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Abstract
Perceptual learning can facilitate the recognition of hard-to-perceive (e.g., time-compressed or spectrally-degraded) speech.
Although the learning induced by training with time-compressed speech is robust, previous findings suggest that intensive
training yields learning that is partially specific to the items encountered during practice. Here, we asked whether three parameters
of the training procedure – the overall number of training trials (training intensity), how these trials are distributed across sessions,
and the number of semantically different items encountered during training (set size) – influence learning and transfer. Different
groups of participants (69 normal-hearing young adults; nine to 11 participants/group) completed different training protocols (or
served as an untrained control group) and tested on the recognition of time-compressed sentences taken from the training set
(learning), new time-compressed sentences presented by the trained talker (semantic transfer), and time-compressed sentences
taken from the training set but presented by a different talker (acoustic transfer). Compared to untrained listeners, all training
protocols yielded both learning and transfer. More intense training resulted in greater item-specific learning and greater acoustic
transfer than less intense training with the same number of training sessions. Training on a smaller set size (i.e., greater token
repetition during training) also resulted in greater acoustic transfer, whereas distributing practice over a number of sessions
improved semantic transfer. Together, these data suggest that whereas practice on a small set that results in stimulus repetition
during training is not harmful for learning, distributed training can support transfer to new stimuli, perhaps because it provides
multiple opportunities to consolidate learning.
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Introduction

The perception of both naturally (e.g., rapid, dysarthric) and
artificially (e.g., time-compressed, noise-vocoded) degraded
speech improves substantially via rapid perceptual learning
(Borrie, Lansford, & Barrett, 2017; Davis, Johnsrude,
Hervais-Adelman, Taylor, & McGettigan, 2005; for review
see Samuel & Kraljic, 2009). Furthermore, this rapid learning
often leads to the transfer of learning to new materials, which
depends on the acoustic or acoustic-phonetic similarities of
previously experienced and newly encountered items
(Adank & Janse, 2009; Borrie et al., 2017; Bradlow & Bent,

2008; Dupoux & Green, 1997; Huyck, Smith, Hawkins, &
Johnsrude, 2017; Loebach, Pisoni, & Svirsky, 2009; Peelle
& Wingfield, 2005). On the other hand, attempts to harness
this remarkable plasticity for hearing rehabilitation through
longer-term training programs were often disappointing be-
cause improvements were specific to the trained materials
(Henshaw & Ferguson, 2013; Saunders et al., 2016).
Suggesting that this specificity is not fully related to the char-
acteristics of the trained populations (e.g., older adults or
hearing-impaired individuals), intensive training on time-
compressed speech resulted in learning that was more specific
than that observed following rapid learning even in young,
normal-hearing listeners. For example, although brief practice
with time-compressed speech resulted in improved processing
of new natural-fast speech tokens (Adank & Janse, 2009), no
such transfer was observed with more intensive practice
(Manheim, Lavie, & Banai, 2018). We now ask whether for
time-compressed speech, procedural aspects associated with
the learning experience influence the degree of learning and
specificity. Specifically, we examined the effects of three
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training-related factors (the number of training sessions, the
size of the training set, and the number of trials in each ses-
sion) on the learning of time-compressed speech and its gen-
eralization to new tokens and to a new talker.

The perceptual learning that emerges following intensive
training with time-compressed speech is robust (with Cohen
effect sizes > 0.8 compared to untrained controls), but fairly
specific. In a series of previous studies, participants were
trained with sets of 100 semantically different sentences, all
recorded by the same talker, and presented as time-
compressed speech. Each sentence was presented several
times during training (Banai & Lavner, 2014, 2016).
Learning and transfer were tested by comparing the perfor-
mance of trained and untrained participants on a series of tests
in which stimuli were either taken from the training set (to
assess learning), or were somehow different (to assess trans-
fer). Transfer conditions differed from the trained condition
either acoustically (a novel talker was used), semantically
(new sentences were used) or both acoustically and semanti-
cally. Trained participants recognized trained sentences, new
sentences, and trained sentences with new acoustics more ac-
curately than untrained participants, suggesting both semantic
and acoustic transfer of learning. On the other hand, no trans-
fer was found when the test materials differed from the trained
materials both acoustically and semantically (Manheim et al.,
2018). This pattern of findings is consistent with the Reverse
Hierarchy Theory of perceptual learning (RHT, Ahissar,
Nahum, Nelken, & Hochstein, 2009). According to the
RHT, by default, speech recognition is based on high-level
representations, which do not contain detailed information
about the fine-grained acoustic-phonetic structure of the item
they represent. In the context of speech, this suggests that
when listeners attempt to recognize speech, they are tuned to
the content and therefore rely on lexical or semantic represen-
tations rather than on low-level phonological or acoustic-
phonetic ones. On the other hand, if listening for details
(e.g., when a minimal pair discrimination is required in a sit-
uation with limited lexical information), listeners can rely on
acoustic-phonetic cues (Nahum, Nelken & Ahissar, 2008).
Novel acoustically degraded speech does not match available
high-level representations, making its accurate recognition de-
pendent on the use of lower-level non-default representations
that naïve listeners do not automatically access. Data from
previous studies suggest that intensive training makes these
low-level representations more usable (Francis, Nusbaum, &
Fenn, 2007; Nahum, Nelken, & Ahissar, 2010). However, as
low-level representations are activated by the stimuli encoun-
tered in training, transfer is expected to be limited to novel
stimuli that share the same acoustic-phonetic structure of the
trained stimuli, explaining why the transfer of training-
induced learning of time-compressed speech is incomplete.

While learning specificity might be an inherent (Fiorentini &
Berardi, 1980; Hussain, McGraw, Sekuler, & Bennett, 2012), or

even desirable, feature of perceptual systems, the conditions
modulating this specificity in the case of distorted speech recog-
nition are not well understood. Specifying and characterizing
these conditions is important both for the understanding of the
perceptual learning that might occur with changing acoustic cir-
cumstances, such as when a hearing impaired individual starts
using a hearing aid or a cochlear implant and for the potential use
of structured training protocols in education (e.g., second lan-
guage learning) and rehabilitation. The use of low-level speech
representations is key for the recognition of perceptually difficult
speech (Ahissar et al., 2009; Mattys, Brooks, & Cooke, 2009).
According to theRHT, for training-induced learning to transfer to
new tokens with shared acoustic properties, the training protocol
has to “teach” listeners to rely on low-level speech representa-
tions instead of the default reliance on high-level cues. The liter-
ature on the perceptual learning of speech suggests that a few
factors associated with the training experience might support
such shift. One such factor is the use of adaptive training.
Although perceptual learning for speech occurs with different
forms of training, a few studies suggest that adaptive training
protocols in which the level of speech distortion increases grad-
ually with training supports learning (Gabay, Karni, & Banai,
2017; Svirsky, Talavage, Sinha, Neuburger, & Azadpour,
2015), consistent with RHT predictions. For example, in com-
parisons between adaptive and non-adaptive training protocols,
adaptive training facilitated the learning of time-compressed
speech and its acoustic transfer (Gabay et al., 2017). Adaptive
training also facilitated the transfer of learning of spectrally de-
graded speech (Svirsky et al., 2015). Therefore, an adaptive train-
ing procedure was used for all training protocols in the current
study. Other factors that may support learning and transfer – the
overall number of training trials (training length) (Banai &
Lavner, 2014; Nahum et al., 2010), the opportunity to consoli-
date learning over multiple training sessions (Fenn, Nusbaum, &
Margoliash, 2003), and the number of different items encoun-
tered in training (training-set size) (Greenspan, Nusbaum, &
Pisoni, 1988; Lively, Logan, & Pisoni, 1993) – are discussed in
the following paragraphs.

Multi-session speech training studies suggest that the per-
ceptual learning of speech is often not exhausted with brief
exposure, but rather continues across hundreds or more trials
(Banai & Lavner, 2012, 2014). These studies suggest that more
training leads to more learning, but the effects of extended
training on the transfer of learning to untrained tokens are in-
consistent. On the one hand, the learning of specific phonetic
discriminations is often quite specific to the trained contrast
(Lively et al., 1993; Nahum et al., 2010). These studies suggest
that listeners can learn to use the relevant low-level cues re-
quired for the discrimination, but this learning is fairly specific.
On the other hand, when speech in noise, time-compressed
speech, or spectrally-degraded speech were trained with sen-
tence length materials, learning continued across sessions even
though specific sentences were not repeated during training or
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between training and test (Karawani, Bitan, Attias, & Banai,
2015; Song, Skoe, Banai, & Kraus, 2012; Svirsky et al., 2015).
Although multiple factors might account for the difference in
specificity between the discrimination study of Nahum et al.
and the other studies, the fact that in the latter studies training
was not focused on a specific contrast may have resulted in
greater generalization. In a study of time-compressed speech
learning, listeners practiced with an adaptive training protocol
for either one or three sessions (Banai & Lavner, 2014).
Learning of the trained tokens, semantic transfer and acoustic
transfer were all greater in the three-session group than in the
single-session training group. However, in the three-session
protocol listeners received more training sessions as well as
an overall larger number of training trials. Thus it is not clear
whether the three-session group benefit resulted from the over-
all larger number of learning opportunities or from the spacing
of learning opportunities across sessions, which has been am-
ply documented for the learning of verbal information (for
review, see Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006).
Therefore, and although a recent study found no spacing effect
for the perceptual learning of speech in hearing-aid users (Tye-
Murray, Spehar, Barcroft, & Sommers, 2017), in the present
study we manipulated both the overall number of trials and
their spacing across sessions.

In addition to the number of training trials, another factor
reported to widen the scope of acoustic-semantic transfer is the
variability of the training set. Specifically, for learning a non-
native speech contrast (Lively et al., 1993) as well as for im-
proving the recognition of accented speech (Bradlow & Bent,
2008), it has been reported that experience with a larger number
of different talkers during practice supports the transfer of learn-
ing to new talkers (“acoustic transfer”). A common interpreta-
tion for these findings is that greater stimulus variability during
exposure facilitates adaptation to talker-independent character-
istics of the accented or non-native speech (Baese-Berk,
Bradlow, & Wright, 2013; Bradlow & Bent, 2008). However,
in the case of time-compressed speech, the pattern of learning
that emerges following intensive training shows some degree of
specificity to the trained tokens, even without the introduction
of a new talker (Banai & Lavner, 2014; Manheim et al., 2018).
This suggests that our training protocols resulted in listeners
focusing on high-level cues rather than on the low-level cues,
which would have afforded generalization to new tokens that
share the acoustic-phonetic structure (i.e., the same talker) of
the trained stimuli (Nahum, Nelken, & Ahissar, 2008). We rea-
soned that a “denser sampling” of the relevant acoustic-
phonetic space (by increasing the number of different tokens)
should support the transfer of learning to new tokens taken from
the same acoustic space (Greenspan et al., 1988). Therefore,
instead of manipulating the number of trained talkers, we ma-
nipulated the number of different tokens that were introduced
by a single talker during training.We askedwhether the number
of different tokens had any effect of transfer to new semantics

(new sentences presented by a familiar talker) and to transfer to
new acoustics (familiar sentences presented by a new talker).

Methods

Participants

Seventy undergraduate University of Haifa students (mean
age = 25 years, SD = 2; 67 females) with no prior experience
with time-compressed speech participated in this study after
giving their consents in accordance with the guidelines of the
Faculty of Social Welfare and Health Sciences ethics commit-
tee (permit 199/12). By self-report all participants were native
speakers of Hebrewwith normal hearing and had no history of
learning or attention deficits. One participant dropped out and
did not complete all assessments. Therefore, we report data
from 69 participants (nine to 11 per group, see Table 1).
Sample size was determined based on previous studies that
showed that groups of ten participants were sufficient to un-
cover learning and generalization in both single and multi-
session training protocols with intermediate to large effect
sizes (Banai & Lavner, 2014, 2016). Therefore, this number
should allow for the detection of any facilitative effects of the
manipulations used in the current study.

Stimuli

A set of 260 sentences in Hebrew, five to six words each
(based on Prior & Bentin, 2006), were used in this study.
Half of the sentences were semantically plausible (e.g., “the
grumpy chef prepared a great meal”) while the other half were
implausible (e.g., “the woolly sheep measured the green
dress”). All sentences were recorded and sampled at 44 kHz
by two young male native Hebrew speakers using a standard
microphone and PC sound card. One of the speakers, with a
natural speech rate of 107 words/min and average fundamen-
tal frequency (F0) of 106 Hz (range: 86–132 Hz, mean for-
mant dispersion: 929 Hz; F1: M = 601 Hz, SD = 77, F2: M =
1,225 Hz, SD = 118, F3: M = 2,415 Hz, SD = 199), recorded
all 260 sentences. This speaker was designated “the familiar
talker,” and his recordings were used for both training and
testing. The other speaker (the new talker), with a natural
speech rate of 124 words/min and average F0 of 108 Hz
(range: 81–145 Hz, mean formant dispersion: 1,008 Hz; F1:
M = 587 Hz, SD = 78, F2: M = 1,282 Hz, SD = 113, F3: M =
2,604 Hz, SD = 218) recorded 20 of the sentences that were
used to test for cross-talker transfer of learning. Although the
use of a male familiar talker and a female transfer talker would
have provided a stronger test of acoustic transfer, we note that
the two male talkers were clearly distinct, and in addition to
the differences in formant values and dispersion shown above,
give the impression of having different voice qualities. In a
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previous study with these two speakers and an additional fe-
male speaker, transfer across the two male talkers was similar
in magnitude to the transfer across genders (Banai & Lavner,
2012). AWSOLA algorithm (Verhelst & Roelands, 1993) was
used to time-compress the sentences in the time domain.

Sentences were used as follows: 240 sentences recorded by
the familiar talker were used for training in the large stimulus-
set conditions (see below). Sixty of these sentences (randomly
selected) were included in the small-set training conditions.
Twenty of these 60 sentences were used to assess baseline
performance as well as training-induced learning. The remain-
ing 20 sentences from the familiar talker (which were not
included in any other set) were used to assess transfer to
new items (semantic or cross-token transfer). The 20
sentences recorded by the new talker were assigned to the
cross-talker (acoustic) transfer set.

Overview of the design, experiment schedule,
and test conditions

Participants were randomly assigned to one of seven groups –
an untrained control group (C, n = 10) and six training groups.
Training focused on the recognition of time-compressed
speech using different training protocols (described below).
All listeners participated in an initial baseline assessment
and a test session conducted 14–21 days apart. Listeners
assigned to the training groups completed additional training
in between the baseline and test sessions, as described below.

Phases and tasks

Baseline To assess initial performance with time-compressed
speech, 20 sentences recorded by the familiar talker were pre-
sented compressed to 30% of their naturally spoken duration.
This rate was used in our previous studies (Banai & Lavner,

2014, 2016; Gabay et al., 2017), and was selected initially
based on a pilot study that suggested that for this talker, a
compression of 35% yielded very accurate performance,
which left little room for training-related improvements.
Listeners were instructed to listen to each sentence and write
it down as accurately as they could. The task was self-paced
and no feedback was provided.

Training An adaptive sentence verification task was used
across all six training protocols. For this, blocks of 60
sentences, selected at random (without replacement) from
the relevant training set were presented. Each training block
always contained 30 plausible and 30 implausible sentences.
Randomization was applied as follows: First an individual
trial was selected as plausible or implausible, and then a sen-
tence was randomly selected from the appropriate group of
sentences within the stimulus set. The process restarted once
all stimuli of a given set were presented.

After listening to each sentence listeners were asked to
indicate whether it was plausible or not by clicking a corre-
sponding button on the computer screen. Feedback was pro-
vided for both correct (a smiling cartoon face) and incorrect (a
sad cartoon face) responses. On the first trial of each training
block, the sentence was compressed to 63% of its natural rate.
Subsequently, the level of compression changed based on par-
ticipants’ responses in a two-down/one-up staircase procedure
(Levitt, 1971) to a maximum of 20% of the natural speech rate
of the familiar talker. The staircase comprised of 25 logarith-
mically equal steps such that after two initially correct re-
sponses compression dropped to 0.52, then to 0.44 and so
forth. All stimuli during training were presented by a single
talker (the trained talker, see below). Previous work suggests
that this adaptive protocol yields more learning of time-
compressed speech than other possible protocols (Gabay
et al., 2017).

Table 1 Training groups and protocols

Spacing (number of training sessions)

One (massed training) Four (distributed training)

Training intensitya 60 trials/session 240 trials/session 60 trials/session 240 trials/session
Training set sizeb

Large (240 different sentences) --c L240X1 (n = 10) L60X4 (n = 9) L240X4 (n = 11)

Small (60 different sentences) --d S240X1 (n = 9) S60X4 (n = 10) S240X4 (n = 10)

Each cell shows the acronym for one of the trained groups based on the three experimental variables: training intensity (60 or 240 trials/session), training
set size (large or small) and spacing. The number of participants per group is given in parentheses within each cell
a The length of each of the training sessions. A greater number of trials is considered more intense training
b The number of different sentences that were included in the training set for a given protocol; L = a large training set of 240 different sentences; S = a
small training set of 60 different sentences; 1 = a single training session; 4 = 4 training sessions
c Impossible to implement
d Deemed unnecessary based on previous findings
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The six training protocols differed on three parameters (see
Table 1): (1) training set size (large stimulus set – 240 different
sentence or small stimulus set – 60 different sentences); (2)
spacing of the training trials (all massed in a single session or
distributed across four sessions, conducted on different days);
(3) intensity of training (60 trials per session, delivered within
approximately 5–7 min, or 240 trials per session, approxi-
mately 25–30 min). The specific protocols were as follows:

1) Massed training with a large stimulus set (L240X1):
Participants completed a single training session of 240
different sentences, presented in four blocks of 60 trials
each.

2) Massed training with a small stimulus set (S240X1):
Participants completed the same training as above with
a stimulus set of 60 different sentences, such that each
sentence was repeated four times during training.

3) Brief distributed training with a large stimulus set
(L60X4): Participants completed four training sessions
of 60 trials each. A different set of 60 sentences was
presented in each session such that each sentence was
encountered only once during training. This protocol is
identical to the L240X1 protocol, but distributed over
four sessions.

4) Brief distributed training with a small stimulus set
(S60X4): Participants completed four training sessions
of 60 trials each. The same 60 sentences were presented
in each session such that each sentence was presented
four times during training. This protocol is identical to
the S240X1 protocol, but distributed over four sessions.

5) Long distributed training with a large stimulus set
(L240X4): Participants completed 960 training trials dis-
tributed over four training sessions of 240 trials each (four
blocks of 60 trials in each session). Each of the 240 differ-
ent sentences was presented once on each training session.

6) Long distributed training with a small stimulus set
(S240X4): As in the previous protocol, participants com-
pleted 960 training trials distributed over four training
sessions of 240 trials each. However as only 60 different
sentences were used in training, each sentence was en-
countered four times per session, and 16 times throughout
training.

The different training protocols were designed to test the
effects of three training-related variables – training intensity,
training distribution (massed vs. spaced) and training set size,
but the design is not fully factorial for three reasons: First, the
inclusion of one untrained control group would not have fitted
a factorial design. Second, according to the findings of a pre-
vious study from our lab (Banai & Lavner, 2014), little se-
mantic transfer was observed with a single training session of
100 trials. Therefore, we decided against the inclusion of a
training group with a single brief training session. Third, even

if such a group would have been included, an exhaustive
pairing of the three training variables is impossible because
it is not possible to administer a large training set with a single
60-trial training session.

Test Participants were tested on three tests of 20 sentences
each, all compressed to 30% of their natural duration and
presented at a fixed order (learning, transfer to new items,
transfer to new talker). The writing task from the baseline
phase was used again. Sentences in the three tests shared dif-
ferent features with the trained stimuli as follows:

1) Learning: This test was designed to assess performance
with stimuli that were encountered (by the trained listeners
during training). The 20 sentences used for baseline assess-
ment were presented again to all participants. A compari-
son of performance on this test across groups indicates
whether training resulted in improved performance relative
to controls who participated in the baseline assessment but
received no training and whether learning was influenced
by stimulus set size, spacing, and training intensity.

2) Transfer to new items (semantic transfer): To assess per-
formance with new sentences that were not encountered
with either of the previous phases, 20 new sentences (pre-
sented by the familiar, trained talker) were presented. A
comparison of performance on this test across group in-
dicates whether there was transfer of learning to new
sentences and whether transfer depended on stimulus set
size, spacing, or training intensity.

3) Transfer to new talker (acoustic transfer): The 20
sentences from the baseline and learning tests were pre-
sented again by a new talker to assess performance with
time-compressed speech with new acoustic features. A
comparison of performance on this test across groups
indicates whether learning was specific to the acoustics
of the familiar talker and whether this specificity was
influenced by set size, spacing, or training intensity.

Data analysis

Recognition accuracy for each of the baseline and test condi-
tions was determined for each listener by calculating the per-
centage of correctly reported words on their written transcripts.
Errors reflecting erroneous recognition of the auditory words
(e.g., errors in tense or suffix) were all counted as errors, but
homophonic spelling errors were ignored. Raw recognition
scores (percent correct) are reported in the text and figures for
ease of interpretation, but statistical analyses were carried out
on rationalized arcsine transformed scores (Studebaker, 1985)
because raw scores were not normally distributed.

The current study does not include a pre-test of all test
conditions. Therefore, determination of learning and transfer
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effects is based on test-phase performance. Such analysis is
only valid to the extent that baseline performance is similar
across the different groups, which is why a baseline assess-
ment of a single condition of time-compressed speech was
included. Several reasons led to the selection of this perhaps
less-than-ideal design. First, multiple studies (e.g., Altmann &
Young, 1993; Dupoux & Green, 1997) have documented a
very rapid phase of time-compressed speech learning.
Substantial rapid learning during the pre-test can “mask” po-
tential differences between the training protocols, especially
on the transfer conditions in which training-related effects can
be expected to be subtle (see Banai & Lavner, 2014). Second,
a similar design with minimal pre-testing seems to dominate
studies of the perceptual learning of speech (e.g., Borrie et al.,
2017; Bradlow & Bent, 2008; Peelle & Wingfield, 2005).
Finally, the major outcomes of strong training-related learning
and more subtle training-related semantic transfer were qual-
itatively similar when compared between previous studies in
which difference scores were used (Banai & Lavner, 2012;
Manheim et al., 2018) and those in which the design was
similar to that of the current study (Banai & Lavner, 2014;
Gabay et al., 2017).

Data were analyzed with a one-way analysis of variance
(ANOVA, with group as independent factor) of the data from
each of the test conditions followed by a Bayesian analysis
intended to compare the relative odds of two competing hy-
potheses (a null hypothesis, H0, of no group differences and
an alternative hypothesis, H1, that not all groups perform equal-
ly) given the performance data, assuming equal priors. In addi-
tion, planned comparisons (t tests) were conducted on the test
phase data. These were used to determine whether training had
an effect on performance in that condition, and whether the size
of the training set, spacing or training intensity had any effect on
learning and its transfer to stimuli that are somewhat different
from those encountered during training. Cross-token (semantic)
and cross-talker (acoustic) transfer were tested. To these ends,
six contrasts were calculated (see Table 2). One planned com-
parison was carried out to test the hypothesis that training had
an influence on the recognition of time-compressed speech.
Test phase performance was compared between the control
group on the one hand and all six training groups on the other.
Five additional comparisons were used to test hypotheses about
the effects of the three training related manipulations employed
in this study – training intensity, the spacing of training across
sessions, and training set size, as follows:

1) The effect of spacing was tested by comparing the two
groups that practiced for 240 trials massed in a single
session (S240X1 and L240X1) to the two groups that
practiced for the same number of trials distributed across
four training sessions (S60X4, L60X4).

2) The effect of training intensity, that is whether increasing
the duration of each practice session and thus the overall

number trials encountered during training, was tested by
comparing the two groups that received brief training ses-
sions (S60X4 and L60X4) to the two groups that received
longer training sessions (S240X4 and L240X4).

3) The effect of the training set size (i.e., whether encounter-
ing a greater variety of stimuli during training is favor-
able) was tested by comparing the groups that practiced
with a large training set (L240X1, L60X4 and L240X4) to
those that practiced with a small training set (S240X1,
S60X4, S240X4). Due to the notion prevalent in speech
science, that stimulus repetition is detrimental to the trans-
fer of learning (e.g., Greenspan et al., 1988) the remaining
planned comparisons were also devoted to the effects of
the training set size. Each of those focused on two groups
with the same amount of training to account for the pos-
sibility that the effect of set size depends on the overall
length of training.

4) The effect of set size for brief training sessions was tested
by comparing the two groups that received brief training
sessions with the two different set sizes (L60X4 vs.
S60X4).

5) Likewise, the effect of set size for more intense training
sessions was tested by comparing the two groups that
received long training sessions with either large
(L240X4) or small (S240X4) training sets.

For the ANOVAs, Levene tests were used to determine
homogeneity of variance across groups and degrees of free-
dom were adjusted accordingly in cases of violation. Partial
eta-squared (η2p) was used to estimate the ANOVA group
effect sizes. For the planned comparisons, effect sizes are re-
ported using Cohen’s d. Although these comparisons were all
pre-planned, not all comparisons were orthogonal. Therefore,
to account for multiple comparisons, critical alphas were ad-
justed with Bonferroni corrections based on the number of
times data from each group was used in the planned compar-
isons (see Table 2). These analyses were carried out in SPSS
(v.23).

A Bayes factor corresponding to each of the ANOVAs
(assuming equal priors) was calculated in JASP (JASP team,
2018). Bayes factors for the planned comparisons were calcu-
lated using the calculator provided by Dienes (2008). Bayes
factors are the ratios of the likelihoods of two competing hy-
potheses (H0, that there is no group difference and H1 that the
groups differ) given the data (Dienes, 2008). In the current
study, H1 was modelled based on the training effects obtained
in our previous studies (relative to untrained controls) (Banai
& Lavner, 2014; Gabay et al., 2017; Tarabeih-Ghanayim,
Lavner & Banai, 2019). We reasoned that the effect of any
of the training related variables cannot be larger than the over-
all effect of training which we estimated at 25% for learning
and acoustic transfer and 15% for semantic transfer. This
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calculation is different from the more standard approach in
which no explicit assumptions about the size of the expected
effect are made, but we found it appropriate for two reasons:
First, as explained above, we expected semantic transfer ef-
fects to be relatively small. Therefore, it seems reasonable to
base the calculation on realistic expectations based on previ-
ous data. Second, as replications often result in smaller effect
sizes than the original studies (see, e.g., Dienes & Mclatchie,
2018), constraining the calculation based on previous data is
still quite conservative because if the group effect in the cur-
rent data is substantially smaller than expected, the resulting
Bayes factors are also expected to be small.

Bayes factors larger than 3 are considered as evidence for
H1; Bayes factors smaller than 1/3 are considered as evidence
for H0; values between 1/3 and 3 are cases in which the data
provides no real evidence as to the relative probability of H1
and H0 (Dienes & Mclatchie, 2018).

Training phase data is hard to compare across groups due to
the differences between the training protocols and thus this data
is not presented. Inspection of the learning curves from previ-
ous studies of adaptive training on time-compressed speech
(Banai & Lavner, 2014, 2016) suggest gradual improvements
during training both within and across training sessions.

Results

Baseline performance

Baseline performance (see Fig. 1) was similar across the seven
groups of participants despite large variability across individ-
ual participants. Consistent with the visual inspection of the
data, an analysis of variance with group as independent factor
failed to reject the null hypothesis that group means are similar
across groups (F(6,62) = .48, p = .82, η2p = 0.045). A
Bayesian analysis was used to compare the relative odds of

the two competing hypotheses (H0 that all groups perform
similarly and H1 that there are group differences in baseline
performance) given the observed baseline data. The resulting
Bayes Factor was small (BF10 = 0.086), which is considered
strong evidence in favor of the null hypothesis. Therefore,
group differences in test-phase performance can be attributed
to training rather than to initial differences in the recognition
of time-compressed speech.

Test phase performance

Training-induced learning and transfer were estimated by
comparing test-phase performance across groups. Group
means and confidence intervals are presented in Fig. 2.
Descriptively, performance appears poorest withmassed train-
ing (shown with triangles) and best with intensive distributed
training (shown in diamonds) with intermediate performance

Fig. 1 Baseline performance across groups. Means (filled symbols) and
95% confidence intervals are shown for each group. Individual data are
shown in smaller, unfilled symbols

Table 2 Planned comparisons

Contrast number Effect Groups Critical alphae

1 Training Control vs. all trained 0.05

2 Spacinga L240X1 & S240X1 vs. L60X4 & S60X4 0.025

3 Intensityb L60X4 & S60X4 vs. L240X4 & S240X4 0.025

4 Set-size L240X1, L60X4 & L240X4 vs.
S240X1, S60X4, S240X4

0.017

5 Set-sizec (brief sessions) L60X4 vs. S60X4 0.017

6 Set-sized (intense sessions) L240X4 vs. S240X4 0.017

aAll groups received the same total number of training trials, therefore this contrast allows teasing out the effect of distributing a given number of trials
across a number of sessions
bGroups with different numbers of total training trials are compared to estimate the effect of training intensity, collapsing across set size
c,d These test the effect of set size for groups with the same numbers of training trials
e Critical alpha adjusted where necessary using Bonferroni correction
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following brief distributed training (squares). This observation
is also consistent with Fig. 3, which shows training effect sizes
relative to the untrained control group, which also appear to
increase from left to right. Statistical analyses were carried out
on the data from each test condition, focusing on the planned
comparisons between training groups (Table 2).

Learning Performance on the learning condition is shown on
the left side of Fig. 2 and learning effect sizes (relative to
untrained controls) are shown on the left side of Fig. 3.
Generally, trained groups had higher speech recognition than
untrained controls, with medium (0.5) or higher effect sizes.
One-way ANOVAwith group as independent factor and rec-
ognition of the previously encountered sentences as depen-
dent factor yielded a significant group effect (F(6,62) = 8.02,
p < .001, η2p = 0.437), which was also supported by the
Bayesian analysis (BF10 = 3.383e+6 ). Planned comparisons
suggested first that the effect of training (all trained groups vs.
untrained controls) was significant with a strong effect size
(t(62) = 4.88, p < 0.001, Cohen’s d = 1.33). The Bayesian
analysis also provided strong evidence for the training effect
(BF = 53,418). Second, the overall effect of spacing the train-
ing experience over multiple sessions was not significant
(L240X1 and S240X1 vs. L60X4 and S60X4; t(62) = 1.61,
p = .113, Cohen’s d = 0.52), and the Bayesian analysis failed
to provide conclusive support for H1 over H0 (BF = 1.29).
Third, longer training sessions (i.e., the intensity effect)
yielded greater learning than shorter ones (L240X4 and
S240X4 vs. L60X4 and S60X4; t(62) = 2.47, p = .016,
Cohen’s d = 0.84, BF = 6.89). Finally, the overall effect of
set size was not significant once multiple comparisons
accounted for (t(62, = 2.24, p = .028, Cohen’s d = 0.54), but
the Bayesian analysis provided evidence that practice with a
small set size may have resulted in greater learning than prac-
tice with a large set size (BF = 3.28). The outcomes of the
analyses in which the effect of set-size was assessed for either
brief (Fig. 2, left panel, L60X4 vs. S60X4, t(62) = 2.18, p =
.033, Cohen’s d = 0.99) or intense training sessions (Fig. 2,
left, L240X4 vs. S240X4, t(62) = 0.68, p = .501, Cohen’s d =
0.45) were consistent with those of the overall analysis. The
Bayesian analysis again provided some evidence of a set size
effect with brief (BF = 5.2) but not long (BF = 0.45) training
sessions (note, however, the high level of performance in the
two groups who received distributed training with long train-
ing sessions).

Transfer to new tokens (semantic transfer) Performance on
the new tokens condition (Figs. 2 and 3, middle section) also
differed across groups (F(6,62) = 5.63, p < 0.001, η2p = 0.353;
BF10 = 1,829). As for learning, trained groups recognized new
tokens more accurately than the untrained control group with
medium to large effect sizes. Furthermore, a visual inspection
of Fig. 2 suggests that performance improved as training was
distributed across sessions.

Planned comparisons suggested that the effect of training
(all trained groups vs. untrained controls) was significant
(t(62) = 3.89, p < .001, Cohen’s d = 1.33, BF = 585).
Consistent with the visual inspection, distributing the training
over four sessions yielded more transfer to new tokens than
massing it in a single session (L240X1 and S240X1 vs.

Fig. 2 Test-phase performance by training protocol and condition. Left
to right: Learning (performance with sentences encountered in baseline
and training), transfer to new tokens (performance with new sentences
presented by the familiar talker) and transfer to a new talker (performance
with sentences encountered in baseline and training presented by the
unfamiliar talker). For each condition, the 95% confidence interval of
the control group is marked by a gray rectangle. For each trained group,
mean and 95% confidence interval are shown. The two single session
groups (triangles) are shown to the left of each panel, followed by the two
groups who received distributed training with brief sessions (squares)
then those who received distributed training with intense sessions
(diamonds). Empty and filled symbols mark groups that practiced with
the small set size and large set size, respectively

Fig. 3 Learning and transfer effect sizes. For each of the trained groups,
Cohen’s d relative to untrained controls is shown. For the order of the
groups (left to right, see Fig. 2)
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L60X4 and S60X4; 6(62) = 2.45, p = .015, Cohen’s d = 0.74,
BF = 11.77). Also consistent with the visual inspection, inten-
sity and training set-size had no effect on transfer to new
tokens (intensity effect: t(62) = 1.65, p = .104, Cohen’s d =
0.57, BF = 2.24; overall set-size effect: t(62) = -0.24, p = .812,
Cohen’s d = 0.04, BF = 0.26; set-size effect with brief training
sessions: t(62) = 0.59, p = .558, Cohen’s d = 0.26, BF = 0.74;
set- size effect with more intense training sessions: t(62) = -
0.32, p = .750; Cohen’s d = -0.16, BF = 0.55).

Cross-talker transfer (acoustic transfer) As shown in Fig. 2
(right side), performance with the unfamiliar talker appears
poorer than in the other conditions, but still different across
groups (F(6,62) = 11.79, p < .001, η2p = 0.533, BF10 =
8.609e+7). Trained groups tended to outperform the untrained
group with medium to large effect sizes (see Fig. 3).

Planned comparisons (with degrees of freedom corrected
because equal variances could not be assumed across groups)
suggested that the effect of training was significant (t(13) =
5.88, p < .001, Cohen’s d = 1.70, BF 6.199e+6). Furthermore,
although there were no statistical evidence that distributing
training across four sessions contributed to performance
(t(25) = 1.62, p = .117, Cohen’s d = 0.53, BF = 2.04), training
intensity (t(19) = 3.67, p = .002, Cohen’s d = 0.91, BF = 284)
and set size both had an effect. Overall, training with a smaller
training set yielded greater transfer to the unfamiliar talker
than training with a larger training set (t(30) = 3.59, p =
.001, Cohen’s d = 0.81, BF = 229). This was true regardless
of training intensity (brief sessions: t(11) = -3.40, p = .006,
Cohen’s d = 1.58, BF = 149; long sessions: t(16) = -2.58, p =
.020, Cohen’s d = 1.11, BF = 9.68).

Discussion

The present findings are consistent with two general conclu-
sions. First, the perceptual learning of time-compressed
speech is robust, because at test, trained listeners
outperformed the untrained control group across test condi-
tions and regardless of the training protocol. Second, although
the number of different tokens encountered during training
and the length of each training session influenced learning
and its acoustic transfer (to a new talker repeating familiar
sentences), these manipulations had no effect on the critical
test of semantic transfer (new tokens produced by the trained
talker). Of the three training-related variables we considered,
spacing was the only one that had an effect on transfer to new
tokens. Distributing training over a number of sessions result-
ed in greater cross-token transfer than massing the same num-
ber of training trials during a single session. In the following
paragraphs, these aspects of the findings are discussed and the
implications for the utility of training for clinical or education-
al purposes are considered.

In the current study, when multi-session training was pro-
vided, longer training sessions resulted in greater learning of
the trained stimuli and in greater cross-talker transfer, but not
in greater cross-token transfer. It thus seems that simply pro-
vidingmore training time on each session was not sufficient to
drive listeners to rely on low-level speech cues in lieu of their
default reliance on high-level cues (Ahissar et al., 2009;
Mattys et al., 2009). This finding extends previous observa-
tions from auditory discrimination training that beyond a cer-
tain threshold, providing additional daily training was not ad-
vantageous and may have actually slowed learning (Molloy,
Moore, Sohoglu, & Amitay, 2012; Wright & Sabin, 2007). It
is also consistent with the notion that perceptual learning is
specific to the physical characteristics of the trained stimuli
and that further practice with the same stimuli might actually
result in greater learning specificity (Greenspan et al., 1988;
Hussain et al., 2012). On the other hand, for a total given
number of trials, distributed training resulted in greater trans-
fer to new tokens than massed training, and this was true both
with and without stimulus repetition during training. This
finding suggests that the previous observations that generali-
zation lagged behind learning and required more practice ses-
sions to emerge (Banai & Lavner, 2014; Wright, Wilson, &
Sabin, 2010) are less likely attributable to the overall number
of training trials and more likely associated with the distribu-
tion of practice.

Distributed training, learning, and transfer

Finding that of the different training protocols, distributed
training was the only one that contributed to cross-token trans-
fer is meaningful because transfer is considered the hall mark
of speech learning, and because the application of speech
training for education or rehabilitation depends on transfer.
Although this would have been expected given the vast liter-
ature on the effects of distributed training on recall in verbal
learning studies (Cepeda et al., 2006), the current finding dem-
onstrates that spacing can support the transfer of learning even
with no direct effect on learning itself. This is consistent with
the suggestion that auditory perceptual learning and transfer
operate by partially distinct mechanisms (Wright et al., 2010).
Furthermore, to our knowledge this is the first demonstration
of the contribution of distributed training to the perceptual
learning of speech because a previous study on the perceptual
learning of speech in noise (Tye-Murray et al., 2017) found no
differences between the distributed andmassed protocols. Due
to the large number of differences between this study and ours
(including the type of perceptually difficult speech used, the
study population, the overall length of the training protocol
and the tasks performed during training), further research is
required to determine the replicability and extent of the dis-
tributed training effect reported here.
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Why would distributed training improve the transfer of
learning to new tokens? According to the Reverse Hierarchy
Theory (RHT, see Introduction), cross-token transfer requires
the use of the low-level cues associated with time compression.
These cues are not readily accessible to listeners with no prior
experience with compressed speech, but can become usable
with certain types of practice (Ahissar et al., 2009; Francis
et al., 2007). That distributed training resulted in more transfer
thanmassed training suggests that of the training protocols used
here, distributed practice provides the conditions necessary to
make low-level cues most accessible at test. Consistently, pre-
vious studies showed that multi-session (i.e., distributed) train-
ing with whole words (presented as synthetic or noise-vocoded
speech) lead to improved identification of individual conso-
nants (Francis et al., 2007; Stacey & Summerfield, 2008).
One reason that distributed training was the most effective in
doing so might be that it provides learners multiple opportuni-
ties to consolidate and reconsolidate learning (Fenn et al., 2003;
Karni & Sagi, 1993), such that after training the relevant low-
level cues were more accessible than in the other training pro-
tocols. Indeed, for accented speech, where cross-talker differ-
ences limit the transfer of learning, transfer to a phonetically
distinct talker was larger in a group who had the opportunity to
consolidate learning overnight than in a group that was re-tested
on the same day (Xie, Earle, & Myers, 2018). Similarly, the
cross-modal transfer of temporal discrimination gains associat-
ed with practice was also larger after overnight consolidation
(Bratzke, Schroter, & Ulrich, 2014).

We note that in the current study the training-to-test interval
was longer for the groups that completed massed training (6–7
days) than for the groups that completed distributed training (2–
3 days). This was because we required that all participants
complete the study within a fixed period of time, and also that
there be a minimal spacing of the training sessions in the dis-
tributed training groups. Therefore, it could be argued that the
effect of distributed training stemmed not from the distribution
of training, but rather due to greater decay of learning in the
massed training groups. We think this is unlikely given that
time-compressed speech learning has been shown to maintain
for substantially longer periods of time (even up to a year,
Altmann & Young, 1993). Comparisons of data from previous
studies in which the overall design was similar to that of the
current study also suggests similar learning and transfer effect
sizeswhen 1–10 days have elapsed between training and testing
(Banai & Lavner, 2012, 2014, 2016; Manheim et al., 2018).

Stimulus repetition during training, learning,
and transfer

In the present study, the number of different sentences encoun-
tered during training had little effect on the transfer of learning to
new tokens. However, and consistent with the notion that small
stimulus sets increase the specificity of learning (Greenspan

et al., 1988; Hussain et al., 2012), the groups that experienced
only 60 different sentences during training exhibited (according
to the Bayesian analysis) more learning of the trained items and
more transfer when trained items were presented by a new talker
than the groups that experienced 240 different sentences. Note,
however, that because the talkers in the current study were both
men with similar voice pitch, further studies with more acousti-
cally distinct talkers are required to test the generality of this
finding. As for semantic transfer, while we hesitate to offer a
strong interpretation for a null finding, several differences can
account for why here, practice with a larger number of different
sentences had no effect on the token specificity of learning.

The main difference between our study and previous stud-
ies that served the basis of the notion that item variability
positively contributes to generalization (Baese-Berk et al.,
2013; Bradlow & Bent, 2008) is that we increased the number
different stimuli without increasing the number of different
talkers. As explained in the Introduction, this was motivated
by previous findings that learning of time-compressed speech
has a token-specific component even for the trained talker.
Data also suggest that for time-compressed speech, transfer
to new tokens presented with new acoustics is limited
(Manheim et al., 2018; Tarabeih-Ghanayim, Lavner, &
Banai, 2019). It had been suggested that wider sampling of
the acoustic space of a single talker by increasing the number
of sentences for the same talker supports the transfer of learn-
ing to new tokens (Greenspan et al., 1988). Nevertheless, this
manipulation had no effect on the transfer of learning to new
items in our study, suggesting that 60 different sentences may
have provided sufficient sampling of the acoustic-phonetic
space of the trained talker presented in time-compressed for-
mat. To determine whether talker variability diminishes learn-
ing specificity (or increases transfer) for new talkers present-
ing new tokens requires further studies. One previous study
(in older adults) suggests that with no stimulus repetition at all
and with different talkers encountered during training, resil-
ience to time compression continued to improve throughout
13 training sessions delivered over the course of 4 weeks
(Karawani et al., 2015). It could be that the effects of set size
thus depend on the overall duration of training. Alternatively,
recognition memory due to sentence repetition during practice
may have reduced the transfer of learning to new sentences.
Note however that for a given training protocol, large set sizes
(with no sentence repetition) yielded similar amounts of trans-
fer to new sentences as did small set sizes (with sentence
repetition) (see Fig. 3, mid panel). For example, when com-
paring the two groups who practiced for four brief sessions,
the effect sizes of transfer to new tokens were similar whether
listeners practiced with 240 different sentences or whether
they practiced with 60 different sentences each repeating four
times. The same was true for the single session groups.
Therefore, while token repetition may result in specific mem-
ories for the trained tokens even when presented by a new
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talker and thus contribute to acoustic transfer, these memories
do not seem to interfere with the transfer of learning to new
tokens presented by a familiar talker.

Another potential difference between the current and previ-
ous studies is that in the past stimulus variability supported
learning when the critical parameter could have been easily
conceived as categorical. Thus, in studies of non-native pho-
neme learning, non-native listeners need to learn to classify into
different categories based on a feature that is non-contrastive in
their first language (e.g., Lively et al., 1993). Similarly, talkers
can usually be classified based on their accent or regional dia-
lect (e.g., Clopper & Pisoni, 2004). In these cases, variability
may support the transfer of learning by emphasizing the general
attributes of the different categories at the expanse of talker- or
item- specific attributes (Baese-Berk et al., 2013). However, in
the current study, it is hard to conceive of distinct time-
compressed categories because during training the level of
compression changed adaptively based on performance (see
Banai & Amitay, 2015, for further discussion of this issue).

Conclusion

Whereas the very rapid learning of time-compressed speech is
highly transferable across items, talkers, compression rates and
even languages, the learning that occurs with further practice is
more item specific. Of the three training-related parameters
considered here, only the distribution of practice across several
sessions contributed to the transfer of learning. It remains to be
seen whether other manipulations such as increasing the num-
ber of different talkers or spacing training over a greater num-
ber of sessions influences learning specificity, but as it currently
stands the observed specificity limits the utility of time-
compressed speech training for real-world applications.
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