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Abstract
There are many strategies we can use to control attention when approaching a visual search task, but some are more effective than
others. How dowe choose the most optimal strategy?We have proposed that individuals must appraise the stimulus environment,
taking in relevant statistical information about task-relevant features. In the present experiments, we examined whether interfer-
ing with the appraisal process via a secondary task decreases participants’ use of the optimal strategy.We used a modified version
of the Adaptive Choice Visual Search paradigm whereby individuals can freely search for either of two targets on every trial.
Each search display was preceded by a colored environmental preview, offering participants time to appraise the display and
determine which target would be more optimal to search for. On some blocks, participants also completed a secondary task – a
central line-length judgment – either before or during this colored preview. We found that participants were significantly less
likely to search optimally when the line task occurred during the colored preview thanwhen it occurred beforehand or was absent.
Insofar as the secondary task disrupts an individual’s ability to engage in appraisal, these results support the need for such an
appraisal mechanism in the optimal choice of attentional control settings.

Keywords Attention and executive control . Cognitive and attentional control . Visual search

Introduction

When searching for your red SUV in a parking lot, the most
efficient strategy to employ will depend on the other cars
parked around you. For instance, if you parked amongst black
or white cars, you should bias your search by color; if you
parked amongst small cars, you should bias your search by
size. Thus, the most optimal search strategy to use often
changes each new time you search and will depend on the
particular features of your current environment. Individuals
are capable of allocating attention toward a particular feature
through goal-directed attentional control, and foreknowledge
of the feature improves efficiency by selectively biasing the
processing of that feature (e.g., Green & Anderson, 1956;
Folk, Remington, & Johnston, 1992). However, while the

optimal strategy yields reliably better performance (i.e., in
speed and/or accuracy), people frequently fail to use it
(Bacon & Egeth, 1994).

Why do people choose suboptimal search strategies? We
have previously posited that such choices may be due to a
failure or unwillingness to update cognitive control settings
as the environment changes, because doing so is effortful
(Irons & Leber, 2016, 2018a). Optimizing performance re-
quires sustained proactive control and maintenance of task
goals (Braver 2012; Braver, Gray, & Burgess, 2007), which
is cognitively demanding (Braver et al., 2007; Chatham et al.,
2009; Locke & Braver, 2008). Additionally, optimality neces-
sitates performance monitoring, which requires individuals to
metacognitively judge the effectiveness of their current strat-
egy relative to their goals (Cain, Vul, Clark, & Mitroff, 2012;
O’Leary & Sloutsky, 2017; Wolfe 2013), and update when
there is a mismatch. This employment of conflict-monitoring
mechanisms, whereby conflicts in information processing are
monitored and adjustments in cognitive control are made ac-
cordingly, is inherently resource demanding (Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Lorist, Boksem, &
Ridderinkhof, 2005). Further, switching between cognitive
strategies or tasks takes effort and is often avoided (Kool,
McGuire, Rosen, & Botvinick, 2010; Arrington & Logan,
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2004); it has been suggested that the cognitive control system
only adjusts if the expected subjective performance gain out-
weighs the effort required (Botvinick & Braver, 2015;
Botvinick & Rosen, 2009; Walton, Bannerman, Alterescu, &
Rushworth, 2003).

In addition to proactive control and performance monitor-
ing, in the case of visual search, another key factor may un-
derlie optimal choices: environmental appraisal. When you
are searching for your car in a parking lot, selecting the most
efficient strategy might require you to first scan your present
environment and take in task-relevant information – whether
there are more black cars or small cars, for example. Often
times real-world search tasks take place in environments that
change between searches, such as screening bags with differ-
ent shapes at the airport or locating your child amongst differ-
ent sets of play equipment. Effectively, optimal choices may
rely on first taking a step to appraise the features of the current
search environment, so cognitive control settings can be ad-
justed accordingly. For the purposes of this paper, we are
using appraisal to mean the rapid processing of the stimuli in
an array, during which statistical summary representations,
namely representations of statistical information, such as
mean set or stimulus size, are formed.

Prior work suggests that extracting statistical information
about the display is rapidly and accurately accomplished with
distributed attention to the entire environment (Ariely, 2001;
Chong & Triesman, 2003, 2005a, 2005b). Further, multiple col-
ored sets can also be enumerated and compared against each
other swiftly and efficiently (Chong & Triesman, 2005b), for
up to three sets of colored items in parallel (Halberda, Sires, &
Feigenson, 2006). Thus, appraising an environment with a few
sets of colored stimuli should be a relatively effortless process.
However, these tasks require participants to specifically make a
simple enumeration or comparison judgment – how does the
ability to enumerate integrate into more complex task environ-
ments, such as visual search? How might individuals take the
result of this rapid statistical computation and use it to inform
their search strategy?

In this paper, we investigate how appraisal of the stimulus
environment contributes to visual search optimality. To this
end, we used a modified version of the Adaptive Choice
Visual Search (ACVS; Irons & Leber, 2016, 2018a), a para-
digm we developed to explore how individuals choose atten-
tional control settings in a dynamic and relatively uncon-
strained task environment. In the ACVS, participants search
a colored array for either a blue or a red square containing a
target digit; that is, two targets are present, but participants
only have to respond to one of them. Critically, one target
color is typically faster to find (i.e., more optimal) than the
other because there are fewer squares of that color to search
through. Additionally, the more optimal color is switched un-
predictably over the course of trials, requiring participants
who seek to optimize their performance to occasionally update

their control settings. This paradigm emphasizes target choice
(i.e., optimal vs. non-optimal) as a key dependent measure,
and the method allows us to characterize group-wide tenden-
cies as well as individual variation in the choice of attentional
control strategies, a trait that has been shown to remain stable
across experimental sessions conducted on separate days
(Irons & Leber, 2018a). Results have shown that, overall,
individuals are far below optimal in which target they choose
to search for; the sub-optimal target was chosen in about 40%
of the trials in the original experiment (Irons & Leber, 2016).

Our present goal is to use the ACVS paradigm to under-
stand the role of appraisal in the choice of attentional control
strategies. To most effectively study this question, we sought
tomodify the paradigm to provide participants with a maximal
opportunity to appraise the stimulus environment. Our chosen
approach was motivated by recent experiments revealing that
individuals make about 10% more optimal choices when they
are (a) presented with a colored preview of the display before-
hand (i.e., a display that reveals the ratio of colored subset
sizes but not the target and distractor digits), and (b) explicitly
informed which target is more optimal to find (Irons, Hansen,
& Leber, in preparation; Irons & Leber, 2018b, JOVabstract).
Given these findings, we used a combination of both preview
and instruction in the present experiments as tools to maxi-
mally facilitate appraisal.

When given instructions of the optimal strategy, a colored
preview increases optimal performance relative to no preview.
However, it is unclear exactly why this preview period is
beneficial. One potential explanation is that offering a colored
preview of the display beforehand allows individuals time to
appraise the color ratio and determine which subset they ulti-
mately want to search through before digits appear and the
search begins. If this appraisal period is crucial for optimality,
then if we disrupt participants’ ability to appraise the search
environment by introducing a secondary task during this time,
will it lead to suboptimal choices? To test this, we added an
irrelevant line task before the search array, whereby partici-
pants needed to judge which line of a cross (horizontal or
vertical) was longer. Critically, this line task could occur either
before the colored preview or during the colored preview. We
hypothesized that this irrelevant task could have two alterna-
tive consequences: First, if the appraisal period contributes to
optimal performance, then the additional task might only be
detrimental if it occurs simultaneously with the preview dis-
play. Alternatively, if the appraisal period itself is not critical
or if the benefits of the preview period are attributable to some
other type of preparatory process that participants engage in,
then the additional task might either have no impact at all or
produce a general interference cost in all conditions equally.
This paper presents two experiments aimed to test the effect of
this irrelevant secondary task on the appraisal period, and
ultimately how the ability to appraise one’s environment im-
pacts optimal performance.
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Experiment 1

Method

Participants

Twenty-five individuals (11 male, 14 female) aged 18–35
years (M = 20.21) completed Experiment 1. One participant
in Experiment 1 was removed for low accuracy (more than
three standard deviations below the groupmean). Since a prior
version of this manipulation had not been previously run, we
could not use a power analysis to estimate the necessary sam-
ple size; as such, we elected to establish the effect size and
analyze results with a sample of 24 participants. All partici-
pants were recruited from the undergraduate psychology re-
search pool at The Ohio State University, and all self-reported
normal or corrected-to-normal visual acuity and normal color
vision. Individuals came in for one 1-h long session, and re-
ceived course credit for their participation. All experimental
methods were approved by The Ohio State University
Institutional Review Board, and all participants provided in-
formed written consent.

Stimuli

Adaptive Choice Visual Search Each search array was com-
posed of 54 colored squares (sized 1° x 1°) arranged in three
concentric rings centering around a fixation dot (Fig. 1). The
inner ring contained 12 evenly-spaced squares (each centered
at 6.3° eccentricity), the middle ring contained 18 squares
(9.4° eccentricity), and the outer ring contained 24 squares
(12.4° eccentricity). Of the 54 squares, 13 were colored red,

13 were colored blue, 14 were colored green, and 14 were a
variable set. The variable set changed between all red and all
blue, alternating in runs of one to six trials (see Fig. 1). The
spatial arrangement of the colored squares within each display
was randomized on each trial.

A white digit between 2 and 9 (0.48°, font: Arial)
was superimposed on the center of each square; digits
were small enough that gaze had to be fixated in their
vicinity to be identified. Every search array contained
two targets: one red square and one blue square, each
with a digit between 2 and 5 (i.e., 2, 3, 4, or 5). All
other red and blue squares contained digits between 6
and 9. Green squares could contain any digit between 2
and 9, so as to prevent participants from ignoring color
and biasing their search using digit value only. All non-
target digits were assigned pseudorandomly across the
squares, such that within each color subset, each digit
appeared as close to equally often as possible. Red and
blue target digits were chosen pseudorandomly, such
that, across all trials, each digit appeared equally often
in each color; also, the two targets always contained
different digits on each trial, in order to discern which
target was reported.

Line task The line task consisted of a white cross presented at
the center of the screen, comprised of a longer line segment
(0.57°) bisecting a shorter line segment (0.29°). The presenta-
tion order of the crosses was randomized in each block such
that 50% of the trials contained a longer vertical line segment
and 50% contained a longer horizontal line segment, with
equal numbers of each orientation at each run position in the
search task.

Design and procedure

The experiment was run in a dimly lit, sound-attenuated test-
ing room using a Mac Mini computer and 24-in. LCD moni-
tor. Participants were seated at a viewing distance of approx-
imately 60 cm (head position was not fixed). Stimuli were
presented using Matlab (Mathworks, Natick, MA, USA) with
Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997; Kleiner et al., 2007).

The experiment consisted of a blocked design with three
conditions: (1) search-only trials, (2) line-before trials, and (3)
line-during trials.

Search-only trials (Fig. 2A): Each trial began with a fixa-
tion dot for 2 s, followed by a preview of the colored squares
(but excluding digits) for 1 s. After this brief preview, the
digits in each square appeared and participants had unlimited
time to search for a target. Participants indicated their target
selection on each trial by responding with the digit inside the
target square they located, using the V, B, N, and M keys on
the keyboard (corresponding to 2, 3, 4, and 5, respectively).

non-
optimal

target 

optimal
target 

Red optimal runBlue optimal run

Trials

Fig. 1 An example search array, with targets highlighted. In this example,
the blue target containing a two is considered more optimal to find than
the red target containing a five because there are half as many blue
squares as red to search through. Below, a sample trial order is shown,
in which the optimal color varies in runs of one to six
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Once a keypress was made, the array was removed, and a new
trial began after a 2-s inter-trial interval (ITI). If participants
responded incorrectly (i.e., they made a response that did not
match either of the two targets), they heard a 400-Hz auditory
tone for 150 ms during the ITI.

Line-before trials (Fig. 2B): Each trial began with a
fixation dot for 1 s, then the line task for 1 s. The line
task required participants to judge whether the horizontal or
vertical line segment was longer in a cross presented at
fixation, using the 1 and 2 keys on an attached number
keypad (corresponding to Bhorizontal^ and Bvertical,^ re-
spectively) to indicate their response. The cross appeared
on the screen for 1 s, and participants had to make their
response within this time frame; if they responded incor-
rectly or timed out, they heard a 400-Hz auditory tone for
150 ms either immediately following their incorrect re-
sponse, or at the onset of the search array, respectively.
The cross of the line task was replaced with the fixation
dot again immediately following a participant’s response, or
at the end of the 1 s if participants did not respond.

Following the line task, participants were shown the pre-
view of the colored squares (excluding digits) for 1 s, and
finally the full search array until a response was made and
a new trial started. Participants advanced to and completed
the search task, regardless of line-task performance.

Line-during trials (Fig. 2C): Each trial began with a fixa-
tion dot for 2 s, as in the search-only blocks. Then, the line
task appeared concurrently with the preview of the colored
squares for 1 s, followed by the full search array.

Participants began the experiment by practicing the search
task. They were told they would see search arrays of colored
squares containing two potential targets, but would only need
to locate one of the targets on each trial and were free to
choose which target they searched for each time. They were
then given ten practice trials of the search task. Following
these practice trials, participants were informed of the optimal
strategy to complete the search task: BThe fastest way to do the
task is to look for whichever color has the fewest squares. For
example, if there are fewer red than blue squares, it will usu-
ally be faster to look for the red target.^ After, participants

Search-only condi�on: no line task

Fixa�on (1s)
Colored preview (1s)

Search (un�l response)

Line-before condi�on: Line task appears before colored preview

Fixa�on (1s)
Colored preview (1s)

Search (un�l response)
Line task (1s)

Line-during condi�on: Line task appears during colored preview

Fixa�on (1s)
Line task + 
Colored preview (1s) Search (un�l response)

Fixa�on (1s)

Fixa�on (1s)

a

b

c

Fig. 2 Schematic representation of the three task conditions
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were instructed how to do the line task. Participants were
given five practice trials of each of the two line conditions
before starting on the main experiment. Participants were
instructed to place their dominant hand on the four search task
keys and their other hand on the two line-task keys for the
duration of the experiment; the placement of the keypad was
arranged to facilitate this.

The experiment consisted of six blocks of 84 trials (504
total trials), with self-paced breaks in between each block.
Participants completed two blocks each of the search-only,
line-before, and line-during conditions. Block order of the
three conditions was completely counterbalanced across par-
ticipants, and then the order repeated to create six blocks (e.g.,
ABCABC, ACBACB, etc.). After completion of the experi-
ment, participants filled out a short self-report questionnaire
that probed the percentage of time they utilized different
search strategies as well as how they utilized the 1-s colored
preview.

Results and discussion

Search accuracy was close to ceiling for all three con-
ditions (search-only M = 96.53%, line-before M =
96.03%, line-during M = 95.86%), and was not signifi-
cantly different between the conditions, F(2,46) = 0.325,
p = 0.724, ηp

2 = 0.014. The following analyses exclude
trials in which participants were unable to correctly find
or report a search target, as well as trials with search
response times (RTs) less than 300 ms or more than
three standard deviations above the mean (0.99% of
search-only trials, 1.58% of line-before trials, 2.05% of
line-during trials). For analyses in which multiple com-
parisons were conducted, we used the Holm-Bonferroni
method (Holm, 1979) to control the familywise Type I
error rate (corrected p-values are denoted by pHB).

Search: Optimality First, we sought to explore the main strat-
egy measure reported by Irons and Leber (2016, 2018a):
Optimal choice. Optimal choice was defined as the percentage
of correct search trials in which the target from the smaller
subset (i.e., the more optimal target) was chosen. Note that
while we refer to choices as optimal or not, we accept that
target choice on each individual trial is not a perfect reflection
of strategy usage; even participants searching optimally may
sometimes opportunistically choose a non-optimal color (e.g.,
if it is located near fixation; see Irons & Leber, 2016, 2018a).
Nevertheless, we have repeatedly found that choosing the op-
timal color is overall the most efficient search strategy, as it is
reliably associated with faster RTs (including in this paper; see
RT results below).

Other data from our lab have shown that, with both a col-
ored preview and instruction of the optimal strategy, partici-
pants made approximately 80% optimal choices (Irons,

Hansen & Leber, in preparation). Similarly in this experiment,
percentage of optimal choices was overall relatively high and
negatively skewed, with individual participants ranging from
50% to 100% optimal on any given block. Thus, even when
explicitly told the strategy to search most optimally and given
appraisal time to execute the strategy, some participants still
choose to search suboptimally.

Optimal performance varied significantly between the con-
ditions,F(2,46) = 5.236, p = 0.009, ηp

2 = 0.185 (Fig. 3). There
was no difference in optimality between the search-only con-
dition (M = 89.16%, SD = 10.87%) and the line-before con-
dition (M = 89.27%, SD = 10.46%), t(23) = -0.072, pHB =
0.943, d = 0.010. However, participants were significantly less
optimal in the line-during condition (M = 85.44%, SD =
10.80%) compared to both the search-only condition (t(23)
= 2.733, pHB = 0.024, d = 0.343) and the line-before condition
(t(23) = -3.174, pHB = 0.012, d = 0.360). This result shows that
there was a tendency for participants to search less optimally
when an irrelevant secondary task disrupted the appraisal pre-
view period but not when it occurred before appraisal could be
carried out.

Search: Response timeAlthough the optimal search strategy is
effortful in that it requires continuous monitoring and target
switching, it is associated with quicker performance; as in
previous versions of the task, individuals who made a higher
percentage of optimal choices also achieved faster RTs (r = -
0.341, p = 0.003). Like percentage of optimal choices, search
RT varied significantly between the conditions, F(2,46) =
6.751, p = 0.003, ηp

2 = 0.227 (Fig. 4). Again, there was no
difference in search RTs during the search-only condition (M
= 2,413 ms, SD = 441 ms) and the line-before condition (M =
2,446 ms, SD = 518 ms), t(23) = -0.532, pHB = 0.600, d =
0.069. However, participants were significantly slower in the
line-during condition (M = 2634ms, SD = 547ms) compared

Fig. 3 Percentage of optimal choices made in each of the three
conditions, on average. Error bars depict within-subjects standard error
calculated using the Cousineau method (Cousineau, 2005) with a Morey
correction (Morey, 2008). * p < 0.05
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to both the search-only condition (t(23) = -3.410, pHB = 0.006,
d = 0.445) and the line-before condition (t(23) = 2.803, pHB =
0.020, d = 0.353). Thus, not only are participants making
fewer optimal choices when the line task is presented during
the colored preview, but their performance is slower. It is
possible this speed deficit may be attributable in part to a
switch cost, since the line task in the line-during condition
immediately precedes the start of the search trial. However,
participants are also switching between tasks in the line-before
condition and performance is no different there than when the
search is performed alone. Further, the slowing is not explain-
able by participants using search time to appraise the display
and merely delaying the commencement of search; if so, we
would expect slower RTs but equal optimality in the line-
during condition, but optimal performance was significantly
lower. Therefore, the slowing might be more readily attribut-
able to the disruption of the appraisal period, whereby partic-
ipants actually adopted less efficient strategies on line-during
trials.

Line task Accuracy at the line task was marginally better
when the line task was presented before the colored pre-
view display (M = 93.65%, SD = 4.98%) than when it
was presented during the colored display (M = 92.14%,
SD = 5.62%), t(23) = -1.843, p = 0.078, d = 0.284.
Further, participants were significantly faster at completing
the line task in the line-before condition (M = 546 ms, SD
= 42 ms) than in the line-during condition (M = 578 ms,
SD = 51 ms), t(23) = 5.742, p < 0.001, d = 0.685. This
might be due in part to there being more visual input on
the screen in the line-during condition, such that the onset
of the color preview captured attention and impaired pro-
cessing of the cross, compared to a cross appearing on a
blank background; relatedly, the cross might have in-
creased perceptual load (Lavie, 2005) or diluted processing
of the color information (Tsal & Benoni, 2010).

Relationship between line task and search taskAs optimality
is our main measure of interest, we sought to explore the
relationship between line-task performance and subsequent
search performance. First, we looked at whether line-task
performance was associated with optimal choices across
individuals. Individuals who find the line task more diffi-
cult and respond more slowly may have less time to ap-
praise the preview, and therefore make fewer optimal
choices overall. However, average line-task speed was not
correlated with percent optimal search choices in either the
line-before condition (r < 0.001, p = 0.999) or the line-
during condition (r = 0.017, p = 0.963), which supports
the interpretation that the degree to which an individual
found the line task difficult had no bearing on their likeli-
hood to make optimal choices. However, assessing varia-
tion within individuals by dividing each individual’s line-
task RTs into fast trials and slow trials, using a median
split, does shed light on resulting optimal choices: whether
the line task was accomplished quickly or slowly did not
predict subsequent search optimality in the line-before con-
dition (fast M = 89.38%, slow M = 89.53%, t(23) = 0.105,
p = 0.917, d = 0.014), but it did significantly predict opti-
mality in the line-during condition (fast M = 87.69%, slow
M = 84.41%, t(23) = -2.302, p = 0.015, d = 0.296). The
speed x condition interaction was marginally significant,
F(1,23) = 4.036, p = 0.056, ηp

2 = 0.149 (Fig. 5). One
possible explanation for these results is that when partici-
pants made the judgment quickly in the line-during condi-
tion, they could then use the remainder of the 1-s preview
time to appraise the display. In contrast, when participants
were slower and needed the majority of the 1-s preview to
make the line judgment, they had no leftover time to ap-
praise and were thus significantly less optimal than on fast

Fig. 4 Average response times to find a target in the search task, in
milliseconds, in each of the three conditions. Error bars depict within-
subjects standard error calculated using the Cousineau method with a
Morey correction. ** p < 0.01, * p < 0.05

Fig. 5 Average percentage of optimal choices made on the search task for
trials in which the line task preceding that search array was completed
quickly (i.e., fastest 50% of trials, for each individual) versus slowly (i.e.,
slowest 50% of trials, for each individual). Error bars depict within-
subjects standard error calculated using the Cousineau method with a
Morey correction. * p < 0.05
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trials. Therefore, it could be that the degree to which an
interruption impairs task optimality depends on the extent
to which the interruption prevents the participant from ap-
praising the display.

Experiment 2

From Experiment 1, we might conclude that the appraisal
process is necessary for optimal choices, as evidenced by sig-
nificantly lower optimality and slower RTs in the line-during
condition, compared to the search-only baseline. This result
contrasted with the line-before condition, which produced no
reliable differences in performance, compared to the search-
only baseline. However, Experiment 1 presented conditions in
a blocked format, wherein participants knew when to expect
the line-task disruption for the entirety of the 84 trials in each
block. In the real world, we are often not aware of when
disruptions will occur. Critically, the line-before and line-
during conditions may have unintentionally differed in more
than just the timing of the disruption with the preview period.
Specifically, because we used a blocked design, participants
could have formed different expectations of effort for each
line-task condition, which may have affected task preparation.
If they perceived the blocks of line-during trials as more cog-
nitively demanding, then they may have adopted a strategy of
effort avoidance (Kool et al., 2010), which would lead them to
abandon the optimal strategy more often. Importantly, this
effort avoidance account is distinct from our original interpre-
tation that the denial of time to appraise the displays is what
drove the observed effects.

One approach to address the alternative effort avoidance
explanation is to endow participants with similar expectations
of cognitive demand prior to each trial. In particular, wemixed
the line-before and line-during conditions within blocks, so
that participants would enter both the line-before and line-
during trials with similar expectations and thus similar degrees
of effort avoidance. If effort avoidance drove the effects in
Experiment 1, then we should now see reduced optimality in
both the line-before and line-during conditions, compared to
the search-only baseline. However, if the results of
Experiment 1 were driven by the denial of access to display
appraisal in the line-during condition – but not the line-before
condition – then we should essentially reproduce the
Experiment 1 results: reduction of optimality in the line-
during condition but not in the line-before condition.

Method

Participants Twenty-five individuals (13 male, 12 female)
aged 18–35 years (M = 22.33) completed Experiment 2. One
participant in Experiment 2 was removed for low accuracy
(more than three standard deviations below the group mean),

yielding an analyzed sample of 24. Given the effect on opti-
mality by condition found in Experiment 1 (ηp

2 = 0.185), a
sample of this size should yield a significant result with power
greater than 0.999. Participants were recruited from both the
undergraduate psychology research pool and general popula-
tion at The Ohio State University. All individuals self-reported
normal or corrected-to-normal visual acuity and normal color
vision. Individuals came in for one 1-h long session, and re-
ceived either course credit or $10 compensation for their par-
ticipation. All experimental methods were approved by The
Ohio State University Institutional Review Board, and all par-
ticipants provided informed written consent.

Procedure Experiment 2 used the same stimuli and pro-
cedure as Experiment 1, except with a mixed design. As
in Experiment 1, we presented the search-only condition
in pure blocks. However, now the line-task conditions
were mixed: Participants completed four blocks with
both line-before and line-during trials. Line blocks were
configured such that there were equal amounts of each
line-task condition within a block, as well as within
each position in a search run before the optimal color
switched. The line-task conditions were randomized,
with the constraint that no more than five trials of one
condition could appear in a row. As with Experiment 1,
block order was counterbalanced across participants.

Results and discussion

As in Experiment 1, search accuracy was at ceiling for all
three conditions (search-only M = 97.64%, line-before M =
97.52%, line-during M = 97.74%), and was not significantly
different between the conditions, F(2,46) = 0.223, p = 0.801,
ηp

2 = 0.010. Analyses for Experiment 2 likewise excluded
inaccurate trials and trials with search RTs less than 300 ms
or more than three standard deviations above the mean (0.93%
of search-only trials, 1.32% of line-before trials, 1.54% of
line-during trials).

Search: OptimalityAs before, we first explored the percentage
of optimal choices that participants made. Participants ranged
from 41% to 99% optimal on any given block, and overall
optimal performance varied significantly between the condi-
tions, F(2,46) = 8.701, p = 0.001, ηp

2 = 0.274 (Fig. 6). The
difference in optimality between the search-only condition (M
= 80.49%, SD = 16.79%) and the line-before condition (M =
78.21%, SD = 17.74%) was marginal but not significant (t(23)
= 1.884, pHB = 0.072, d = 0.132), which may reflect a mar-
ginal contribution of effort avoidance when completing an
additional secondary task. However, participants were signif-
icantly less optimal with their choices in the line-during con-
dition (M = 75.85%, SD = 16.71%) compared to both the
search-only condition (t(23) = 4.040, pHB = 0.003, d =
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0.277) and the line-before condition (t(23) = -2.447, pHB =
0.044, d = 0.137). Thus, this provides evidence that results
from Experiment 1 were not solely driven by effort avoidance;
as before, only when participants were denied access to the
appraisal preview period was optimal performance signifi-
cantly lower.

Search: Response time As before, across participants, optimal
choice percentages were significantly correlated with faster
RTs (r = -0.593, p < 0.001). Additionally, mean search RTs
varied significantly between the conditions, F(2,46) = 10.508,
p < 0.001, ηp

2 = 0.314 (Fig. 7). Again, there was no difference
in search RTs between the search-only condition (M = 2,685
ms, SD = 768 ms) and the line-before condition (M = 2,749
ms, SD = 681 ms), t(23) = -0.690, pHB = 0.497, d = 0.088.
However, participants were significantly slower in the line-
during condition (M = 2,992 ms, SD = 718 ms) compared to

both the search-only condition (t(23) = -3.729, pHB = 0.002, d
= 0.413) and the line-before condition (t(23) = 4.896, pHB <
0.001, d = 0.347).

Line task With unpredictable line judgments, there was no
significant difference between the line-before condition (accu-
racy:M = 90.23%, SD = 6.98%; RT:M = 595ms, SD = 52ms)
and the line-during condition (accuracy: M = 91.69%, SD =
5.81%; RT:M = 599 ms, SD = 53 ms) in either accuracy (t(23)
= 1.711, p = 0.101, d = 0.227) or RTs (t(23) = 0.897, p = 0.379,
d = 0.076).

Relationship between line task and search task As in
Experiment 1, participants’ average line-task speed was not
correlated with optimal search choices in either the line-before
condition (r = 0.158, p = 0.461) or line-during condition (r =
0.166, p = 0.438), but marginal differences appear when tak-
ing a median split of individual trial RTs.Whether the line task
was accomplished quickly or slowly did not vary significantly
with search optimality in the line-before condition (fast M =
78.59%, slow M = 78.82%, t(23) = 0.286, p = 0.778, d =
0.013), but it did marginally vary with optimality in the line-
during condition (fastM = 77.74%, slowM = 75.15%, t(23) =
-1.977, p = 0.060, d = 0.150). The speed x condition interac-
tion wasmarginally signficant, F(1,23) = 3.223, p = 0.086, ηp

2

= 0.123. Although not significant, this suggests that tying up
attentional resources for more time during the appraisal peri-
od, even when the line task could not be predicted, may like-
wise lead to lower optimality.

Cross-experiment analyses Since Experiments 1 and 2 dif-
fered only in the design of the blocks, cross-experiment anal-
yses were conducted to determine how the experimental re-
sults differed, if at all. Using a 2 (Experiment: 1 vs. 2, be-
tween-subjects) x 3 (Condition: search-only vs. line-before
vs. line-during, within-subjects) ANOVA, the experiment x
condition interactions were assessed for the two search-task
dependent measures of interest (optimality and search RT).
There was no significant interaction in percentage of optimal
choices (F(2,45) = 0.849, p = 0.435, ηp

2 = 0.036) or search RT
(F(2,45) = 0.374, p = 0.690, ηp

2 = 0.016), but a significant
main effect of experiment was found for percentage of optimal
choices (F(1,46) = 5.997, p = 0.018, ηp

2 = 0.115), such that
participants in Experiment 1 were overall more optimal than
participants in Experiment 2. This may have been related to
the predictability of trials in Experiment 1. We also assessed
line-task RT in a 2 (Experiment: 1 vs. 2, between-subjects) x 2
(Line task condition: before vs. during, within-subjects)
ANOVA. As might be expected, RT for the line judgment
was significantly affected by experimental design (F(1,46) =
6.424, p = 0.015, ηp

2 = 0.123), and there was a significant
interaction between experiment and line-task condition,
F(1,46) = 14.945, p < 0.001, ηp

2 = 0.245. More specifically,

Fig. 7 Average response times to find a target in the search task, in
milliseconds, in each of the three conditions. Error bars depict within-
subjects standard error calculated using the Cousineau method with a
Morey correction. *** p < 0.001, ** p < 0.01

Fig. 6 Percentage of optimal choices made in each of the three
conditions, on average. Error bars depict within-subjects standard error
calculated using the Cousineau method with a Morey correction. ** p <
0.01, * p < 0.05, †p < 0.10
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participants were overall slower at completing the line judg-
ment in Experiment 2 when the line judgment was unpredict-
able than in Experiment 1 when the line judgment could be
anticipated, and a significant difference in line-task RT be-
tween conditions was only found in Experiment 1.
Additionally, a 2 (Experiment: 1 vs. 2, between-subjects) x 2
(Line-task condition: before vs. during, within-subjects) x 2
(Line-task speed: fast vs. slow, within-subjects) ANOVAwas
conducted on optimality, to assess changes in strategy over
fast and slow line speed trials. Significant within-subject ef-
fects were found for optimality based on line judgment speed
and the condition x speed interaction, as was discussed in the
individual experiments, but experiment did not enter into any
significant between-group interactions or main effects.
Overall, the cross-experiment analyses did not reveal notice-
ably different patterns of results between the two experiments.

General discussion

When approaching a dynamic visual search task in the real
world, people are not always optimal in the strategy they
choose. There may bemany contributing factors that influence
how an individual configures their attentional control settings
in these situations, such as desire to minimize effort or will-
ingness to monitor performance and update when there is a
conflict. We postulated that one underlying factor might be the
ability to appraise the search environment for changes and use
the obtained information effectively, and we surmised that
making it more difficult for appraisal to occur would lead to
fewer optimal choices. Previous work has shown that apprais-
ing statistical information from a display, such as enumerating
mean set size, is a rapid and highly accurate process (Ariely,
2001; Chong & Triesman, 2003; Chong & Triesman, 2005a;
Chong & Triesman, 2005b), even when multiple colored sub-
sets are present (Chong & Triesman, 2005b; Halberda, Sires,
& Feigenson, 2006). However, to the best of our knowledge,
experiments probing statistical representation and enumera-
tion have used tasks that only require participants to judge
the numerosity or statistical representation of interest. Here,
we apply these concepts to a more complex dynamic visual
search task: now, participants must use the information they
gain from these set representations to update their cognitive
control settings and choose which target they want to search
for on each trial.

To test this, this paper presented two experiments that used a
modified version of the Adaptive Choice Visual Search task,
adding a colored preview of the display to provide a window of
time in which participants could appraise the display prior to
commencing search. The experiments also introduced an irrel-
evant secondary line task either before or during this preview
period to interfere with the appraisal process and the ability to
form statistical representations of the colored subset sizes

before the onset of the search. Experiment 1 explored the rela-
tionship between disruption of appraisal by the line task and
subsequent search optimality, and Experiment 2 addressed an
alternative effort avoidance explanation of the results.

Experiment 1 and Experiment 2 converged on similar find-
ings: There was no significant difference in optimal choices
when the line task occurred before the preview period relative
to a search-only baseline, but participants made significantly
fewer optimal choices when the line task occurred during the
preview period, suggesting that the ability to appraise and
form statistical representations during the preview period con-
tributes to optimal performance. Along with this, search RTs
were significantly slower in both experiments when the line
task was presented during the preview period, but not signif-
icantly different from baseline when the line task was present-
ed before the preview period.

Although RTs in Experiment 2 were generally slower and
performance less optimal than in Experiment 1, making the
line-task onset unpredictable in Experiment 2 did not signifi-
cantly alter strategies or use of the appraisal period. There was
a marginally-significant trend towards fewer optimal choices
in the line-before condition compared with baseline, which
may suggest that effort avoidance had some impact on the
block-wide strategy that participants selected. However, effort
could not account for the entire effect, as optimality was still
significantly worse in the line-during condition than in the
line-before condition.

As mentioned in the discussion of Experiment 1, one might
argue that the performance deficits in the line-during condition
may be a result of a switch cost between two temporally se-
quential tasks, because the line task immediately precedes the
onset of the search in the line-during condition but not in the
line-before condition. Switching to a new task has been shown
to increase RTs relative to performing a repeated task, with the
RT difference constituting the switch cost (e.g., Monsell,
2003). A switch cost has been reliably shown even when an
individual knows when to expect the switch – i.e., as in the
blocked design of Experiment 1 – and when the two tasks are
spaced sufficiently apart (Meiran, 1996; Rogers & Monsell,
1995). Rogers and Monsell (1995) observed no reduction in
switch cost when response-stimulus intervals varied unpre-
dictably up to 1,200 ms, and only about a one-third reduction
when the intervals were predictably blocked – a substantial
Bresidual^ switch cost still remained. Thus, although increas-
ing the delay between tasks has been shown to reduce the
associated switch cost, it is by no means eliminated (Allport
et al., 1994; Rogers &Monsell, 1995). Given that participants
are switching between the same cognitive tasks in both the
line-before and line-during conditions, we would expect to see
evidence of switch costs in both conditions. More specifically,
task-switching costs should imply an RT increase for line-
before trials relative to search-only trials, and this was not
the case in these experiments. Since the presence of the line
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task was only detrimental when it occurred during the preview
period, not before, then the opportunity to appraise must be at
least somewhat contributing to an individual’s ability to be
optimal; although switch cost may play some role, it is unlike-
ly to fully account for these results.

An intriguing finding mentioned in the discussion of
Experiment 1 was that the extent to which the line task
disrupted the preview period (i.e., whether the line task was
completed quickly or slowly) seemed to correspond with op-
timal performance – but only in the line-during condition.
This finding suggests that participants did not completely
abandon the optimal strategy when presented with a disrup-
tion during the appraisal period, and still attempted to use the
strategy on a trial-by-trial basis whenever time afforded them
to do so. However, when participants had no leftover time
after the line task to appraise the display, they actually adopted
suboptimal strategies during the subsequent search. Thus,
cognitive control is most impaired when attentional resources
are tied up for a longer duration of the preview period.
Nevertheless, secondary task difficulty and preview period
duration were not directly manipulated in these experiments,
so these conclusions are speculative.

The present experiments sought to explore the role of ap-
praisal in search optimality, extending classic enumeration
tasks by challenging participants to use acquired statistical
summary representations of the display to inform their search
strategy. Given the performance deficits in the line-during
condition, our results support the idea that the ability to ap-
praise the environment and use resultant statistical representa-
tions effectively is a key factor underlying why individuals
make suboptimal choices when approaching visual search
tasks. Just like when you are tasked with finding your red
SUV in a crowded parking lot, being able to quickly analyze
the particular features of the current environment is necessary
in order to search most efficiently and quickly locate your
vehicle. If, for instance, your attention is disrupted by a text
or phone call while you are approaching the parking lot and

you are unable to appraise your environment, you may find
yourself searching suboptimally. This finding, that engaging
in environmental appraisal is necessary to be optimal, seems
intuitive; however, this issue has been neglected in the litera-
ture, possibly because most visual search tasks do not afford
participants the freedom to decide between optimal and non-
optimal search strategies or assess their choices. Here, by
using a paradigm that affords individuals a choice of what
they search for and then analyzing subsequent strategy usage,
we offer evidence that the ability to appraise contributes to an
individual’s choice of strategy selection during visual search.

One might wonder if appraisal during the preview period
may differentially benefit performance depending on the par-
ticular search parameters. For instance, since the current ver-
sion of ACVS alternated the optimal target color in unpredict-
able runs of one to six trials in length, appraisal may be more
helpful when the optimal target color switches from the pre-
ceding trial compared to when the optimal target color repeats.
If this is the case, then trials in the line-during condition in
which the optimal target color repeats may suffer less (or not
at all) from the presence of a secondary task during the pre-
view period. In a post hoc analysis, we looked at optimality on
trials in which the optimal color did not match the preceding
trial (Bswitch^ trials, i.e., position 1 of a run) compared to
optimality in which the optimal target color repeated (Brepeat^
trials, i.e., positions 2–6 of a run), using a 3 (Condition:
search-only vs. line-before vs. line-during, within-subjects) x
2 (Repetition type: switch vs. repeat, within-subjects)
ANOVA for each experiment. Experiment 1 (Fig. 8A) and
Experiment 2 (Fig. 8B) both showed significant main effects
of condition and repetition type, but critically no condition x
trial type interaction (Experiment 1: F(2,22) = 0.737, p =
0.490, ηp

2 = 0.063; Experiment 2: F(2,22) = 0.639, p =
0.537, ηp

2 = 0.055). Given that the performance deficit for
switch trials in the line-during condition appears numerically
larger than the deficit in the other conditions, we did a com-
bined analysis using both Experiment 1 and Experiment 2, in
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Fig. 8 Percentage of optimal choices made in each of the three
conditions, on average, based on whether the optimal target switched or
repeated from the previous trial. Error bars depict within-subjects

standard error calculated using the Cousineau method (Cousineau,
2005) with a Morey correction (Morey, 2008). (A) Results from
Expertiment 1. (B) Results from Experiment 2
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case the lack of interactions separately was due to being un-
derpowered. However, when pooling data across experiments,
the interaction was still non-significant (F(2,46) = 1.402, p =
0.256, ηp

2 = 0.057). With a larger sample and sufficient pow-
er, it is possible a small interaction between the benefits of
appraisal and repetition typemight be observed; future work is
needed to examine this in more depth.

Additionally, it is worth noting that visual search tasks
might benefit from an appraisal period differently. Our para-
digm is constructed such that the color makeup of the search
arrays varies from trial to trial, and appraisal may play a dif-
ferent role in situations where the search environments are
more consistent. For example, a large body of work in radiol-
ogy has sought to explore strategies for improving identifica-
tion of abnormalities in chest X-rays (e.g., Auffermann,
Krupinski, & Tridandapani, 2018). Chest X-rays all contain
the same general physical structure and color makeup, so en-
gaging in an appraisal period before viewing each X-ray may
not gain the radiologist any new meaningful information that
would change their search of that X-ray. Conversely, a real-
world task such as airport baggage screening, in which each
instance of the search unpredictably varies in physical struc-
ture, may benefit more from an appraisal period; perhaps the
size or shape of a carry-on item directly informs where a
banned item is most likely to be found, and appraising the size
or shape first can lead to a more efficient search. Further,
appraisal may uniquely benefit complex visual search tasks
or tasks with multiple targets (e.g., foraging: Cain et al., 2012;
Wolfe, 2013) moreso than singleton detection paradigms. In
the latter, attention may be deployed automatically in a
bottom-up fashion, and therefore an appraisal period may
not have the benefit that it would when top-down attentional
mechanisms are deployed. Thus, engaging in environmental
appraisal is necessary to be optimal, but perhaps moreso in
search tasks in which environments are unpredictably chang-
ing and targets are not singletons.

One limitation of this study is that we were unable to de-
termine conclusively the mechanism by which disrupting ap-
praisal lowers optimality; future work will need to explore
whether a secondary task impairs the ability to acquire statis-
tical summary representations altogether, or merely the ability
to use the information. We can offer some speculation, how-
ever: Given that individuals can enumerate different colored
sets with relative set sizes that are far closer in ratio than
ACVS – which used a 2:1 ratio – with great speed and accu-
racy (e.g., see Halberda, Sires, & Feigenson, 2006), statistical
representations should be acquired easily and the mechanism
is likely the latter.

Future work is necessary to further explore the characteris-
tics of this appraisal period. How much appraisal time is re-
quired in order to reap the benefits and perform optimally? For
instance, would secondary tasks that are elevated in difficulty
or duration completely impair any residual ability to appraise,

akin to the slow line task trials described above? Is this ap-
praisal period only beneficial if immediately preceding onset
of the search, or can appraisal of the environment be made in
advance and statistical representations stored until applicable?
How does the ability to appraise the environment for featural
changes influence performance monitoring and strategy
updating? There is still much left to explore regarding how
environmental appraisal operates, but the findings presented
here push us forward in our understanding that appraisal sig-
nificantly contributes to configuration of optimal control
settings.
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