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Abstract
The extent towhich visual inference is shaped by attentional goals is unclear. Voluntary attentionmay simplymodulate the prioritywith
which information is accessed by the higher cognitive functions involved in perceptual decision making. Alternatively, voluntary
attentionmay influence fundamental visual processes, such as those involved in segmenting an incoming retinal signal into a structured
scene of coherent objects, thereby determining perceptual organization. Here we tested whether the segmentation and integration of
visual form can be determined by an observer’s goals, by exploiting a novel variant of the classical Kanizsa figure. We generated
predictions about the influence of attention with a machine classifier and tested these predictions with a psychophysical response
classification technique. Despite seeing the same image on each trial, observers’ perception of illusory spatial structure depended on
their attentional goals. These attention-contingent illusory contours directly conflictedwith other, equally plausible visual forms implied
by the geometry of the stimulus, revealing that attentional selection can determine the perceived layout of a fragmented scene.
Attentional goals, therefore, not only select precomputed features or regions of space for prioritized processing, but under certain
conditions also greatly influence perceptual organization, and thus visual appearance.

Keywords Object-based attention . Cognitive and attentional control . Grouping . Segmentation

The clutter inherent to natural visual environments means that
goal-relevant objects often partially occlude one another.A critical
function of the human visual system is to group common parts of
objects while segmenting them from distracting objects and back-
ground, a process that requires interpreting an object’s borders.
Figures that produce illusory contours, such as the classic Kanizsa
triangle (Kanizsa, 1976), have provided many insights into this
problem by revealing the inferential processes made in determin-
ing figure–ground relationships. These figures give rise to a vivid
percept of a shape emerging from sparse information, and thus
demonstrate the visual system’s ability to interpolate structure
from fragmented information, to perceive edges in the absence
of luminance discontinuities, and to fill-in a shape’s surface

properties (for a review, see Shapley, Rubin, & Ringach, 2004).
In the present study, we exploit these figures to investigate wheth-
er voluntary attention influences perceptual organization.

Most objects can be differentiated from their backgrounds via
a luminance-defined border. The visual system is tasked with
allocating one side of the border to an occluding object, and
the other side to the background. This computation can be per-
formed by neurons in macaque visual area V2 whose receptive
fields fall on the edge of an object (Zhou, Friedman, & von der
Heydt, 2000). These Bborder-ownership^ cells can distinguish
figure from ground even when the monkey attends elsewhere
in the display (Qiu, Sugihara, & von der Heydt, 2007), and
psychophysical adaptation aftereffects suggest such cells also
exist in humans (von der Heydt, Macuda, & Qiu, 2005).
Furthermore, neurophysiological work has revealed that V2 cells
also process illusory edges (von der Heydt, Peterhans, &
Baumgartner, 1984), though it is unclear whether those cells
possess the same properties as border-ownership cells. These
findings have contributed to the claim that visual structure is
computed automatically and relatively early in the visual system,
and that visual attention is guided by this precomputed structure
(Mihalas, Dong, von der Heydt, & Niebur, 2011).

It is also known, however, that visual attention can modu-
late the perception of figure–ground relationships of
luminance-defined stimuli. Both voluntary and involuntary
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forms of attentional allocation can impact higher level cogni-
tion (Posner, 2016) and basic perception (Carrasco, 2011).
Allocating visual attention to an area of space, for example,
prioritizes processing of stimuli presented at that location rel-
ative to other locations (Posner, 1980), and can alter apparent
contrast (Carrasco, Ling, & Read, 2004). As early as 1832,
Necker described his ability to alter the apparent depth of an
engraved crystalline form, now referred to as a Necker cube,
via an overt shift of attention. More recent psychophysical
work has shown that voluntary attention can alter perceived
depth order (Driver & Baylis, 1996) as in the case of Rubin’s
face–vase illusion (Rubin, 1915; Wagemans et al., 2012), sur-
face transparency (Tse, 2005), speed (Anton-Erxleben,
Henrich, & Treue, 2007; Turatto, Vescovi, & Valsecchi,
2007), contrast (Carrasco et al., 2004; Liu, Abrams, &
Carrasco, 2009; Stormer, McDonald, & Hillyard, 2009), and
spatial frequency (Abrams, Barbot, & Carrasco, 2010; Gobell
& Carrasco, 2005). Furthermore, visual attention has been
shown to facilitate visual grouping according to Gestalt rules
at both the neurophysiological (Wannig, Stanisor, &
Roelfsema, 2011) and behavioral (Barbot, Liu, Kimchi, &
Carrasco, 2018; Houtkamp, Spekreijse, & Roelfsema, 2003)
level. For instance, Barbot et al. found that the apparent per-
ceptual organization of luminance defined multi-element ar-
rays is either intensified or attenuated by the presence or ab-
sence of covert attention, respectively. These findings raise the
possibility that, regardless of whether it is necessary, visual
attention may play a determining role in visual appearance
under certain conditions. However, because these previous
studies involved physically defined stimuli, it remains unclear
whether visual attention simply modulates pre-attentively
computed structure as suggested by neurophysiological work
(McMains & Kastner, 2011; Qiu et al., 2007), or whether
structural computations depend on the state of attention.
Rivalrous illusory figures are perfectly suited to address this
issue: If attending to one illusory figure results in illusory
contours that directly conflict with the form of another illusory
figure, then structural computations must depend on attention.

To investigate the influence of voluntary attention on per-
ceptual organization, here we combined a novel illusory figure
with an attentionally demanding task, exploiting human ob-
servers’ propensity to use illusory edges when making percep-
tual decisions (Gold, Murray, Bennett, & Sekuler, 2000). We
developed a novel Kanizsa figure (Fig. 1a) in which BPac-
Man^ discs are arranged at the tips of an imaginary star. This
figure includes multiple Gestalt cues that promote the segmen-
tation and integration of various forms not defined by the
physics of the stimulus (Harrison, Ayeni, & Bex, 2019). We
predicted that, because some of these cues suggested compet-
ing configurations, selective attention could bias which figure
elements were assigned to figure and which to ground.
Although such a hypothesis is relatively uncontroversial, the
critical question was whether grouping via selective attention

promotes illusory contour formation in direct conflict with
competing implied form. For example, whereas the black in-
ducers in Fig. 1a form part of an implied star, in isolation the
black inducers imply an illusory triangle that competes with
both the star form and a second illusory triangle implied by the
white inducers. The dependence of such perceptual organiza-
tion on voluntary attentional selection thus could reveal the
extent of top-down processing on visual appearance.We there-
fore assessed whether the apparent organization of the figure
was determined by which inducers were attended.

Materials and method

Observers

Three healthy participants, one naïve (N1) and two authors
(A1 & A2, corresponding to authors R.R. and W.J.H., respec-
tively), gave their informed written consent to participate in
the project, which was approved by the University of
Cambridge Psychology Research Ethics Committee. All pro-
cedures were in accordance with approved guidelines.
Simulations were run to determine an appropriate number of
trials per participant to ensure sufficient statistical power, and
our total sample is similar to those generally employed for
classification images. All participants had normal vision.

Apparatus

The stimuli were generated in MATLAB (The MathWorks,
Inc., Matick, MA) using Psychophysics Toolbox extensions
(Brainard, 1997; Cornelissen, Peters, & Palmer, 2002; Pelli,
1997). Stimuli were presented on a calibrated ASUS LCD
monitor (120 Hz, 1,920 × 1,200). The viewing distance was
57 cm, and participants’ head position was stabilized using a
head-and-chin rest (43 pixels per degree of visual angle). Eye
movement was recorded at 500 Hz using an EyeLink 1000
(SR Research Ltd., Ontario, Canada).

Stimuli and task

The stimulus was a modified version of the classic Kanizsa
triangle. Six Pac-Man discs (radius = 1°) were arranged at the
tips of an imaginary star centered on a fixation spot. The six
tips of the star were equally spaced, and the distance from the
center of the star to the center of each Pac-Man was 2.1°. The
fixation spot was a white circle (0.1° diameter) and a black
cross hair (stroke width = 1 pixel). The stimulus was presented
on a gray background (77.5 cd/m2). The polarity of the in-
ducers with respect to the background alternated across star
tips. For half the trials, the three inducers forming an upright
triangle were white, and the other inducers were black, and for
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the other half of trials these associations were reversed.
Inducers had a Weber contrast of .75.

We added Gaussian noise to the stimulus on each trial to
measure classification images. The noise was 250 × 250 inde-
pendently drawn luminance values with a mean of 0 and stan-
dard deviation of 1. Each noise image was scaled without
interpolation to occupy 500 × 500 pixels, such that each ran-
domly drawn luminance value occupied 2×2 pixels (0.05° ×
0.05°). The amplitude of these luminance values was then
scaled to have an effective contrast of .125 on the display
background, and the noise pixels were then added to the
Kanizsa figure. Finally, a circular aperture was applied to the
noise to ensure that the edges of the inducers were equally
spaced from the noise edge (Fig. 1b).

The jaw size of the inducers was manipulated such that
they were wider or narrower than an equilateral triangle,
which would have exactly 60° of jaw angle for all inducers.
The observer’s task was to indicate whether the jaws of the
attended inducers were consistent with a triangle that was
narrower or wider than an equilateral triangle. Prior to the first
trial of a block, a message on the screen indicated which set of
inducers framed the Btarget^ triangle, and this was held con-
stant within a block but alternated across blocks. The polarity
of the target inducers and whether the triangles were narrow or
wide were pseudorandomly assigned across trials, such that
equal numbers of all trial types were included in each block.
The relative jaw size of the attended inducers was independent
of the unattended inducers; thus, the identity of the nontarget
triangle was uncorrelated with the correct response.

Each trial began with the onset of the fixation spot and a
check of fixation compliance for 250 ms. Following an addi-
tional random interval (0–500 ms, uniformly distributed), the
stimulus was presented for 250 ms, after which only the back-
ground was presented while observers were given an unlimit-
ed duration to report the jaw size using a button press. The
next trial would immediately follow a response. Throughout
the experiment, eyetracking was used to ensure that observers
did not break fixation during stimulus presentation. If gaze
position strayed from fixation by more than 2°, the trial was
aborted and a message was presented instructing participants
to maintain fixation during stimulus presentation, after which
the trial was repeated. Such breaks in fixation were extremely
rare for all participants.

A three-down one-up staircase procedure was used to prog-
ress the difficulty of the task by varying the difference of the
jaw size from 60° (i.e., from what would form an equilateral
triangle). On each trial an additional angle was randomly
added or subtracted to the standard 60° inducers. The initial
difference was 2°. Following three correct responses, this dif-
ference would decrease by a step size of 0.5°, or it would
increase by the same amount following a single error. When
an incorrect response was followed by three correct responses
(i.e., a reversal), the step size halved. If two incorrect re-
sponses were made in a row, the step size would double. If
the step size fell below 0.05°, it would be reset to 0.2°. Blocks
consisted of 624 trials, which took approximately 20 min,
including a forced break. Each observer completed 16 blocks,
for a total of 9,984 trials, which took approximately 5 h to

Fig. 1 Novel illusory figure and design used to test the influence of
attention on perceptual organization. (a) Our variant of the classic
Kanizsa figure. BPac-Man^ inducers are arranged such that a star appears
to occlude black and white discs. Whereas the ensemble of features can
produce the appearance of a star, grouping features by polarity leads to
competing illusory triangles. We tested whether attending to one set of
inducers (e.g., the white inducers) leads to interpolation of the illusory
edge. (b) Example trial sequence. After an observer fixates a spot, the
illusory figure with overlaid Gaussian noise is displayed for 250 ms. The
observer’s taskwas to report whether the tips of the upright or the inverted

triangle were narrower or wider than an equilateral triangle. The target
triangle was cued prior to, and held constant throughout, each testing
block. The observer’s perceptual reports were then correlated with the
noise on each trial to produce classification images. (c–e) Support vector
machine (SVM) classifier images: We had an SVM classifier perform
Bnarrow^ versus Bwide^ triangle judgments after training it on three dif-
ferent protocols: (c) inducers, (d) a triangle, or (e) a star (see the Method
section). Dashed red lines show the location of a Pac-Man, for reference,
and in panel e they also show the tips of the star that do not influence
classification
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complete, spread over multiple days and testing sessions. To
familiarize observers with the task, they underwent two train-
ing blocks of 624 trials each with no noise. They then were
shown the stimulus with noise and completed as many trials as
they felt were required before starting the experimental
blocks.

Support vector machine models

Support vector machine (SVM) classifiers were trained and
tested in MATLAB. We generated three hypotheses by train-
ing SVM classifiers on images of the (i) inducers, (ii) a trian-
gle, or (iii) a star. We trained the classifiers using a quadratic
kernel function and a least-squares method of hyperplane sep-
aration. The training images consisted of two exemplars
(Bnarrow^ and Bwide^) with no noise (Supplementary Fig.
1). To generate hypotheses in the form of classification im-
ages, we used each of the classifiers to perform narrow/wide
triangle judgments (trials = 9,984) with an equilateral triangle;
thus, classification was exclusively influenced by the noise in
the image.

Data and statistical analysis

The 9,984 noise images for a participant were separated ac-
cording to perceptual report (Bnarrow^ or Bwide^). To col-
lapse across inducer polarity, we inverted the sign of the noise
on trials in which the cued inducers were white. We also
collapsed across the upright and inverted cue conditions by
spatially flipping the noise on inverted trials. To calculate
which spatial locations influenced perceptual reports, we used
a standard classification analysis in which each trial was clas-
sified according to the observer’s response with respect to the
stimulus shown on that trial (Gold et al., 2000; Gold &
Shubel, 2006; Mareschal, Dakin, & Bex, 2006; Neri &
Heeger, 2002). Each stimulus was either narrow or wide
(Snarrow or Swide), and each response was either narrow or wide
(Rnarrow or Rwide), giving four trial types: (1) SnarrowRnarrow, (2)
SwideRnarrow, (3) SwideRwide, and (4) SnarrowRwide. The classifi-
cation images were generated by averaging and combining
these response types according to the equation

CI ¼ SnarrowRnarrow þ SwideRnarrow

� �
− SwideRwide þ SnarrowRwide

� �
:

The resulting classification image showed the strength of
correlation between each pixel’s location with the perceptual
report made by the observer. Images were normalized to the
Battend upright black inducers^ condition, such that black
pixels indicated locations where dark luminance noise was
correlatedwith a Bnarrow^ response and light luminance noise
was correlated with a Bwide^ response. Conversely, white
pixels indicated locations at which light luminance noise
was correlated with a Bnarrow^ response and dark luminance

noise was correlated with a Bwide^ response. The polarity and
intensity of a given location thus provided information regard-
ing that location’s contribution to perceptual decision making.
To average across emergent triangle edges, we further
summed the image with itself two times after rotating 120°
and 240° using Matlab’s Bimrotate^ function using bilinear
interpolation. This procedure results in a classification image
that is invariant across edges, such that analysis of one edge
summarized all three edges. Note that this was a conservative
estimate of the classification image and that any spurious
structure would only be diminished. To test for correlated
pixels along the illusory edge of the classification image, we
extracted 18 pixels along the bottom edge of the implied tri-
angle but within the bounds of the implied star tip (see the
bottom right panel of Fig. 2a). To ensure that these pixels were
not contaminated by the averaging of nearest-neighbor pixels
during rotation, described above, we excluded the three pixels
closest to the inner corners of the star. We conducted one-
sample, two-tailed Bayesian and Student’s t tests on these
pixel values using the JASP software (JASP Team, 2017).
The reported effect sizes are Cohen’s d.

We performed the model comparisons in Fig. 2c by first
normalizing the noise of the mean classification image and
each SVM prediction, such that the sum of the squared errors
of each image equaled 1. We then subtracted the mean classi-
fication image from each prediction and found the sum of the
squared error of the resulting difference. Finally, we normalized
the difference scores to the model with the least error by
subtracting from each distribution the mean of the distribution
with the lowest error. This process was repeated for 200 repe-
titions of each SVMprediction. Themixture modeling (Fig. 3c)
was performed similarly, but we further usedMonte Carlo sim-
ulations to estimate the proportion of trials in which a triangle
was perceived. In this case, each set of 200 simulated experi-
ments included a proportion of triangle template trials, ranging
from .33 (chance) to 1. We validated this model-fitting proce-
dure by generating a simulated classification image with a
known generative template or with proportional mixtures of
templates, and then verified the model fitting’s returned results
that approximated the ground truth. The Monte Carlo simula-
tions were highly accurate for a range of simulated proportions,
but slightly overestimated the contribution of the triangle tem-
plate when the ground-truth contribution was close to .33, and
conversely, slightly underestimated its contribution when the
triangle was the only contributor.

Results

We used a response classification technique that allowed us to
simultaneously assess where observers’ attention was allocat-
ed and whether such attentional allocation resulted in visual
interpolation of illusory edges. At the beginning of each block
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of testing, observers were cued to report the relative jaw size
of the inducers forming an upright (or inverted) triangle, cor-
responding to the white (or black) elements in Fig. 1a. By
adding random visual noise to the target image on each trial

(Fig. 1b), 8we could use reverse correlation to measure
Bclassification images.^ An observer’s classification image
quantified the correlation between each pixel in the image and
the perceptual report, revealingwhich spatial locationswere used

Fig. 2 Classification image results. (a) The individual and average clas-
sification images, normalized to the Battend upright black inducers^ con-
dition. Black pixels indicate locations where dark and light noise were
correlated with Bnarrow^ and Bwide^ judgments, respectively, and white
pixels indicate the opposite relationship, after 9,984 trials per participant.
The data have not been smoothed, but were first averaged across triangle
edges and cropped to measure 122 × 122 pixels. In the mean image, a
Pac-Man outline is shown for reference, and a red line indicates the spatial
range of the implied triangle edge (from which the data in panel b are
shown). (b) Pixel values along the illusory edge. The gray shaded region
corresponds to a conservative estimate of the extent of the gap in the edge
that would appear if observers necessarily saw a star shape (e.g., Fig. 1e).

The shaded interval around the line in the mean plot shows ± 1 standard
error; asterisks indicate differences from zero (BF10 > 10 and p < .05; see
the text). N1 is the naïve participant, and A1 and A2 are authors. (c)
Comparison of SVM models for the averaged data. The distributions
show comparisons of the mean classification image to the output of each
SVM prediction, repeated 200 times. Data points and error bars represent
the mean and 95% confidence intervals, respectively, for each SVM
training regime. Model error has been normalized relative to the model
with the least error, which is the model in which the SVM was trained to
perceive a triangle within the attended inducers. (d) Comparison of the
SVM models for each observer; the colors are as per panel c

Fig. 3 Pre-attentive grouping. (a) Geometric form prediction of unattend-
ed grouping. The classification image derived from our SVM was
summed with a flipped version of itself. Note that the inner corners of
the star are well aligned, due to the design of our original Kanizsa figure.
(b) Geometric form in the observers’ data. The mean classification image
was summed with a flipped version of itself and reveals that the strength
of the illusory edges is well aligned with the implied star. (c) Results of

mixture modeling used to explore the correspondence between the fluc-
tuations of illusory edge strength and the implied figure geometry. The
best-fitting model for each observer was one in which attention deter-
mined the perceptual outcome on 84% of trials. The dashed line indicates
the proportion expected from a purely stochastic process. Error bars show
95% confidence intervals
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for perceptual decisions (Abbey, Eckstein, & Bochud, 1999;
Ahumada, 1996; Ahumada, Beard, & Ellis, 1998; Ahumada &
Lovell, 1971; Beard & Ahumada, 1998; Gold et al., 2000).

We generated hypotheses regarding how observers’ volun-
tary attentionmight influence their perception of this figure.We
used an SVM classifier to judge small changes to a triangle
image after training it on one of three different protocols
(Supplementary Fig. 1). First, we generated a prediction of
the hypothesis that observers can attend to the correct inducers
but do not perceive illusory edges, by training a model to dis-
criminate only the jaws of the inducers. This model was anal-
ogous to that of an ideal observer and revealed that only struc-
ture at the edges of the stimuli was used in generating a re-
sponse (Fig. 1c). We next generated predictions of how illusory
edges could be interpolated in this task. In one case, we as-
sumed that illusory contours would be formed between
attended inducers. We thus trained the classifier to discriminate
whether a triangle’s edges were bent outward or inward, and
found a classification image approximating a triangle (Fig. 1d).
In the other case, we assumed that, although selective attention
might guide the correct perceptual decision, the illusory form of
a star might be determined pre-attentively according to the
physical structure of the entire stimulus. In this case, we trained
the classifier to discriminate whether the alternating tips of a
star—that is, the tips corresponding to a set of cued inducers—
were relatively wide or narrow. The resulting classification im-
age revealed edges that were interpolated beyond the inducers,
but that they did not extend beyond the alternating star tips (Fig.
1e). These predictions not only provided qualitative compari-
sons for our empirical data, but they also allowed us to formally
test which training regime produced a classification image that
most closely resembled the human data.

To motivate observers to attend to only one possible con-
figuration of the illusory figure, they were cued to report the
relative jaw size (Bnarrow^ or Bwide^) of only a subset of Pac-
Men positioned at the tips of an imaginary star (Fig. 1a). Each
cued triangle was defined by three inducers, the jaw sizes of
which were varied from 60° (an implied equilateral triangle)
according to an adaptive staircase (see the Method section). In
an early investigation into illusory contour perception,
Ringach and Shapley (1996) had found that observers’ per-
ceptual thresholds were less than an angular degree with sim-
ilarly sized stimuli. Specifically, observers were instructed to
report only the jaw size of inducers forming an upward (or
downward) triangle within a testing block. The noncued in-
ducer jaws varied independently of the cued inducers and thus
added no information regarding the correct response. To de-
rive the spatial structure used for perceptual decisions, we
added Gaussian noise to each trial and classified each noise
image according to the observers’ responses (Fig. 1b). To
create the classification image for each observer, we summed
all noise images for narrow reports and subtracted the sum of
all noise images for wide reports (see the Method section). We

collapsed across inducer polarities by inverting the noise on
trials in which the white inducers were cued, and across cue
directions by flipping the noise on trials in which the
downward-facing illusory triangle was cued. The resulting
images quantified the correlation between each stimulus pixel
and the observer’s report. To analyze a single axis of emergent
spatial structure, we first averaged each observer’s data with
themselves after rotating 120° and 240°, such that the corre-
lations were averaged over the three sides of the triangle.
Although this step involved bilinear interpolation of neighbor-
ing pixels, no other averaging or smoothing was performed,
and this averaging is therefore most likely to have only re-
duced the strength of emergent illusory structure.

Classification images for the three observers and their
mean are shown in Fig. 2a (see Supplementary Fig. 2a for
the unrotated classification images). Images were normalized
to the Battend upright black inducers^ condition; black pixels
indicated locations where dark and light noise were correlated
with Bnarrow^ and Bwide^ judgments, respectively, and white
pixels indicated the opposite relationship. Two obvious pat-
terns emerged. First, it was clear that observers based their
reports on pixels within the jaws of the cued inducers, indi-
cating that only some regions of the image—those aligned
with the attended inducers—influenced perceptual decisions.
Note the difference in the signs of the correlations between the
edges and tips of the triangle—noise pixels in these regions
had opposite influences on narrow/wide decisions, which was
likely due to an illusory widening of the jaw center that was
not registered by the SVM (cf. Fig. 1d). Second, the edges
clearly extend beyond the red inducer outline shown in the
mean image, revealing that observers’ reports were influenced
by illusory contours. However, it is also apparent that the
spatial structure is nonuniform, with weaker correlations in
the center of the illusory edges than in the corners of the
inducers. We therefore quantitatively tested the extent of illu-
sory contour formation.

To test whether the illusory edge interpolation extended
into the region of the implied competing figure, we performed
two analyses. First, we used Bayesian and Student’s one-
sample t tests to assess the pixel values along the edge of the
triangle implied by the attended inducers (see the red line in
Fig. 2a). We selected only pixels that fell within the bounds of
the competing implied triangle (see the Method section and
the gray-shaded regions in Fig. 2b) and found that these 18
pixels were below zero for the naïve participant [mean and
SEM: – 3 ± 0.9 × 10–3; BF10 = 18.365, t(17) = 3.585, p = .002,
d = 0.845], observer A2 [mean and SEM: – 5 ± 0.7 × 10–3;
BF10 = 8,141.356, t(17) = 6.944, p < .001, d = 1.637], and the
group [mean and SEM: – 3 ± 0.4 × 10–3; BF10 = 16,580, t(17)
= 7.38, p < .001, d = 1.738], but not for A1 [mean and SEM: –
1 ± 1 × 10–3; BF10 = 0.431, t(17) = 1.15, p = .266, d = 0.204].
The lack of a difference in observer A1 may have been due to
a difference in task-related strategy and or increased lapse rate.
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We next quantified the spatial structure content of the clas-
sification image by testing which prediction generated by the
SVM was most similar to the human data (see Figs. 1c–1e).
For each model, we generated 200 predictions, each with a
unique distribution of noise, and computed the sum of the
squared errors between the predictions and the mean classifi-
cation image produced by the human observers (see the
Method section). The resulting distributions of error, normal-
ized to the best model, are shown in Fig. 2c and reveal that the
model in which we trained the classifier to perceive a com-
plete triangle is the best fit to the data (z test comparing the
mean error for the triangle SVM vs. the distributions of error
for the star and inducer SVMs: ps < .0001). The pattern of
results was the same for all observers (Fig. 2d): For the induc-
er, star, and triangle templates, respectively, the mean stan-
dardized model errors (± 1 standard deviation) were: N1,
0.055 (0.007), 0.018 (0.008), 0 (0.007); A1, 0.026 (0.006),
0.008 (0.006), 0 (0.007); A2, 0.047 (0.008), 0.018 (0.008), 0
(0.007). Z tests comparing the mean error for the triangle
SVM versus the distributions of error for the star and inducer
SVMs were all significant (all ps < .0001). Taken together,
these analyses reveal illusory contour formation between
attended visual elements, and this interpolation occurred de-
spite the contour conflicting with equally plausible implied
spatial structures.

We next tested the spatial specificity of illusory contour
formation. In the preceding analyses presented in Fig. 2b,
we selectively tested only a single row of pixels aligned with
the mouths of the inducers. For the two participants who
showed a clear effect, we next tested how spatially specific
the visual interpolation was, by repeating the same analysis
but for the rows of pixels above and below the triangle bound-
ary implied by the geometry of the attended inducers. Quite
surprisingly, we found good evidence that there was an ab-
sence of illusory contour formation for the pixels below the
implied triangle boundary (N1, BF01 = 3.19; A2, BF01 =
3.31), and equivocal evidence for the pixels above the implied
triangle boundary (N1, BF10 = 1.05; A2, BF01 = 1.83). We
therefore found evidence that only a single row of pixels ex-
tending between the inducer edges contributed to observers’
perceptual decisions. These results thus revealed that the
strength of the illusory contours was highly precisely aligned
to the geometry of the triangle implied by the attended in-
ducers. Consistent with this observation, psychophysical
thresholds for identifying the relative inducer jaw size were
reliably highly precise across testing sessions (see
Supplementary Fig. 2b). Across sessions, the mean thresholds
(± 1 standard error) for observers N1, A1, and A2 were 0.86°
± 0.03°, 0.84° ± 0.02°, and 0.66° ± 0.03°, respectively.

Our data further addressed the extent to which the noncued
figural elements might have influenced the perceptual judg-
ments. In our experiment, the noncued inducer jaw size was
independent of the cued inducer jaw size, and was thus

uninformative as to the correct report. Indeed, we found no
evidence in the classification image that observers’ perceptual
decisions were guided by these task-irrelevant cues. We
modeled the possibility that these noncued elements were
nonetheless grouped to form a star. In such a case in which a
star was perceived, the task could still be performed accurately,
were observers to base their reports on only the edges shared by
the star and the triangle implied by the cued inducers. As ex-
pected, the SVM prediction of pre-attentive figure–ground seg-
mentation shows gaps in the sides of the classification image
triangle (Fig 1e). Note that this model is equivalent to observers
having perceived a whole star, but with a later-stage attentional
signal focused on only some regions of the precomputed figure.
Because we designed our illusory figure to be geometrically
invertible, the extent of the illusory star formwas pronounced if
we summed the model’s classification image with a flipped
version of itself (Fig. 3a). In Fig. 3b, we show the result of
performing this step with the observers’ average classification
image. Very similar patterns of results were found for all indi-
vidual images (Supplementary Fig. 3).

Although flipping the classification image and producing a
star-like figure might be somewhat trivial, more important is
how the edges of the star were formed. We wished to test
whether the extent of the illusory lines matched what would
be expected were observers to have relied on a pre-attentively
computed star form, rather than on two superimposed trian-
gles determined by attentional selection. The critical aspect of
the star-like figure shown in Fig. 3b is therefore whether or not
the lines that form the star have terminators at the point where
they intersect (i.e., the inner corners of the implied star). This
is the case in Fig. 3a, because we were using the star model to
generate the classification image. For the observers’ data in
Fig. 3b, on first glance the same appears to be the case: The
emergent features appear to stop precisely at the point of in-
tersection, suggesting that observers perceived a star but based
their reports on only some parts of this figure. These qualita-
tive results, however, are in contrast to the SVM analysis,
presented above (Fig. 2c), in which we found that correlated
noise in observers’ classification images was best explained
by observers having attended to the cued triangle. Thus, a
remaining critical question, which we address below, was
whether we could quantify the proportion of trials on which
observers relied on different forms implied by the inducers.

In contrast to our initial quantitative analyses, the results of
which suggested that visual attention determines which of two
illusory triangles was perceived on a trial (Fig. 2), qualitative
inspection of the star-like form shown in Fig. 3b suggests that
observers may have based their reports on only some parts of a
pre-attentively computed star. However, there are at least three
possible explanations for the near-perfect alignment of the
changes in illusory edge strength with the implied star figure
(Fig. 3b). First, as discussed, a similar classification image
would have been obtained had observers perceived a star on
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every trial, a possibility that we discounted by our quantitative
analysis of the illusory edge, described above (Fig. 2). Second,
this qualitative result could be generated if trial-by-trial per-
ceptual organization was stochastic, such that observers per-
ceived each possible configuration approximately equally of-
ten across trials. Under this hypothesis, the resulting illusory
contours shown in Fig. 2a are incidental rather than being
determined by observers’ attentional goals. The third possible
explanation is that observers’ voluntary allocation of attention
determined the outcome on most, but not all, trials. To distin-
guish between the latter two possibilities, we used mixture
modeling to quantify the proportion of trials on which ob-
servers’ percept depended on the attentional instructions (see
the Method section). A purely stochastic process would be
implied were the proportion of trials accounted for by the
triangle template no different from .33 (i.e., the apparent top-
most surface was equally often a star, the cued triangle, or the
noncued triangle; see Fig. 1c–1e). However, in the best-fitting
model, the attention-contingent triangle template contributed
to 84% of trials on average, which is much greater than would
be expected by a stochastic process (Fig. 3c). At the individual
level, the triangle contributions (and 95% confidence inter-
vals) for N1, A1, and A2 were 88% (45%–100%), 79%
(39%–99.5%), and 86% (50.5%–100%), respectively. This
mixture modeling is thus consistent with observers’ attention-
al goals determining the illusory contour interpolation on the
vast majority of trials.

Discussion

We used classification images to address whether voluntary
attention determines a scene’s apparent visual structure. Using
a psychophysical response classification paradigm, we tested
which of three competing model predictions best described
the influence of attention on illusory contour formation. Our
results clearly showed that voluntary attention can guide the
fundamental processes involved in the perceptual organization
of illusory structure.

Unlike previous studies that had showed that visual atten-
tion modulates the appearance of physically defined surfaces
(e.g., attending to different surfaces of the Necker cube;
Necker, 1832), our study showed a rich interaction between
attention and endogenously generated percepts. Classification
images revealed the spatial location of the noise elements that
influenced observers’ responses, whereas interpreting subjec-
tive phenomenology was more difficult. However, our stimu-
lus design ensured that the classification images revealed in-
formation about the perceived depth order of the image ele-
ments. The presence of lines in the classification image that
extended between the inducers is clear evidence that at least
two of the three observers based their judgments on the per-
ception of a figure whose edges occluded the competing

(noncued) shape information. Given that the illusory edges
of the triangle implied by the attended inducers directly con-
flicted with the regions of the competing implied figures (i.e.,
the star and inverted triangle), our finding that illusory edges
were interpolated between attended inducers reveals that at-
tention can determine depth order, even when the figures and
ground are illusory. Spatial structure is thus computed by neu-
ral operations that are at least partially contingent on the vol-
untary state of the observer. The precision of illusory contours
was nonetheless tightly aligned to the geometry of the
luminance-defined structure, indicating that these inferential
processes are also highly contingent on the scene or task con-
text. Indeed, observers’ psychophysical thresholds for the in-
ducer task reveal a correspondence between their precise ob-
jective psychophysical performance and their subjective clas-
sification image.

We found clear interparticipant differences in the classifi-
cation images. First, we found a clear effect of edge comple-
tion in our initial analysis of edge completion in only two of
the three observers (Fig. 2). Such a difference across partici-
pants is not exceptional: Gold and Shubel (2006) also found
classification image evidence of illusory edges in two out of
three participants. Nonetheless, although the effect did not
reach significance for one observer in our data, the same gen-
eral direction of results was found in the classification image
analysis (Fig. 2b), and the same results were found in the
individual SVM model comparisons (Fig. 2d). A degree of
homogeneity of our results across participants is also reflected
by the fact that the group-average effect was significant.
Importantly, the critical effect of a fully interpolated illusory
edge was found in the naïve observer’s data, and, across par-
ticipants, we found relatively strong effect sizes of d = 0.845
(N1), d = 1.637 (A2), and d = 0.204 (A1), despite this not
being significant for A1. The second interparticipant differ-
ences we found were in the raw classification images, which
revealed varying degrees of completeness (Supplementary
Fig. 2). For the two observers for whom the effect was signif-
icant, at least two edges of the triangle were clearly visible,
and for the remaining observer one edge was clearly visible.
We can think of at least three possible explanations for these
individual differences (similar between-observer differences
were reported by Gold et al., 2000, and Gold & Shubel,
2006). First, observers might have interpolated the edge of a
single or a pair of unconnected lines between the cued in-
ducers. Second, observers perceived a triangle, but only used
part of this triangle to perform the task. Third, individual
biases in attentional allocation may have differentially influ-
enced interpolation of the different edges. Given the strength
of the Kanizsa illusion—that is, the perception of a triangle—
we think that the latter two explanations are more likely; how-
ever, we cannot definitively show this with the present data.
The conclusion that attention influences illusory contour for-
mation is equally valid under either of these explanations.
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We were able to quantify the influence of noncued stimuli
on perception by measuring a classification image across the
entire stimulus. We found that changes in the strength of illu-
sory contour formation between attended inducers were
aligned with form implied by the noncued inducers. Our mix-
ture modeling suggests that the non-cued stimuli influenced
performance on approximately 16% of trials. Such a contribu-
tion of task-irrelevant features on perceptual decisions could
be attributed to lapses in attentional allocation, or variability in
the feed-forward processing of the incoming signal.
Measuring perceived form in the absence of visual attention
is notoriously difficult (Wagemans et al., 2012), which is per-
haps one reason why many studies of figure–ground organi-
zation rely on single-unit recordings. Whereas neurophysio-
logical recordings have revealed the brain regions involved in
perceptual organization, they have left open the question of
perceptual phenomena. Our data show that the influence of
attention on perception is constrained by task-irrelevant infor-
mation, providing yet further evidence that visual experience
is the combination of both bottom-up and top-down processes.
This conclusion sheds light on previous work in which com-
peting color adaptation after-effects are biased according to
alternating illusory contours at a similar location (van Lier,
Vergeer, & Anstis, 2009). In these demonstrations, the onset
of inducer elements likely attracts an observer’s attention,
resulting in perceptual completion processes specific to only
the implied shape of attended elements. Surface filling-in
would then follow the contours of the implied form (Poort
et al., 2012). Indeed, other recent research from our lab has
revealed that similar interactions may occur between attention
and surface filling-in (Harrison et al., 2019).

The influence of attention on figure–ground segmentation
may be explained by feedback signals from the lateral occip-
ital complex (Murray et al., 2002; Stanley & Rubin, 2003) that
could act as early as V1 (Wannig et al., 2011), but also might
involve modulating the responses of border-ownership cells in
V2 (Qiu et al., 2007). Border-ownership cells indicate which
side of a border is object versus ground. Previous work show-
ing that the activity of border-ownership cells is modulated by
visual attention (Qiu et al., 2007) has been limited to
luminance-defined borders. Our finding that the information
inferred by the visual system is influenced by voluntary atten-
tion suggests that attentional modulation of border-ownership
may apply similarly to illusory contours (von der Heydt et al.,
1984). Early psychophysical work suggested that illusory con-
tours are perceived in the absence of attention (Davis &
Driver, 1994; Mattingley, Davis, & Driver, 1997), but these
studies did not address the question of whether illusory con-
tours can be formed because of voluntary attention, which we
have shown here. Our findings are also distinct from other
recent work that has shown that attention can influence the
appearance of existing surfaces (Tse, 2005). In our study, vi-
sual attention had a causal role in forming the structure from

which perceptual decisions were made. We anticipate that our
simple stimulus and task design might prove to be a useful
neurophysiological assay to test further the neural substrates
governing the interaction between voluntary attention and per-
ceptual organization.
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