides insight
into the relationship between visual attention and decision-
making when stimuli are comprised of within-dimension
features. In particular, we have made the novel finding
that within-dimension stimuli in separate locations are
processed coactively by most participants, rather than in
serial as seen with between-dimension stimuli in separate
locations (Little et al., 2011; Fifić et al., 2010). Whether
or not this generalizes to non-integral stimuli would be
a worthy avenue for future research. The current work
further emphasizes areas where theories of visual attention,
categorization decision-making, and the logical rule models
converge, and highlights avenues for synthesis between
these theories. This same focus on featural information as a
determinant of information processing is also a cornerstone
of Anne Treisman’s work, demonstrating that the influence
of her legacy spans well beyond the scope of visual search,
and continues to inform other areas of cognitive science.
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Appendix A

Figure 14 shows the Survivor functions for Experiment 1.
Table 11 shows KS-tests for Experiment 1.

Fig. 14 Survivor functions for individual participants in Experiment 1
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Table 11 P-Values from KS-tests of stochastic dominance

Participant Dominance test for selective influence

HH > HL HH > LH HL > LL LH > LL HH < HL HH < LH HL < LL LH < LL

B1 < .001 <. 001 < .001 < .001 1.000 1.000 0.999 1.000

B2 0.003 < .001 < .001 < .001 0.992 1.000 0.982 0.992

B3 < .001 0.002 < .001 < .001 0.982 0.998 0.927 0.981

B4 < .001 < .001 < .001 < .001 1.000 1.000 0.982 0.993

B5 < .001 < .001 < .001 < .001 1.000 0.998 0.950 1.000

B6 < .001 < .001 < .001 0.002 0.997 0.997 1.000 0.997

B7 < .001 < .001 < .001 < .001 1.000 1.000 1.000 1.000

Appendix B

Figure 15 shows the Survivor functions for Experiment 2.

Fig. 15 Survivor functions for individual participants in Experiment 2
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Fig. 15 (continued)

Appendix C

For each stimulus, we assumed that each dimension
was represented by a normal distribution with mean
locations, μLef t and μRight , and standard deviations, σLef t

and σRight . For the coactive model, we assumed that
the representation was the joint distribution over both
dimensions; hence, a bivariate normal distribution with
covariance set to 0. For simplicity, we assumed that the
locations of each of the items were simply the logical values
of those items in the category space. That is, μLef t = 1, 2,
or 3 and μRight = 1, 2, or 3. Each participant is assumed
to implement a decision boundary along each dimension
in order to separate each category. This gives two further
parameters: DLef t and DRight . The integral of these
distributions within each category provides the mean drift
rate for the LBA for that stimulus.

In the LBA, there is a parameter for capturing the
variability in the starting point of accumulation which
varies as a uniform distribution between 0 and A from
trial to trial. There were response threshold parameters for
both the target, bT arget , and contrast category, bContrast

accumulators, which capture the distance between the
starting point, A, and the decision threshold. For the serial
and parallel model, there are separate target and contrast
accumulators for each dimension. We assume that the
response thresholds and starting points are the same for each

of these dimensional accumulators. Drift rate is assumed
to vary from trial to trial normally with standard deviation,
s. Both accumulators also incorporate non-decision time
(t0) in order to account for time taken to complete actions
not associated with the decision process (e.g., encoding
responses or the time taken to initiate a motor response).
The final RT is therefore comprised of the sum of the
non-decision time and the decision time predicted by the
LBA.

In summary, there are nine free parameters in the par-
allel self-terminating and coactive models. The serial self-
terminating model has one further parameter (px) repre-
senting the probability that one dimension is processed
before the other. For the free drift rate model, which esti-
mates the drift rate for each stimulus independently rather
than using the GRT framework, there are 14 parameters:
the five LBA parameters plus the nine drift rates.

DE-MCMC Details

In order to fit the logical rules models, we used a Bayesian
framework. We approximated the likelihood for each model
using probability density approximation (PDA) as described
in Turner and Sederberg (2014). The likelihood of each
trial was computed by simulating 50,000 data points from
the model and then using Holmes’ (2015) method. The
log likelihood for each trial was then summed over trials
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Table 12 Prior parameter distributions and transformations for each parameter

Parameter Transformation Distribution Prior parameter Values

DLef t D̂lef t = logit
[
Dlef t − x0

]
Normal μ = 0 σ = .5

DRight D̂right = logit
[
Dright − y0

]
Normal μ = 0 σ = .5

σLef t σ̂lef t = log(σlef t ) Normal μ = −1.5 σ = .2

σRight σ̂right = log(σright ) Normal μ = −1.5 σ = .2

A Â = log(A) Normal μ = −1.05 σ = .2

BT arget b̂T arget = log(bT arget − A) Normal μ = −1.05 σ = 1

BContrast b̂Contrast = log(bContrast − A) Normal μ = −1.05 σ = 1

s ŝ = log(s) Normal μ = −1.39 σ = .5

T0 t̂0 = log(t0) Normal μ = −1.51 σ = .2

px p̂x = logit (px) Normal μ = 0 σ = 2

and items. Each participant was fit separately. For each
parameter, we first transformed the parameter to lie on the
whole real line and then adopted reasonably informative
priors based on our prior work with these models. The
transformations and priors are shown in Table 12.

We used DEMCMC (Turner et al., 2013) to generate
proposals from the posterior distributions of each parameter
in an efficient manner. However, the variability in the
likelihood approximation can cause the chains to become
stuck if an accepted parameter set results in an usually
high likelihood. To prevent the chains getting stuck in this
manner, we re-sampled the likelihood of any existing chains
each time the current proposal was rejected (Holmes, 2015).
Following this method led to a good mixing of the chains
and strong convergence after the burn-in period.

We used a burn-in period of 2150 iterations with a
deterministic migration step (Turner et al., 2013) every
20 iterations between iterations 501–700. The remaining
sampling used a probabilistic migration step instead of a
cross-over step with a probability of 0.05. The number of
chains was determined by taking three times the amount of
parameters for each model. A minimum of 20,000 posterior
samples were taken per parameter, with 750 iterations
estimated for each chain.

For model comparison we used the Deviance Information
Criterion (DIC; Gelman et al., 2014). The deviance of a
posterior sample of parameters, denoted θ , is calculated as:

D(θ) = −2lnL(y | θ) (3)

The DIC is calculated as:

DIC = D(θ) + 2pD (4)

Here, D(θ) is the mean of the distribution of posterior
deviances and pD = 2 var[lnL(y|θ)]. The DIC punishes
for model complexity. This is achieved by penalizing the
average negative log likelihood by a term which accounts
for the functional form complexity of the model.
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