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Abstract
After viewing a series of sequentially presented visual stimuli, subjects can readily generate mean representations of various
visual features. Although these average representations seem to be formed effortlessly and obligatorily, it is unclear how such
averages are actually computed. According to conventional prototype models, the computation entails an equally weighted
average taken over all the stimuli. To test this hypothesis, we had subjects estimate the running averages of some feature in a
series of sequentially presented stimuli. Part way through the series, we perturbed the distribution from which stimuli were
drawn, which allowed us to test alternative models of the computations behind subjects’ estimates. In both explanatory and
predictive tests, a model in which the most recent items had disproportionate high weight outperformed a model in which
all items carried equal weight. Such recency-weighted behavior was shown consistently in multiple experiments in which
subjects estimated running averages of length of vertical lines. However, the degree to which recent items were prioritized
varied with the type of stimulus, such that when estimating the running averages of a series of numerals, subjects showed
less recency prioritization. We conclude that previous evaluations of prototype models have made unrealistic assumptions
about the nature of a prototype, and that a reassessment of prototype models of visual memory and perceptual categorization
may be in order.

Keywords Summary statistical representation · Ensemble representation · Prototype model · Visual short-term memory ·
Perceptual categorization

Introduction

A fundamental question in cognitive neuroscience is how
the brain deals so effectively with the overwhelming amount
of sensory input it receives, encoding fine details of
selectively attended stimuli, while also retaining a stable
representation of the larger environmental context. Various
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theoretical accounts postulate that some balance is struck
between the quality and quantity of information that is
extracted and maintained, but the details of that balance
between quality and quantity are unresolved.

On one hand,many influential accounts of perception,mem-
ory, and categorization assign a central, or even exclusive,
role to the outcome of matches between a probe stimu-
lus’ features and features of individual items in memory
(Estes, 1994; Hintzman & Ludlam, 1980; Nosofsky et al.,
2011; Shiffrin & Steyvers, 1997). On the other hand, some
accounts of both perceptual and short-term memory tasks
assume that summary statistical representations (also called
ensemble representations), extracted from sets of stimuli,
are key to subjects’ performance, even when memory
for individual items is reduced to chance (Ariely, 2001;
Corbett & Oriet, 2011). Moreover, memory for averages
appear to influence memory retrieval even in the absence
of instruction or encouragement to report or compute an
average (Dubé & Sekuler, 2015). Such evidence suggests
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that, at least in some cases, summary representations may
be obligatorily encoded, stored, retrieved, and deployed.

These findings raise important questions, such as (i)
whether summary representations rely on mechanisms that
are distinct from those that encode and store individual item
representations; (ii) how ensemble and item representations
impact memory retrieval; (iii) how statistical moments are
represented at the neural level; and (iv) whether sequential
and spatial averaging rely on the same or different mech-
anisms. To answer these questions, computational models
seem to be indispensable.

Of course, any computational modeling of summary
statistical representation must include (i) the number of
items that enter into the computation, and (ii) the form
of the computation. To answer the first question, Whitney
and Leib (2018) pooled results from 21 related studies and
argued that subjects effectively integrate approximately the
square root of the number of all displayed objects (Whitney
& Leib 2018). As our study focuses on tasks in which
subjects average sequentially presented stimuli (henceforth,
“sequential averaging”), we evaluated this square root
relationship only for the five sequential averaging studies.
Figure 1 shows that results of those five studies deviate
substantially from a square root relationship. As a result, we
are cautious about taking the square root relation as a given
for incorporation into a model of sequential averaging.

Answers to the second question, of how the stimuli are
combined in the average, are also not consistent across
studies. For instance, in studies focused on perceptual clas-
sification such questions are often not even posed. Instead,
it is assumed that, if an average or “prototype” were com-
puted, it would be an equally weighted average over all prior
stimuli (Nosofsky, 1987; Smith & Minda, 2000). However,
results from some studies of ensemble perception are con-
sistent with non-equally weighted averaging schemes (Juni
et al., 2012; Hubert-Wallander & Boynton, 2015).

In the following, we first discuss the critical findings
regarding sequential averaging in visual short-term memory
(VSTM). We then present experiments designed to identify
the weighting scheme that subjects apply when producing
estimates of averages over trials. We conclude that the
averages extracted from a sequence of stimuli reflect
a recency-prioritized weighted average. We discuss the
implications of our findings for existing models of memory
and perceptual categorization, and underscore the need for
a reassessment of prototype models in these domains.

Weighting scheme in sequential averaging

What ensemble features are encoded in sequential averaging
tasks? Subjects could form representations of the mean over
time when they are explicitly instructed to do so (Albrecht
& Scholl, 2010; Hubert-Wallander & Boynton, 2015) or

0 5 10 15 20

0
2

4
6

8
1
0

Total number of stimuli in set

E
ff
e

c
ti
v
e

 n
u

m
b

e
r
 o

f 
s
ti
m

u
li
 i
n

te
g

ra
te

d

1

2

3

4
5

Fig. 1 The proposed square root relationship between total number
of stimuli presented and the effective number of stimuli integrated
(solid line, Whitney & Leib 2018) does not fit the sequential
averaging studies very well. Labels beside data points indicate the
following sources: 1. Hubert-Wallander and Boynton (2015), 2. Leib,
Kosovicheva, & Whitney (2016), 3. Leib et al. (2014), 4. Piazza et al.
(2013), 5. Florey, Dakin, & Mareschal (2017). Figure 1 is reproduced
from Figure 4 in Whitney & Leib (2018), using data points from
sequential averaging studies only

without explicit instruction (Dubé & et al. 2014; Oriet &
Hozempa, 2016). Other than the mean, variance priming
(Michael et al., 2014) and perceptual adaptation of variance
(Norman et al., 2015) suggest implicit encoding of the
variance information. One recent study, Chetverikov et al.
(2016), also established that subjects implicitly encode the
entire feature distribution of the distractors in visual search
tasks over time.

The current study focuses on the ensemble perception of
sequentially presented stimuli, especially the mechanism of
item integration in sequential averaging.While conventional
prototype models typically assume an averaging process
in which all items are weighted equally, an alternative
hypothesis assumes that subjects’ estimates of averages
give more weight to the most recent items. A recency-
prioritized weighting scheme has been demonstrated for the
sequential averaging of many features, e.g., size, emotion,
and motion directions, although not for the averaging of
spatial locations (Hubert-Wallander & Boynton, 2015).

The recency hypothesis for averaging assumes that
although the average may be stored in long-term memory,
the items factoring into its computation on a given trial
may be in various stages of serial position-dependent decay
(Wilken &Ma, 2004; Huang & Sekuler, 2010). Since recent
items have stronger memory representations at the time
of an average’s computation, those items will be given
more weight in that computation. In fact, that differential
weighting would be consistent with a mathematically
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optimal strategy for item integration, in which subjects
assigned more weights to items at serial positions with less
noise (Juni et al., 2012).

In what follows, we report four experiments meant
to identify the weighting scheme that subjects use when
they report running averages over sequentially presented
stimuli. In doing so, we include models based on both
serial positions and temporal positions, and with multiple
weighting schemes. Our results support the operation of
an averaging computation that is recency-weighted. This
suggests that prototypes are not simple averages, and that a
reconsideration of prototype models is in order.

Experiment 1

Mean-shift design

Most previous studies of sequential averaging drew stimuli
randomly from a single distribution, and at the end of
a series of stimuli, subjects estimated the mean of what
they had seen (e.g., Hubert-Wallander & Boynton 2015).
The current study introduces two design changes. The first
change is that after every new stimulus, subjects report the
mean value of all the stimuli they have seen up to that
point (Weiss & Anderson, 1969). This greatly increases the
amount and grain of the resulting data, supporting more
efficient and reliable modeling analysis about the weighting
schemes. In a second design change, the mean value of
the distribution from which stimuli were drawn shifted
midway in the sequence (Parducci, 1956). The advantage
of this mean-shift design is to enhance the discriminability
of alternative weighting schemes in the empirical data,

by examining subjects’ estimates in the aftermath of the
shift.

In short, the mean-shift design allows fine-grained track-
ing of subjects’ estimates of the running means and provides
better differentiation between different item integration
mechanisms. We elaborated the advantages of the design
changes by a simulation with two quite different weighting
schemes. Specifically, we simulated ideal observers’ esti-
mates of the running means assuming a model, Equal, in
which subjects gave equal weight to all items, and a model,
Recency, in which subjects utilized all previous items, but
prioritized more recent items.

The simulated estimates and stimuli are plotted in Fig. 2,
showing that when all the stimuli were from the same
Gaussian distribution (left panel), the simulated responses
from the two weighting schemes (solid black for Recency
and dashed black for Equal) were largely overlapped,
making it difficult to tell which weighting scheme was in
use. However, when there was a mean shift in the stimulus
values (right panel), the two weighting schemes were clearly
differentiated after the mean shift. So, compared to an
experiment in which only a single stimulus distribution is
used, suddenly shifting the mean of the stimulus distribution
can highlight the weighting scheme that subjects are using.
With this fact in mind, we incorporated the mean shift
design in Experiment 1 and the other experiments.

In addition to the above benefits, we also wonder if
the mean-shift design could alter subjects’ item integration
mechanism, specifically, promoting a higher degree of
recency weighting after the mean shift. On post-shift trials,
stimuli from the pre-shift distribution may be weighted less
or discounted in item integration due to their significant
differences from the ongoing stimulus distribution, since
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Fig. 2 Benefits of the design changes: By asking subjects to estimate
the running means after presentation of every stimulus and adding a
shift of the distribution mean, the simulated responses using two dif-
ferent pre-determined weighting schemes are more clearly separated.
Left panel: mean = 10. Right panel: pre-shift mean = 10, post-shift
mean = 20. The standard deviation of stimuli was kept constant

(SD = 2) for the left panel and both pre- and post-shift parts of the
right panel. The Recency scheme uses exponentially decaying weights
with a rate of 0.9 (see Modeling analysis section of Experiment 1 for
more details). The vertical dotted line in the right panel denotes trial
60, the last trial on which a stimulus was sampled from the pre-shift
distribution
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it has been shown that outliers may be excluded in mean
estimations (Haberman & Whitney, 2010).

To address this potential confound, we asked each subject
to complete three sequences with different mean-shift
configurations, “Small Shift”, “Large Shift”, and “Large
Variance” (See Methods section for details). If the mean
shift does promote recency in item integration, we would
expect more recency in the “Large Shift” condition where
the shift is most distinctive, and less recency in the “Large
Variance” condition, where the elevated variance makes the
mean-shift less obvious to subjects.

Methods

Subjects

Fifteen University of South Florida undergraduates partici-
pated in the experiment for course credit (ten female, mean
age = 19.53 years, SD = 1.36 years). All had normal or
corrected-to-normal vision. All procedures were approved
by the IRB of University of South Florida.

Procedure

Subjects were presented with a sequence of gray vertical
lines, one at a time. Each line was displayed in the center
of the screen for one second. After each gray line, subjects
were asked to estimate the average length of all the gray
lines they had seen to that point in the sequence by
using up and down arrow keys on a computer keyboard
to adjust the length of a white probe line to represent
that estimate. This adjustable, white probe was presented
on the screen immediately after the disappearance of each
gray line. Stimuli and probes were presented in different
colors to reduce the potentially confounding influence of the
probe length on estimates of prior stimuli. When subjects
completed an adjustment, they pressed the keyboard’s Enter
key to proceed. The next stimulus appeared on the screen
right after the subject submitted his/her estimate. The same

presentation procedure was used in Experiments 1 and 2, as
detailed in Fig. 3.

Prior to the experiment, the QUEST (Watson & Pelli,
1983) routine was used to measure each subject’s Weber
fraction for line length. On each trial, QUEST controlled the
successive presentation of two vertical lines (500 ms each,
1000 ms ISI) at the center of the screen. After each pair of
stimuli, subjects judged which had been longer. Feedback
was given after each response (“correct” or “wrong”).
Subjects’ individual Weber fractions were obtained from a
QUEST run of 40 trials and were used to scale all stimuli in
just noticeable difference (JND) units for the experiment.

The stimuli were scaled with individual Weber fractions
and a base length of 100 pixels, so the actual stimulus size in
pixels was 100∗(1 + wb)x, where wb is the Weber fraction
and x is the JND value (specific JND values are detailed in
the next section). The prior for the Weber faction used in
QUEST had mean = .03 (Teghtsoonian, 1971) and SD = .04.
The large values of SD provided a vague prior. For the 20
subjects (15 from Experiment 1 and five from Experiment
2), the mean Weber fraction was .064 and SD was .016.

Subjects were provided with detailed instructions and
practice trials to ensure their understanding of the task. The
instructions can be found in the Supplementary Materials.

Design and stimuli

The stimulus values presented in this paragraph are all in
JND units. In the “Small Shift” condition, the pre- and post-
shift means are 15 and 25, with a SD of 5. The “Large Shift”
condition used a larger mean shift (pre/post-shift means =
15/30, SD = 5). The “Large Variance” condition used a
larger variance across the sequence (pre/post-shift means =
15/25, SD = 8). The order of the three mean-shift conditions
was counterbalanced across subjects.

For each sequence, line lengths were drawn randomly
from one of two Gaussian distributions with different means
but the same SD. Line lengths were sampled from the range
spanned by ±2 SDs around a distribution’s mean. Each
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Fig. 3 Stimulus and probe presentation time in Experiments 1 and 2.
A stimulus was presented for one second, and the probe was pre-
sented immediately after the stimulus, for a duration that depended on

subjects’ reaction time and the time for adjusting the probe. The com-
pletion time for each trial was recorded, allowing modeling of the data
with both serial positions and temporal positions
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entire stimulus sequence comprised 120 trials, split equally
between pre- and post-shift trials. Starting on the 61st trial,
the mean value of the distribution from which stimuli were
drawn was altered. Subjects were not informed that stimuli
might change during a sequence.

With the exception of the very first trial, the initial length
of the adjustable probe line on successive trials was set
to the value of the subject’s immediate prior response. On
the first trial, the length of the first probe was fixed at 5.4
degrees of visual angle (Experiment 2 examines whether
the probe’s initial value affects judgments). Stimuli were
presented on a Dell 1905FP LCD computer monitor, with
a resolution of 1280 × 1024, at a viewing distance of
approximately 60 cm.

Because actual stimulus sizes were personalized for each
subject based on their individual Weber fraction, the actual
stimulus sizes were different for each subject. Across all
subjects and all conditions, the mean and SD of stimulus
lengths in visual angle were 9.63 and 5.85 degrees.

Modeling analysis

The data comprise subjects’ successive estimates of the
running means and the stimulus values. For each complete
sequence, 120 data points were recorded.

The data were fitted with three models representing
different item integration mechanisms, namely the Equal,
Recency, and Compression model. The Equal model
predicts the mean estimates to be the actual running
averages of the stimuli. All items were weighted equally in
the averaging process, regardless of their serial positions.
We included the Equal model as a null model to compare
with the following two models.

In the Recency model, subjects’ estimates were modeled
as the dot product of a stimulus vector and a weight
vector (Weiss & Anderson, 1969; Juni et al., 2012; Hubert-
Wallander & Boynton, 2015). The weight vector is recency-
prioritized (Newer items have more weights). Additionally,
a bias term was added to capture any systematic bias in
observers’ estimates (3).

si = (s1, s2, . . . , si) (1)

wi = r{1:i}/
∑

r1:i (2)

Esti = wi · si + bias + ε. (3)

In the serial position-based modeling analysis, the weight
vector is assumed to be strictly serial-position dependent.
The Recency weights were modeled as a normalized
exponential function defined over the serial position of
successive stimuli (Brown et al., 2007). The exponents
represent the serial positions of the stimuli. The rate
parameter, r, ranges from 0 to 1, allowing the model to
capture different degrees of recency prioritization: a smaller

r indicates a higher degree of recency prioritization, and
when r equals 1, wi reduces to 1/i for each of the i stimuli,
representing Equal averaging. Dividing by the summed
weights of all stimuli within a trial normalizes the weight
term, so that all weights sum to one for each single trial’s
estimation. The r parameter is responsible for the shape of
the weight distributions, thus it is the parameter of interest.
We aim to evaluate the best-fitting r values and compare
them to the null hypothesis of an Equal weighting scheme
(r = 1).

We also tested an alternative construct of the Recency
model using a normalized power function to model the
weights. The power-based model performed worse than the
exponential-based model, so we kept the Recency construct
as specified in Eq. 2. See Supplementary materials for
details.

It is worth noting that in sequential averaging studies,
the same stimulus can be characterized in terms of either
temporal position (e.g., the item was presented x seconds
ago) or serial position (e.g., the item was presented y items
back), so, the influences on the averaging computation may
come from factors of either temporal or serial positions, or
both. To address this issue, we ran an alternative temporal
position-based modeling analysis, in which the weight
vector was assumed to be strictly time-dependent. The
centers of stimulus presentation durations were used as
temporal positions. For each trial, the prior items’ temporal
distances (in seconds) to the newest item were used as the
exponents over the rate parameter. So, each prior item was
weighted based on its temporal distance to the current trial.
This temporal position-based Recency model was added
to the model comparison. In the following sections, we
termed these two models as Recency-s (serial) and Recency-
t (temporal).

The Compression model provides an alternative account
in which subjects complete their estimation by updating
their immediate previous estimation (a single “compressed”
representation of the previously shown items) with the
newest stimulus. This strategy is plausibly encouraged as
a strategy in Experiment 1 because subjects are asked to
frequently estimate the running averages and the initial
value of the adjustable probe on each trial is set to subjects’
estimation on the previous trial.

Esti = wold · Esti−1 + wnew· si + bias + ε (4)

wold = (i − 1)· f · wnew (5)

wold + wnew = 1 (6)

In the Compression model, an ideal observer should
adjust the relative weights of their previous estimation and
the new stimulus, by putting less weight on the new stimulus
as the sequence extends to include additional stimuli. We
modeled subjects’ estimations as a weighted average of their
previous estimation (“old”) and the newly shown item
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(“new”), plus a constant bias term and random noise. This
description is summarized in Eq. 4. Constraints on the
weights for “old” and “new” items are summarized in Equa-
tions 5 and 6 below. To elaborate, the weighting relationship
between the “old” and “new” terms is modulated by a factor
parameter f, which ranges from 0 to 1. When f = 1, the new
stimulus will take a weight of 1/i in the estimation, which
is the ideal ratio for the task and relates to equally weighted
averaging. When f = 0, the weight on a new item is 1, which
means subjects rely solely on the newest item.

For each model, we separately fit each stimulus sequence
from each subject. To obtain the best-fitting parameters,
we computed the sum of squared error between model
predictions and observed estimates and minimized the error
term using the “L-BFGS-B” bounded optimization method
(Byrd & et al. 1995). The initial value used for r and f was
1, with the boundaries set to (0, 1]. The initial value used for
the bias term was 0, bounded at [-50, 50].

Results and discussion

Data from three representative subjects are plotted in
Fig. 4 (All individual plots can be found in Supplementary
Materials). Data from all mean shift types (SS for “Small
Shift”, LS for “Large Shift”, and LV for “Large Variance”)
showed a general pattern, namely that subjects’ estimates of
the mean did not follow predictions from the Equal model.

After the mean shift (the vertical dotted line in the
middle of the sequence denotes the final pre-shift trial),
the influence of the recent stimuli grew more evident
as subjects’ estimates rose toward the mean of the post-
shift distribution, increasingly deviating from the equally
weighted moving averages. Individual differences were
observed. For instance, Subject 9’s estimates closely varied
with the new stimulus, demonstrating a greater influence of
the most recent item. Subject 15’s estimates changed less in
the post-shift trials. Subject 12’s estimates reflected a degree
of Recency in between. Despite the individual differences
we observed, no subject showed estimates that aligned with
predictions based on the Equal model.

These results suggest that that subjects’ estimates were
unlikely to arise from the Equal model. In the following
section, we compared the performance of the two non-equal
models: Recency and Compression.

Model comparison

For each model, we conducted model fitting for all
sequences separately. The best-fitting parameters are shown
in Table 1. To evaluate the performance of non-equal
models, we conducted both explanatory and predictive tests.

In the explanatory test, all the observed data were fitted
with the competing models. As a result, we obtained best-
fitting parameters for each model, and compared the model
fits to the data using root mean squared error (RMSE). The
model with the smallest RMSE “explains” the observed data
the best.

Note that a model that excels in the explanatory test can
fail in the predictive test, in which part of the observed data
are used to obtain parameters to predict the remaining data
that are not used in parameter training. One notable reason
is overfitting, suggesting that if explanatory performance is
the sole mode of assessment, the model could end up fitting
meaningless noise and error in the data. Unfortunately, a
lack of predictive assessment is common in psychological
modeling studies (Shmueli, 2010; Yarkoni & Westfall,
2017). We adopt the suggestions from Shmueli (2010)
to treat explanatory and predictive performance as two
dimensions of model performance assessment.

Explanatory tests Explanatory performances were summa-
rized in Table 2. The three non-equal models (Compression,
Recency-s, and Recency-t) consistently outperformed the
Equal model, again suggesting the Equal model is least
likely to capture the item integration mechanism among
competing models.

Among the non-equal models, the Recency models (both
Recency-s and Recency-t) outperformed the Compression
model. This result suggests that subjects are more likely
to integrate multiple recent items (Recency models) rather
than updating a compressed prior estimation (Compression
model).

The explanatory performances of the two Recency models
are almost identical. The mean RMSE difference between
the two Recency models is 0.003, compared to the mean
RMSE difference from Compression model (1.19) and
Equal model (27.99). This is due to high correlation (mean
correlation coefficient = 0.99) between serial and temporal
positions used in the two Recency models. So, from the
current design and analysis, it is unclear whether the cause
of Recency weighting is from serial positions or temporal
positions. Future studies could make timing controls more
specific to separate the influence from these two factors.

Going forward, we will use Recency-s as the representa-
tive model due to its excellent explanatory performance. The
three mean-shift conditions (“Small Shift”, “Large Shift”,
and “Large Variance”) did not affect the recency rate param-
eters, F(2, 28) = 0.041, p = 0.96. If the abrupt up-shift of
the mean had significantly influenced subjects’ item integra-
tion, we would expect the modeling results to differ among
the three conditions. The similar best-fit parameters among
mean-shift conditions suggest this possibility is unlikely.
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Fig. 4 Data from three representative subjects in Experiment 1. The
black solid lines represent subjects’ estimates. The black dashed lines
represent predictions from the Equal model. The gray solid lines rep-
resent the stimuli. Before the mean shift (marked by the vertical dotted
line, the first post-shift trial being the 61st), subjects’ estimates gen-
erally hover around the mean of the pre-shift distribution. After the
mean shift, subjects start to overestimate the running means, shown as
the upward departure of the estimates (black solid) from the equally
weighted moving averages (black dashed). This pattern is observed in

all mean shift conditions (SS: small shift, LS: large shift, LV: large
variance). Individual differences were observed. Subject 9’s estimates
closely varied with the new stimulus, demonstrating a greater influence
of the most recent item. Subject 12’s estimates reflected a moderate
recency-weighted scheme. Subject 15’s estimates were more stable in
the post-shift trials. Nevertheless, none of the subjects showed esti-
mates that overlapped with the equally weighted moving average. All
individual plots can be found in Supplementary Materials
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Table 1 Best-fitting parameters of Experiment 1

Model SS LS LV

RS r 0.86 (0.12) 0.86 (0.1) 0.86 (0.13)

bias 0.7 (1.98) 0.57 (1.8) 1.8 (1.91)

RT r 0.94 (0.06) 0.94 (0.04) 0.96 (0.06)

bias 0.73 (1.97) 0.57 (0.88) 1.83 (1.88)

CM f 0.35 (0.37) 0.29 (0.3) 0.45 (0.42)

bias 0.05 (0.13) 0.07 (0.11) 0.16 (0.2)

Models are Recency-Serial (RS), Recency-Temporal (RT), and Com-
pression Model (CM). The mean-shift conditions are “Small Shift”
(SS), “Large Shift” (LS), and “Large Variance” (LV). Best-fitting param-
eters are presented in a “mean (SD)” format over subjects (N = 15)

Since the mean-shift manipulation did not affect the
modeling parameters, we averaged each subject’s best-
fitting r parameters from the three conditions. The group
average of the r parameter is 0.86, suggesting a recency
prioritization (this group-averaged best-fitting r was used
to estimate the effective number of items integrated later
in this paper). A one-sample t test rejects the Equal null
hypothesis, t (14) = -4.71, p < 0.001.

Predictive tests In the predictive tests, we used the averaged
best-fitting parameters from ten randomly sampled subjects
to predict data from a new subject. For training, best-fitting
parameters from all mean shift conditions were averaged
together. For testing, the sequence at test was randomly
sampled from a new subject whose responses were not
used in the parameter training. This predictive process was
repeated with random sampling 100 times and predictive
performance (RMSE) was averaged over iterations.

In general, the non-equal models outperformed the Equal
model (Fig. 5). Among the non-equal models, the Recency
models were better than the Compression model. Detailed
results are reported in Table 2 (Predictive RMSE).

Table 2 Mean explanatory and predictive RMSE of Experiment 1.
Models are Recency-Serial (RS), Recency-Temporal (RT), Compres-
sion Model (CM), and Equal (EQ)

Models Explanatory RMSE Predictive RMSE

RS 1.90 (1.44) 8.67 (8.20)

RT 1.90 (1.44) 8.68 (8.19)

CM 3.10 (2.92) 10.88 (9.23)

EQ 29.89 (18.63) 33.43 (18.76)

Mean RMSE values are presented in a “mean (SD)” format. The explana-
tory performance was summarized over subjects (N = 15) and the
predictive performance was summarized over repetitions (N = 100).
The best model performance (lowest RMSE) for each test is marked in
bold

Model comparison results In both explanatory and predic-
tive tests, the Equal model performed the worst among all
models. Does the model performance of the non-equal mod-
els benefit from adding the bias term? We tested an alter-
native form of the Equal model with a bias term to capture
systematic under- or over-estimation. In both explanatory
and predictive tests, the Recency-s model outperformed this
Equal model (ps < 0.001). So, the determinant of model
performance is not the bias term but the weight distribution
in item integration.

In the non-equal models, the Recency model outper-
formed the Compression model in both tests. The perfor-
mance of Recency models based on serial positions and
temporal positions are close to each other in both tests
(Table 2).

To sum up, the Equal averaging scheme does not seem
like a plausible explanation or prediction mechanism for
subjects’ estimates of the running means of sequentially pre-
sented stimuli. To estimate the running averages, subjects
are more likely to utilize multiple recent representations
rather than updating a single compressed representation of
all prior stimuli. Subjects are likely to assign more weight
to more recent items in their item integration.

Effective number of items integrated (ENI)

Both explanatory and predictive tests favored the Recency
weighting scheme. The averaged best-fitting rate parameter
for the Recency-s model was 0.86, suggesting that in a task
of tracking the running means of sequentially displayed
stimuli, subjects rely more on recent stimuli, rather than
treating all items equally. The group-averaged weight
distributions, plotted in the left panel of Fig. 6, show that a
few of the most recent stimuli accounted for the majority of
the weights, leaving other older stimuli a small fraction of
the total weights to split between them.

To quantify this observation, we defined Effective
Number of items Integrated (ENI) as the fewest items
that are needed to accumulate weights over a certain
threshold. We found that to account for 90% and 95%
of the cumulative weight required the most recent 16
and 20 stimuli, respectively. Since the Recency-s model
assumes the weights follow an exponential function of serial
positions, the weights assigned to these prioritized items
are not uniformly distributed over the items either (e.g.,
the most recent five stimuli alone provide >50% of the
cumulative weights). Hence, a conclusion on ENI depends
on the criterion that is used. For the current study using
vertical lines, ENI90 = 16, ENI95 = 20, a small fraction of
the total sequence length of 120.

Whitney and Leib (2018) suggested a square root rela-
tionship between the ENI and the total number of stimuli,
although the studies cited for ENI values did not share a
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Fig. 5 Model predictions from competing models. The averaged best-
fitting parameters from ten randomly sampled subjects to predict
data from a new subject. For training, best-fitting parameters from
all mean shift conditions were averaged together. For testing, the
sequence at test was randomly sampled from a untrained subject.
Both Recency and Compression model outperformed the Equal model.

The Recency model showed better prediction for subjects with more
recency-weighted pattern (e.g., Subject 9). The predictions from the
Recency-s and Recency-t models are overlapping with each other, due
to highly correlated serial and temporal positions. Note that the plots
are from one random instance from the predictive test. Summarized
results over repetitions are reported in Table 2

unified definition of ENI. Our data seem to suggest a ceil-
ing of the ENI regardless of the total number of items in
the sequence. Looking back at the five sequential averag-
ing studies cited in Fig. 1, we see that the total numbers of

stimuli in those studies are small (less than 20), and the esti-
mated ENIs (max at 10) are far below the ceiling suggested
in the current results (around 20). This suggests the possi-
bility of a two-stage relationship between the ENI and total
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Fig. 6 Left panel The recency patterns in the weight distributions from
the group-averaged best-fitting r parameter (mean r = 0.86, from the
line conditions of Experiments 1 and 2). Each set of connected dots
is one weight distribution. The number of lines in the sequence is
denoted by each weight distribution. As the number of items increases,
the weights are distributed over more items, but the recency pattern
exists for sequences of all lengths. For visual convenience, only four
sequence lengths (2, 3, 5, and 10) are shown. Right panel. The degree

of recency differs in the line and numeral conditions, where subjects
assigned weights to more items in the numeral condition than the line
condition. The black solid line represents the line condition and the
black dashed line represents the numeral condition. Gray dotted lines
are 90% and 95% thresholds, and the projections of their crossings
with the cumulative weights on the horizontal axis are the ENI for the
respective level. For the line condition, ENI90 = 16 and ENI95 = 20.
For the numeral condition, ENI90 = 69 and ENI95 = 86
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number of stimuli, that the two may have a certain func-
tional relationship (e.g., the square root relation), however,
the maximum number of ENI may also be capped at some
upper limit.

Themean-shift design

Previously in the introduction, we mentioned two concerns
over the mean-shift design: (i) the distinctive shift in
the mean may encourage recency in item integration, (ii)
reporting the mean on every trial may encourage subjects to
compress prior items into a single representation rather than
averaging prior items. Modeling results ruled out these two
concerns in Experiment 1.

Firstly, the best-fitting parameters from the three mean-
shift conditions were not significantly different from each
other, contrary to the idea that the distinctiveness of
the mean-shift encourages recency in item integration.
Secondly, the better model performance of the Recency
model over the Compression model suggests that by
requiring subjects to report the mean on every trial, the
preceding stimuli are unlikely to be compressed into a single
value, as suggested in the Compression model.

In sum, our results challenge prior treatments of
prototype models as equally weighted averages over all
items (Nosofsky, 1987; Smith & Minda, 2000), and call
into question the conclusions drawn on the basis of those
assumptions.

Experiment 2

In Experiment 1, the initial value of the adjustable probe
on each trial (except the first trial) was set to the subject’s
response from its immediate previous trial. This may have
encouraged subjects to base their estimations on their
previous responses. This strategy is reasonable because the
responses are naturally auto-correlated in this task, but we
wonder whether the starting values were responsible for the
previous results that suggest recency weighting. Existing
studies using the method of adjustment have used either
random starting values (Haberman & Whitney, 2010) or
fixed values that are outside the range of the regular stimuli
(Huang & Sekuler, 2010). In Experiment 2, we changed
the starting values of the adjustable probes to a fixed small
value.

Additionally, we aim to determine whether the findings
in Experiment 1 are limited to line length. To this end, we
include a condition in which subjects are asked to keep track
of the running averages of sequentially displayed numerals.
Unlike simple visual stimuli like vertical lines, numerals are
symbols that carry conceptual information that is directly
related to subjects’ estimation responses. So, Experiment 2

afforded a direct comparison of response patterns from the
line and numeral tasks.

Methods

Subjects Ten new subjects participated in the study, five
each for the line and numeral conditions (Seven female,
mean age = 18.7 years, SD = 1.06 years). All had normal or
corrected-to-normal vision. All procedures were approved
by the IRB of University of South Florida.

Procedure, design, and stimuli For the line condition, all
specifications were the same as the “Large Shift” condition
in Experiment 1, except that the starting value of the
adjustable probe was set to a fixed small value on each trial.
The value is 4 pixels (0.11 degrees in visual angle), the same
size as the width of the line, so the probe looked like a dot
on the screen. This starting length was chosen to ensure the
probe contained as little line length information as possible.
The dot probe is far outside the range of regular stimulus
lines, so it is unlikely to confound the estimations.

For the numeral condition, the stimuli used were one or
two-digit integer numerals, and the task was to estimate the
average value of all the preceding numerals. No QUEST
procedure was applied because we assumed that any
difference between integer numerals is equally detectable,
so data were recorded in the original numerical scale. The
starting values of the probes were set to zero. The pre/post-
shift means were 20/50 and the standard deviation was 5.
The smallest adjustment step is one.

Results and discussion

The results, summarized in Fig. 7, show that data from the
line condition generally resemble those of Experiment 1.
However, subjects’ estimations were closer to the equally
weighted means in the number condition. This suggests
that the weighting schemes for sequential averaging differ
for different types of stimuli. One possible explanation for
this particular difference between lines and numerals is
that participants have considerable experience in estimating
numerical quantities in everyday life and are subject to
extensive testing of the accuracy of mental arithmetic.

To quantify the differences in the response patterns, we
fit the data with the Recency-s model from Experiment 1.
For the line condition, the mean best-fitting r was 0.86, the
same value found in Experiment 1. This suggests that results
in Experiment 1 were not due to the influence of the probe
line’s initial length.

For the numeral condition, the mean of the best-fitting
r was 0.97. One of five subjects in the number condition
showed recency like we found in the line conditions in
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Fig. 7 Data from Experiment 2. The black solid lines represent subject’s estimates. The black dashed lines represent predictions from the Equal
model. The gray solid lines represent the stimuli. Upper five panels: Line condition. Compared with Experiment 1, our results suggest that the
starting value of the probe did not affect the response pattern in the line condition. Subjects’ estimates do not follow the equally weighted moving
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was found between the best-fitting rate parameters for the line and numeral conditions
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Experiments 1 and 2. For the other four subjects, the best-
fitting rate parameters were close to 1, suggesting equal
or near-equal weighting schemes. A Welch two-sample t-
test revealed a significant difference in the best-fitting r
parameter between the line and numeral condition, t (23.86)
= -3.38, p = 0.002.

We also found the ENI90 = 69 and ENI95 = 86 for
the numeral condition, which are considerably higher than
those of the line condition (ENI90 = 16, ENI95 = 20).
This indicates subjects utilized many more items when esti-
mating the running means of numerals. Despite individual
differences, with some subjects showing recency weighting
and others not, the overall prioritization of recent items is
much less evident than in the line conditions.

To summarize, by comparing the line data from
Experiments 1 and 2, we ruled out the influence from the
starting values of the probes in the line condition. However,
the type of stimulus, line vs. numeral, did significantly
influence subjects’ response patterns. Subjects differentially
weight more recent items in both tasks but incorporate many
more items when tracking the running average of numerals.

Experiment 3

Experiment 3 used a mean shift paradigm similar to that of
Experiment 1, but the direction of the shift was manipulated
(upward vs. downward shifts), to test whether the findings
from previous experiments were specific to their shared
direction of the shift.

Methods

Subjects Twelve new subjects participated in Experiment 3.
Subject 9 was excluded due to incomplete data, so eleven
subjects’ data were analyzed (six female, mean age = 19.17
years, SD = 0.94 years). All had normal or corrected-to-
normal vision. All procedures were approved by the IRB of
University of South Florida.

Procedure, design, and stimuli Subjects were presented
with a sequence of gray vertical lines, one at a time. Each
line was displayed in the center of the screen for one second.
After each gray line, subjects were asked to estimate the
average length of all the gray lines they had seen to that
point. Subjects showed their estimations by adjusting a
white probe, which appeared on the screen after a one-
second blank screen after each gray line, by moving the
computer mouse. Stimuli and probes were presented in a
different color to reduce any confounding influence of the
probe length on estimates of prior stimuli. When subjects
completed an adjustment, they pressed the space bar on the

keyboard to proceed, triggering a 500-ms blank inter-trial
buffer, which was followed by the next trial.

The lengths of the stimuli were drawn from Gaussian
distributions. The mean lengths of the two halves of the
sequence were 200 and 400 pixels (5.62 to 11.21 degrees in
v.a.) The SD of the line lengths was 100 pixels (2.81 degrees
in v.a.). Line lengths drawn outside two SDs from the mean
were resampled. The number of lines in a full sequence
was 60, where the mean-shift occurred on the 31st trial.
The adjustable line was always displayed as a white dot, as
specified in Experiment 2. Each subject went through six
sequences, interleaved with upward and downward mean-
shifts. The direction of the mean-shift of the first sequence
was randomly assigned across subjects.

Results and discussion

Using the same Recency-s model in Experiment 1, we
obtained the best-fitting r parameters for all the sequences.
We averaged the parameters within subjects, so each subject
had two mean best-fitting r parameters, one for upshift
and one for downshift. The differences between the mean
upshift and downshift r parameters were tested against zero,
t(10) = -1.87, p = 0.09. The upward sequences (mean = 0.83)
show a smaller mean best-fitting r parameter, suggesting
a higher degree of recency than the downward sequences
(mean = 0.89), but the difference was not significant. Both
r parameters are significantly different from 1, indicating
recency-weighting is both upshift and downshift sequences

To further compare the difference between upshift and
downshift conditions, we calculated the signed post-shift
estimation error for upshift and downshift sequences for
each subject. The estimation error was linearly scaled to
[-1, 1] for each sequence from each subject, using the
signed difference between estimates and equally weighted
averages, divided by the maximum value of the absolute
difference.

The signed estimation error allows us to see how subjects
estimate in different directions of mean-shifts. Under the
Recency model, subjects would show overestimation in the
up-shift conditions and underestimation in the down-shift
conditions in the post-shift trials, because their estimates
relied more on the recent stimuli which deviate with the pre-
shift means. Most subjects’ data confirmed this prediction,
but individual differences were also observed (Fig. 8).

We calculated the mean estimation error for upward
and downward blocks for each subject. If there was no
magnitude difference between the upward and downward
blocks, the sum of mean upward and downward errors
should be around zero for each subject, since upward block
generally showed overestimation and downward showed
underestimation. We conducted a one-sample t-test on the
summed mean error from upward and downward blocks
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Fig. 8 Mean and SD of normalized post-shift estimation error for all
subjects and all sequences. Horizontal axes are the block order (1 is
the oldest). Subject 9 was excluded due to incomplete data. For most
subjects, the estimation error is positive (overestimation) for up-shift

blocks and negative (underestimation) for down-shift blocks. Individ-
ual differences (e.g., Subject 1, 4, and 5) were also observed. There is
no significant difference in the magnitude of estimation error between
upward and downward blocks

against zero. Results showed no significant difference, t (10)
= 0.85, p = 0.41. To conclude, the direction of the mean
shift did not influence subjects’ estimations of the running
means.

Experiment 4

In the previous experiments, subjects reported the running
means after every stimulus. Does this requirement affect
the item integration mechanism when subjects report the
means? In Experiment 4, subjects only report one mean
value at the end of each of the sequences. We estimated the
weight distributions with multiple regression and compared
the estimates with predictions from the Recencymodel used
in previous experiments.

Methods

Subjects Twenty new subjects participated in Experiment 4
(Five male, mean age = 19.85 years, SD = 1.04 years). All

had normal or corrected-to-normal vision. All procedures
were approved by the IRB of University of South Florida.

Procedure Experiment 4 had two conditions varying in the
number of lines in the sequence (five-line and ten-line).
The twenty subjects were equally divided between the two
conditions. There were 140 and 80 trials per subject in the
five-line and ten-line conditions, respectively.

In the experiment, a series of vertical lines was displayed
sequentially on the center of the screen. Each line was
presented for 0.5 s and followed by a 1-s blank screen before
the next line. After the blank screen following the last line
in the sequence, an adjustable “dot” appeared in the center
of the screen.

The task was to estimate the average line length of the
sequence of lines, by adjusting the probe dot using the mouse.
When subjects moved the mouse up or down, the probe dot
expanded vertically in both directions at the same rate into
a line, so the line was always displayed in the center of the
screen. When satisfied with their estimates, subjects pressed
the space bar on the keyboard to submit. No time limit was
set for the adjustment phase. A trial ended with the subject’s
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submission, followed by a 1-s blank screen before the next
trial. As in Experiment 2, the design choice of making the
adjustable probe a “dot” aims to minimize the influence of
the initial probe values on subjects’ adjustments.

Stimuli The sequence means were randomly sampled from
a uniform distribution between 200 and 400 pixels. The line
lengths within the sequences were sampled from Gaussian
distributions centered at the sequence means with a fixed
SD of 100 pixels. All random lengths were taken absolute
values to ensure that there were no negative values.

Results and discussion

Weight distribution estimation Unlike Experiments 1–3,
where subjects reported the running means after each
stimulus, in Experiment 4 subject reported one mean for
each sequence. This design makes it difficult to estimate
the weight distribution for each sequence. To compensate,
we added a large number of sequences for each subject,
and use a multiple regression method to estimate the
weight distribution (Juni et al., 2012; Hubert-Wallander &
Boynton, 2015). Subjects’ responses were regressed onto
the stimuli at different serial positions with no interaction
terms. The group-averaged regression coefficients were
then standardized to sum to one as an estimate of the weight
distribution.

Figure 9 shows that the estimated weight distributions
of the five-line (solid triangle) and ten-line (solid circle)
conditions in Experiment 4 match the predictions from
the Recency model (open circle), using the averaged best-
fitting r parameter (r = 0.86) from the line conditions in
Experiments 1 and 2. Individual weight distributions can
be found in the Supplementary Materials. Subject 6 from
the five-line condition was excluded from the group average
because data suggested that this subject was reproducing
the last item, rather than estimating the average of the five
items, due to the overly high coefficient to the most recent
item (greater than 0.96) and near-zero coefficients for other
serial positions.

From Fig. 9, we learn that subjects also show recency
weighting in tasks where they report one mean at the end
of the sequentially presented stimuli. More importantly,
the estimated weighting schemes are well predicted by the
best-fitting parameter in the Recency model from previous
experiments, suggesting that the same item integration
mechanism may be in use across the sequential averaging
experiments, whether or not subjects report the means after
every stimulus.

The item integration mechanism could still be influenced
by task differences (report running means vs. report one
mean) in a manner that the current analysis is incapable
of revealing. Subjects could be reinforced by their frequent
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Fig. 9 The estimated weight distributions of the five-line (solid
triangle) and ten-line (solid circle) conditions in Experiment 4 match
the predictions from the Recency model (open circle), using the
averaged best-fitting r parameter (r = 0.86) from the line conditions in
Experiments 1 and 2

reports in the running mean task. Future studies may
investigate how keeping track of the running means affects
the performance of sequential averaging.

General discussion

Feature-matching models of memory and perception,
such as the exemplar-based random walk model (EBRW,
Nosofsky & Palmeri 1997; Nosofsky et al. 2011), assume
that decisions about probes entail a parallel match to stored
memory representations of individual items. Importantly,
such models exclude any role for memory representations
of central tendency. Indeed, the generalized context model,
EBRW’s core, has been used in competitive fits in order to
rule out models assuming central tendency representations
(prototypes) factor into such decisions (e.g., Nosofsky &
Zaki 2002; Smith & Minda 2000). Yet these efforts have
typically assumed the prototype to be a simple arithmetic
mean over the prior stimulus features. If this assumption
is wrong, then a reassessment of prototype theory may be
necessary and prior conclusions rejecting prototype theory
may need to be revised.

Our results suggest that a limited number of recent
stimuli contribute to subjects’ estimates of the mean value
of sequentially presented stimuli. Specifically, fewer than
ten stimuli account for over half of the cumulative weight
subjects use, and fewer than 20 stimuli account for nearly
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all of the cumulative weight, for averaging the length of
vertical lines. The classical assumption of prototypes as
arithmetic means in studies of perceptual categorization
provided a poorer account of the data for visual features
like line length than a recency-weighted weighting scheme.
On one hand, our data call for a reassessment of prototype
models used in perceptual categorization research. On the
other hand, due to the differences in tasks and stimuli used
in our experiments from many categorization tasks, further
research is necessary to make strong claims.

Recency-prioritization in sequential averaging

In a sequential averaging task, ideal observers are assumed
to keep equal fidelity and assign equal weight to all the
previous items, however, neither assumption is likely to
hold for human subjects. We speculate that the recency-
prioritization seen in sequential averaging may in part
reflect the temporal decay of memory strength (Wilken
& Ma, 2004). Specifically, when the average is computed
over a set of items presented up to a particular point in
time, the strength of the individual item representations
and/or their association to the current temporal context is
likely to determine the degree to which they influence the
computation they are a part of (Howard & Kahana, 2002).

In addition to decreasing weight over serial positions
(as in Recency-s model), a recency-prioritized weighting
scheme could be realized by alternative constructs, e.g.,
applying a relatively homogeneous weighting scheme to
a short list of recent items. It is also interesting to know
how subjects adjust their item integration mechanism upon
explicit instructions. For example, when asked to average
over the most recent five or ten items in a sequence, will
subjects accurately limit their item inclusion according to
the instruction? Results of such inquires in the context of
active item integration may shed light on the discussion of
the nature of capacity limits for visual working memory
(Luck & Vogel, 2013; Ma et al., 2014).

In addition to the fidelity of internal item representations,
external noise and feedback may also influence the weight-
ing scheme. Juni et al. (2012) manipulated the noise level
of different serial positions in a sequential averaging study
and found that the weights of the serial positions are nega-
tively correlated with their noise level. In the current study,
the external noise level (stimulus SD within each condition)
was kept constant, so this external factor cannot play a major
role in our results. That suggests recency-prioritization may
be mainly attributed to the temporal decay of internal mem-
ory representations. Corrective feedback may induce more
equally distributed weights over sequential items (Juni et al.,
2010). Since feedback was not incorporated in the current
study, a future study may further investigate feedback’s role
in sequential averaging.

In the current study, the temporal positions and serial
positions are highly correlated with each other, due to
fixed between-stimulus intervals and low response time
variability, so the modeling analysis cannot distinguish the
influences from the serial or temporal factors. Future studies
may incorporate designs that disentangle the contributions
of serial and temporal positions to better understand the
source of the recency weighting scheme.

Shifting the distributionmean

One unique contribution of the current study is the use
of the mean shift to evaluate the number of trials used
in sequential averaging. For the pre-shift trials, all stimuli
were from the same distribution, producing relatively low
estimation error. This low error on the first distribution is
consistent with the ensemble representation literature which
shows that judgments of the statistics of a single distribution
of stimuli are accurate (Albrecht & Scholl, 2010; Haberman
& Whitney, 2009). However, after the mean shift, errors
started to reflect a mixture of influences from the current
and prior distribution. Such an influence of prior items
was likely to escape detection by prior studies of ensemble
representation. In those studies, stimuli were usually drawn
from a single distribution (but see Morgan et al. 2000),
from which a small sample was likely to produce close
approximation to the mean, so long as the variance of the
stimulus distribution was not too great (referred to as the
“subsampling problem” in Simons & Myczek 2008).

Subsampling

The summary statistical effects could be produced through
a subsampling strategy: subjects could merely attend to
two or three items in a given sequence or ensemble,
for which an estimation of the average would likely be
close to the true average of the ensemble at least in
cases with low variance and normally distributed items
(Simons & Myczek, 2008; Myczek & Simons, 2008).
Although there have since been several demonstrations
of averaging effects under conditions that attempt to rule
out subsampling (Corbett & Oriet, 2011), the simulation-
based argument of Myczek and Simons suggests that under
many circumstances the two approaches may be difficult
to discriminate, as in the pre-shift phase in the current
study.

In the current study, if subjects subsampled “properly”,
i.e., sampled a subset of items from the whole sequence
regardless of serial positions, their estimation error would
have been much lower than what was observed. Our data
suggest that the mean shift caused subjects to quickly
change their “sampling pool” to the new distribution, if in
fact the subsampling strategy was used.
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Sequential vs. simultaneous averaging

One key hypothesis about ensemble representation is that
it involves mechanisms that are qualitatively different
from those used to process individual objects (Alvarez,
2011; Whitney & Leib, 2018). Evidence supporting
such qualitative differences are mostly from simultaneous
averaging studies in which observers performed better
at tasks targeting ensemble features than tasks targeting
individual stimulus features (e.g., Ariely 2001).

Subjects are assumed to employ parallel processing in
simultaneous averaging tasks (Alvarez, 2011), however, in
sequential averaging studies, individual objects are not pre-
sented at the same time, thus they cannot be processed in
parallel (barring, say, some form of perseveration or reso-
nance in short-term memory). This may explain why studies
of sequential averaging have received less attention in the
ensemble representation literature than studies of simulta-
neous averaging (for review, see Dubé & Sekuler 2015).
Nonetheless, we know of no definitive evidence suggest-
ing that the qualitative distinguishing factor of ensemble
representation has to be, solely, parallel processing. Qual-
itative differences might include other aspects such as the
mechanisms of computation, storage, or retrieval.

What directions do our results suggest for simultaneous
averaging studies? One possibility is to use the recency
weighting scheme to test the hypothesis that regardless
of whether the stimuli are presented simultaneously or
sequentially, the averaging process can be decomposed
into processing each item serially and integrating their
representations into an ensemble representation. If subjects’
responses in simultaneous averaging tasks could be reliably
and accurately predicted using the recency weighting
scheme from sequential averaging and external measures
such as eye-tracking to determine the serial order of
item processing, such results would challenge the parallel
processing hypothesis in ensemble representation.

Generalizations and limitations

Similar recency-weighted evaluation may occur in everyday
conditions. For example, memory-based evaluation of
events can be distorted by the order of the experiences
(Redelmeier et al., 2003). We wonder whether this is a
generalization of the recency-weighted summary statistical
representation demonstrated in our study.

Stimulus serial position is a key determinant of mem-
ory performance (Baddeley, 2003) and thus influences item
contributions in the sequential averaging task. We incor-
porated this knowledge into the Recency model, however,
the model is far from inclusive of all relevant factors. The
current model assumes a static weight distribution govern-
ing item integration, however, this process may well be

dynamic, having variable resource distribution in item inte-
gration, depending on multiple trial-wise features, such as
stimulus saliency (Brown et al., 2007; VanRullen, 2003; Itti
& Koch, 2000), perceptual sequential dependency (Fischer
& Whitney, 2014; Fornaciai & Park, 2018) or decisional
sequential dependency (Alais et al., 2017; Fritsche et al.,
2017). Future modeling work may benefit from incorporating
separate sources of noise, to parse out different forms of
errors that contribute to subjects’ judgments of summary
statistical properties.

The data and materials for the experiments reported
here is available upon request at ketong@mail.usf.edu.
None of the experiments was preregistered.
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