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Abstract
Over a long and distinguished career, Randy Diehl has elucidated the brain mechanisms underlying spoken language processing.
The present study touches on two of Randy’s central interests, phonetic features and Bayesian statistics. How does the brain go
from sound to meaning? Traditional approaches to the study of speech intelligibility and word recognition are unlikely to provide
a definitive answer. A finer-grained, Bayesian-inspired approach may help. In this study, listeners identified 11 Danish conso-
nants spoken in a Consonant + Vowel + [l] environment. Each syllable was filtered so that only a portion of the original audio
spectrum was presented. Three-quarter-octave bands of speech, centered at 750, 1,500, and 3,000 Hz, were presented individ-
ually and in combination. The conditional, posterior probabilities associated with decoding the phonetic-features Voicing,
Manner, and Place of Articulation were computed from confusion matrices to delineate the perceptual flow of phonetic infor-
mation processing. Analysis of the conditional probabilities associated with both correct and incorrect feature decoding suggest
that Manner of articulation is linked to the decoding of Voicing (but not vice-versa), and that decoding of Place of articulation is
associated with decoding of Manner of articulation (but not the converse). Such feature-decoding asymmetries may reflect
processing strategies in which the decoding of lower-level features, such as Voicing and Manner, is leveraged to enhance the
recognition of more complex linguistic elements (e.g., phonetic segments, syllables, and words), especially in adverse listening
conditions. Such asymmetric feature decoding patterns are consistent with a hierarchical, perceptual flow model of phonetic
processing.
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Introduction

This study examines the perception of speech from two per-
spectives that have benefitted greatly from Randy Diehl’s re-
search over a long and distinguished career – articulatory-
acoustic features and Bayesian statistics (e.g., Diehl &
Lindblom, 2004; Redford & Diehl, 1999).

Consonants convey information critical for lexical identifi-
cation (Bonatti, Peña, Nespor, &Mehler, 2005).While vowels
often undergo significant changes in spectrum and duration
without compromising intelligibility, this is rarely the case for

consonants (but see Kewley-Port, Burke, & Lee, 2007 and
Lee and Kewley-Port, 2009 for an alternative perspective).
When the acoustic properties of consonants are degraded
(e.g., reverberation, background noise) or the listener’s inter-
nal representation compromised (due to auditory pathology or
cognitive impairment), speech comprehension may suffer.

The importance of consonants lies partly in their syntag-
matic role in lexical representation, whether auditory or visual.
They often occupy the skirts of syllables in either onset or
coda position. Consonants are especially important at the on-
set of accented (i.e., linguistically stressed) syllables
(Greenberg, Carvey, & Hitchcock, 2002). One likely reason
is that sensory neurons respond most vigorously to the begin-
ning of meaningful events, such as syllables or words
(Greenberg &Ainsworth, 2004). If the onset excitation pattern
strays too far from the norm, it may be ineffective in linking
the sensory input to the brain’s internal linguistic representa-
tion. In this sense, consonants serve as strategic linchpins for
speech communication.
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Despite their perceptual importance, comparatively little is
known about the auditory or cognitive mechanisms that un-
derlie consonant recognition. This study focuses on an intrigu-
ing property of consonant-confusion patterns, namely their
asymmetry when analyzed as articulatory-acoustic phonetic
features (APFs). This asymmetry offers clues as to how con-
sonant segments are analyzed in the auditory system and
beyond.

One of the most detailed and well known quantitative
models of consonant recognition is the Articulation Index
(AI), developed by Fletcher and others (ANSI, 1969; Allen,
2005; French & Steinberg, 1949; Fletcher, 1953 [1995];
Kryter, 1962). The AI is, at heart, a pattern-recognition model
of auditory spectral processing. The speech signal’s auditory
representation is represented as a tonotopically organized ar-
ray of frequency channels. Each channel’s contribution de-
pends (mostly) on two parameters – its signal-to-noise ratio
(SNR) and its “frequency importance” (Bell, Dirks, & Trine,
1992; French & Steinberg, 1949; Fletcher, 1953 [1995];
Pavlovic, 1994; Pavlovic, 2006). The latter is a weighting
function based on perceptual tests. The AI assumes speech
recognition is mainly an SNR problem (to solve). At very
low SNRs, the listener’s ability to identify syllables and words
is seriously compromised. The AI is essentially a distortion
metric that quantifies the distance between a reference and the
signal received by the listener. Any distortion (e.g., noise,
reverberation, hearing impairment) that increases the distance
between the two is likely to reduce the articulation score and
intelligibility.

A key problem with the AI and kindred distortion metrics,
such as the Speech Intelligibility Index (SII) (ANSI, 1997;
Pavlovic, 2006), the Speech Transmission Index (STI)
(Steeneken & Houtgast, 1980), and the Spectro-Temporal
Modulation Index (STMI) (Elhilali, Chi, & Shamma, 2003),
is the absence of a principled mechanism for how the brain
goes from sound to meaning. Instead, these distortion-centric
formulations assume speech comprehension is the end-
product of a process by which a neural excitation pattern is
linked to meaningful elements (e.g., phonemes, syllables, and
words) via some form of template matching, the specifics of
which are largely left to the reader’s imagination.

Another drawback of distortion models is their omission of
non-auditory information sources. Yet, it is well documented
that visual speech cues can enhance speech intelligibility, es-
pecially in challenging listening conditions (Braida, 1991;
Cohen & Massaro, 1995; Grant & Braida, 1991; Grant,
Walden, & Seitz, 1998; Massaro, 1987). Linguistic (i.e., se-
mantic and syntactic) context is also known to improve intel-
ligibility (Greenberg & Christiansen, 2008). Such extra-
phonetic factors are not readily accommodated within distor-
tion models. Indeed, linguistic context often plays a crucial
role in speech comprehension (e.g., Boothroyd & Nittrouer,
1988; Greenberg & Christiansen, 2008).

Jakobson, Fant, and Halle (1952) proposed a speech anal-
ysis model that differs from distortion models in several im-
portant ways. In their model, the speech signal is decomposed
into acoustic primitives that reflect articulatory gestures asso-
ciated with its production. These “distinctive features” are
used to differentiate the sounds of a language’s phonological
inventory. By decomposing speech sounds into elementary
features, the conundrum created by the AI’s focus on distor-
tion is potentially resolved. This is because a speech sound (a
phonetic segment or “phone”) need not be processed as a
monolithic entity, but rather as a cluster of articulatory-
acoustic phonetic features. These could be recoded into con-
sonantal or vocalic form, and then used to infer the words
spoken (via a process analogous to a dictionary lookup or
some other indexical operation). Distinctive-feature models
view spoken language as a conglomeration of perceptual
primitives from which higher-level, more abstract linguistic
entities are derived. Because these primitives are rooted in
vocal production, they may provide a principled basis for
combining information that integrates acoustics, articulation,
and perception into a coherent, unitary framework for
decoding the speech signal.

The distinctive-feature approach has been highly influen-
tial, both in theoretical discussions (e.g., Chomsky & Halle,
1968; Clements, 1985; Ladefoged, 1971; Trubetzkoy, 1969
[1939]) and in empirical studies of perception (e.g., Diehl &
Lindblom, 2004; Kewley-Port, Pisoni, & Studdert-Kennedy,
1983; Miller & Nicely, 1955; Stevens, 2002; Sussman,
McCaffrey, & Matthews, 1991) and neurophysiology
(Cheung, Hamilton, Johnson, & Chang, 2016; Mesgarani,
Cheung, Johnson, & Chang, 2014). Distinctive features have
also been successfully deployed in automatic speech recogni-
tion (e.g., Chang, Wester, & Greenberg, 2005; Frankel,
Wester, and King, 2007; Ghosh & Narayanan, 2011;
Hasegawa-Johnson et al., 2005; Juneja, 2004; Kirckhoff,
Finkard, & Sagerer, 2002; Livescu et al., 2007; Rasipurum
& Magimai-Doss, 2016). The APFs used nowadays are more
parsimonious than those of Jakobson, Fant, and Halle (1952)
(see Rasipuram & Magimai-Doss, 2016 for a brief historical
survey, and Diehl & Lindblom, 2004 for a comprehensive
review), but retain the production-centric focus of the original
framework.

Three feature classes are especially important for phonetic
representations. These pertain to (a) laryngeal vibration
(“Voicing”), (b) the manner through which air flows through
(or is constricted in) the vocal tract (“Manner of articulation”),
and (c) the locus of articulatory constriction (“Place of articu-
lation”). An illustration of how these features distinguish the
11 Danish consonants used in the current study is shown in
Table 1.

A signal advantage of APF models is their robustness. A
word or phrase can usually be recognized successfully despite
one or more features being decoded incorrectly. This
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perceptual resilience is the likely consequence of ancillary
information (e.g., visual or semantic cues) compensating for
feature-decoding errors. Such “side data” could be especially
important in the context of linguistic variability (e.g., dialect,
voice quality) or acoustic interference (e.g., background noise,
reverberation).

Despite the benefits of distinctive-feature models, there are
potential drawbacks. First, the features proposed in Jakobson,
Fant, and Halle (1952) are grounded in production and
acoustics rather than perception. Hence, the link between their
articulatory foundation and perception is indirect. Jakobson,
Fant, and Halle (1952)’s model implicitly entails some kind of
“translation” into auditory form, perhaps via back-computing
like the “motor theory” of speech perception (Liberman,
Cooper, Shankweiler, & Studdert-Kennedy, 1967).

Second, Jakobson, Fant, and Halle (1952)’s features are
treated as independent elements. The advantage of feature
independence is its representational parsimony. Dozens of
phonological elements (and by extension, thousands of
words) can be reliably distinguished with just a handful of
phonetic features (e.g., Chomsky & Halle, 1968; Diehl &
Lindblom, 2004; Ladefoged, 1971; Ladefoged &
Maddieson, 1996; Stevens, 2002). However, this assumption
of independence may not be empirically justified.

The perceptual relationship between APFs and consonant
recognition was originally investigated by Miller and Nicely
(1955). They computed consonant-confusion matrices for 16
English consonants embedded in high- and low-pass filtered
CV syllables presented in variable amounts of background
noise (i.e., over a range of SNRs). The confusion patterns
were analyzed in terms of distinctive APFs. Their study
showed that the way phonetic information is distributed across
the frequency spectrum differs among APFs. For example, the
amount of information transmitted (IT) for “Place of articula-
tion” increases almost linearly as the speech bandwidth
broadens (Miller & Nicely, 1955, Fig. 3). In contrast, the

corresponding IT functions for “Voicing” and “Manner of
articulation” (Miller & Nicely, 1955, Fig. 4) asymptote at rel-
atively narrow bandwidths (ca. 1 octave). Moreover, Voicing
information can be reliably decoded from most any region of
the frequency spectrum for bandwidths of an octave or more.
Manner of articulation information is spectrally more
constrained than Voicing, but requires more of the spectrum
to successfully decode. Place of articulation is the most fragile
and brittle of the features, requiring much of the speech spec-
trum (0.5–3.5 kHz) to reliably distinguish anterior, central,
and posterior loci of vocal-tract constriction.

Miller and Nicely (1955)’s study is important because it
focused on three aspects of speech processing that had previ-
ously been ignored: (1) decomposition of consonants into
structural primitives (i.e., APFs), (2) detailed error analyses
derived from confusion matrices, and (3) the use of an
information-theoretic analysis based on (1) and (2) that pro-
vides insight into the perceptual processes underlying conso-
nant recognition. Their principal finding – that Place-of-
articulation decoding is considerablymore vulnerable to back-
ground noise than Manner and Voicing – is not called into
question by the assumption of feature independence. The per-
ceptual fragility of the Place feature is likely a consequence of
its information being broadly distributed across the speech
spectrum.

Christiansen and Greenberg (2012) extended Miller and
Nicely (1955)’s study, with a focus on robustness and cross-
spectral integration of phonetic information. Using an
information-transmission metric, they concluded that conso-
nant recognition requires accurate decoding of Place of artic-
ulation, and relies on nonlinear, cross-spectral synergy (in
contrast to Voicing and Manner which do not exhibit such
nonlinear integration across the speech spectrum).

In the current study, we used the same consonant-
recognition data reported in Christiansen and Greenberg
(2012) to examine the perceptual flow of APF processing.
Key to the recognition of consonants is the concept of
decoding. Decoding refers to “partial recognition,” whereby
the part correctly recognized refers to a structured constituent
(or element) of the “whole.” In the present study, consonants
represent the whole, and APFs the elements. Decomposition
of the consonant into primitive elements, when embedded
within the appropriate structure, provides a powerful means
bywhich to examine phonetic processing in greater detail than
conventional segment-based analyses afford.

Methods and procedures

Design

This study is part of a larger project investigating how conso-
nants are processed and recognized by human listeners. The

Table 1 The phonetic feature classes and their values associated with
the 11 consonants used in the current study

Segment Voicing Manner Place

[p] – Stop Anterior

[t] – Stop Central

[k] – Stop Posterior

[b] + Stop Anterior

[d] + Stop Central

[g] + Stop Posterior

[f] – Fricative Anterior

[s] – Fricative Central

[v] + Fricative Anterior

[m] + Nasal Anterior

[n] + Nasal Central
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stimuli and experimental methods are the same as in
Christiansen and Greenberg (2012). Its focus is on the condi-
tional probabilities associated with phonetic-feature decoding
derived from consonant-recognition confusion matrices.

Stimuli

Stimuli were Danish syllables recorded in a sound-insulated
chamber (Chan et al., 1995). Each presentation was a concat-
enation of a short, unfiltered carrier phrase “På pladsen
mellem hytten og...” (English translation: "On the square be-
tween the cottage and…") followed by a test syllable, which
contained one of 11 consonants, [p], [t], [k], [b], [d], [g], [m],
[n], [f], [s,] [v], followed by one of three vowels, [i], [a], [u].
Each token concluded with the unstressed liquid + neutral
vowel syllable [l ] (e.g., [til ] [tal , [tul ]). Recordings of a
female talker and a male talker, each enunciating the carrier
sentence and the test syllables, were used.

The carrier phrase was used to: (1) focus the attention of the
test subjects on a delimited point in time, (2) provide a rela-
tively natural context (in terms of sound level and talker), and
(3) improve the listener’s concentration.

The audio sampling rate was 20 kHz. The signals were
subsequently up-sampled to 44.1 kHz for stimulus presenta-
tion. The acoustic-frequency spectrum was partitioned into
three spectrally delimited bands (slits). The lowest slit was
centered at 750 Hz, the middle slit at 1,500 Hz, and the highest
at 3,000 Hz. All slit combinations were tested, yielding a total
of 3 (single slits) + 3 (two-slit combinations) + 1 (all three-
slits) = 7 slit configurations. The band-pass filters had a 3-dB
bandwidth of 3/4-octave and nominal slopes of 120 dB/octave
outside the pass band.

The center frequency and bandwidth of the slits were cho-
sen through extensive pilot experiments. In designing the sig-
nal’s spectral properties, five criteria were met: (1) consonant-
recognition accuracy with all slits presented concurrently was
close to, but not quite 100% to avoid ceiling effects, (2) rec-
ognition accuracy with two slits was clearly lower than with
all three slits present but significantly higher than with only
one slit present, (3) consonant-recognition accuracy for indi-
vidual spectral bands presented alone was clearly above
chance level in order to avoid floor effects, and (4)
consonant-recognition accuracy was roughly comparable
across single-slit conditions.

The seven conditions are listed, along with consonant-
recognition scores, in Fig. 1. They were presented once for
each combination of consonant + vowel context and talker –
11 × 3 × 2 × 7 = 462 test presentations for each listener.
Control conditions consisted of unfiltered combinations of
all consonants, vowels and talkers – 11 × 3 × 2 = 66 condi-
tions, and were interleaved with the test conditions (details
below).

Miller and Nicely (1955) used 16 English consonants [p
t k f θ s b d g v δ z m n], of which [θ δ z ] were
excluded in the current study because [θ z ] lack Danish
counterparts and [δ] does not occur syllable-initially in
Danish. The remaining 11 consonants bear similarity to
their English counterparts (Basbøll, 2005; Grønnum,
1998).

Procedure and subjects

The data associated with the seven slit configurations
were collected as part of a larger study encompassing
83 slit combinations, where the presentations were di-
vided into nine sessions, each lasting less than 2 h,
during which subjects could take short breaks. The data
were collected during three sessions for each subject.
The total number of presentations for each subject was
3 × 66 (control conditions for the three sessions) + 11 ×
3 × 2 × 7 (test conditions) = 660. The test conditions
were randomly distributed across the three sessions. The
66 control conditions were randomly distributed across
each session. The average consonant-recognition accura-
cy was 99.0%, and was always greater than 96.7%. The
stimulus conditions excluded from this paper are asso-
ciated with spectro-temporal manipulations that lie out-
side the scope of the present study.

The subject was seated in a double-walled sound
booth. His/her task was to identify the initial consonant
of the test signal by mouse-selecting it from the 11
consonant alternatives displayed on a computer display.
No response feedback was provided. Six native speakers
of Danish (three males, three females) between the ages
of 21 and 28 years were paid for their participation. All
reported normal hearing and no history of hearing pa-
thology. All subjects signed an informed consent form
and the experiment protocol was approved by the
Science-Ethics Committee for the Capital Region of
Denmark; reference H-KA-04149-g.

Stimuli were presented diotically over Sennheiser HD-580
headphones at a sound pressure level of 65 dB SPL using a
computer running Matlab version R2006 under Windows XP
with a RME Digipad 96 soundcard.

Analysis

Consonant recognition is usually studied from the per-
spective of whether the speech sound is correctly iden-
tified or not. This metric gauges how well the speech
signal is processed, often in listening conditions involv-
ing background noise, reverberation, or competing
talkers. As useful as this metric may be, it is limited
in its ability to delineate the specific mechanisms under-
lying consonant recognition because there are various
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ways in which a consonant may be incorrectly recog-
nized. Error pattern analysis at the phonetic-feature level
provides insight into the underlying decoding process
that goes well beyond what’s possible when measuring
consonant-recognition alone. Because decoding and rec-
ognition accuracy were comparable across the single-slit
and two-slit conditions (Fig. 1), the data illustrated in
the current study are averages across the three data sets
associated with each slit condition (for simplicity of
exposition). Collapsing the data in this way does not
alter any of the conclusions drawn.

In what follows, we describe the steps used in the condi-
tional probability analysis, as well as its logic.

When a consonant is identified accurately, its constit-
uent features are also decoded correctly. But what hap-
pens when a consonant is not identified correctly? Are
the errors entirely random? Or is there a systematic
structure to the consonant confusions? If the latter, what
do the error patterns reveal about the perceptual mech-
anisms responsible for consonant recognition?

When a consonant is misrecognized, it is unusual for all
constituent features to be decoded inaccurately. There is struc-
ture to feature-decoding errors, one that can shed light on how
consonants (and by extension, words and phrases) are proc-
essed and perceived.

To understand how phonetic-feature-error analysis can
shed light on consonant recognition, let’s first examine the
11 Danish consonants used in this study (Table 1). These
consonants are decomposed into the articulatory-acoustic fea-
ture classes of Voicing, Manner, and Place. For example,
Voicing distinguishes the voiced stop consonants, [b], [d],

[g] [from their unvoiced counterparts [p], [t], [k].1 Manner
distinguishes [b] (a stop) from [m] (a nasal), and [v] (a frica-
tive). Place distinguishes among the bilabial, anterior constric-
tion of [p] from [t] (medial constriction), and [k] (posterior
constriction). Two of the feature classes (Manner and Place)
can assume one of three values, while Voicing is a binary
feature.

Two hypothetical examples of a consonant confusion are
shown in Table 2. In Table 2, a single decoding error, confined
to the Place feature, is illustrated. In this instance, the segment
[d] is mistaken for the segment [g]. In Table 3, a decoding
error occurs for two features, Manner and Place, resulting in a
[g] being misidentified as [n].

Key to the current analyses is the consonant-confusion ma-
trix, which provides a method for analyzing error patterns in
terms of articulatory-acoustic features. Table 4 shows an ex-
ample of one such consonant-confusion matrix where row
values refer to the stimulus presented, while column values
denote listener responses. The number of correct responses is
indicated in bold along the diagonal. The corresponding APF
confusion matrices for Voicing, Manner, and Place are shown
in Tables 5, 6 and 7.

1 The term “Voicing” is conventionally used for distinguishing certain English
stop consonants (e.g., [p] versus [b], [t] versus [d]). The term “aspiration” is the
conventional phonetic term for distinguishing between their Danish counter-
parts. The single most important physical property distinguishing voiced stops
from voiceless stops in English and aspirated stops from unaspirated stops in
Danish is voice onset time (VOT); hence, the English conventional term,
“Voicing,” is retained in the present analysis and discussion.

Fig. 1 Consonant-recognition
accuracy and feature-decoding
precision for each stimulus
condition averaged across the six
subjects. The coefficient of
variation (i.e., standard deviation
divided by the mean) was always
less than 0.08 and usually below
0.03. Of the consonants, 99.0%
were correctly recognized in the
absence of band-pass filtering
(i.e., the original, unprocessed
signals). Reprinted from
Christiansen and Greenberg
(2012) with permission
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The APF-confusion matrix is derived by first grouping the
consonant-by-APF associations (see Table 1). In Table 6, the
groups are theManner classes “stop” ([p], [t], [k], [b], [d], [g]),
“fricative” ([s], [f], [v]), and “nasal” ([m], [n]). The sum of the
consonants with “stop” as the Manner of articulation identi-
fied correctly (179) is placed in the upper left-hand cell of the
matrix (see Table 6). The sum of the stop consonants with
Manner wrongly identified as “fricative” (23) is placed in
the cell immediately to the right, and so on.

The proportion of correctly identified elements in a confu-
sion matrix (recognition score) can be calculated as the sum of
the diagonal elements divided by the sum of all the elements,

as shown in Table 4 –where the sum of the elements along the
diagonal is 159 and the total number of presentations is 396,
resulting in a consonant-recognition score of 40.2%.

Results

The consonant-recognition data were analyzed in terms of
accuracy (i.e., percent correct) at both the segment (i.e., con-
sonant) and phonetic-feature levels. We first examined the
relationship between consonant recognition and decoding of
the three phonetic-feature classes, Voicing, Manner, and Place
of articulation. If Voicing, Manner, and Place are truly inde-
pendent perceptual elements, decoding of each feature should
be uncorrelated with consonant recognition accuracy.
However, as Table 4, and subsequent perceptual confusion
data show, the relationship between consonant-recognition
and feature-decoding errors is anything but random. Voicing
is the feature least correlated with consonant recognition (Fig.
2). It is frequently decoded correctly even when the associated
consonant is misrecognized. This relatively loose connection
between voicing and consonant recognition is reflected in
their relatively low correlation (r2=0.76). Manner of articula-
tion is more closely linked to consonant recognition (r2=0.94).
However, this feature, like Voicing, is often decoded accurate-
ly despite the consonant being identified incorrectly. Unlike
Voicing and Manner, there is a very tight connection between
consonant recognition and Place-of-articulation decoding
(r2=0.99). If the Place feature is decoded correctly, the conso-
nant is virtually always identified correctly as well. In this
sense, consonant recognition and Place decoding are flip sides
of the same perceptual coin.

Let’s delve a little deeper into the feature-decoding patterns
to gain further insight into how each phonetic feature is
decoded, as well as its likely function in recognizing conso-
nants. We focus first on the probability that a given feature is
decoded correctly (or not), conditioned on a different feature
being decoded successfully (or not).

If all features are decoded independently, feature-decoding
errors should be roughly symmetric. For example, decoding of
Manner should not be impacted if Voicing is correctly
decoded (or not), and vice versa. Place decoding should not
be affected if Manner or Voicing are decoded correctly (or
not), and so on. In the analyses that follow, we examine the
impact of decoding feature X (e.g., Place), given the decoding
accuracy of feature Y (e.g., Manner) for each phonetic-feature
pair (Voice–Manner, Voice-Place, Manner-Place, Manner–
Voice, Place-Voice, Place-Manner).

An example of a conditional-probability analysis is illus-
trated in Figure 3 for instances where the base feature is cor-
rectly or incorrectly decoded. In the example, the base (i.e.,
reference) feature is Voicing and the conditional feature is
Manner. The same procedure is also performed for the

Table 3 A second hypothetical phonetic-feature analysis, in which the
error (mistaking a [g] for the segment [n]) involves two different phonetic
features, Manner and Place

Segment VOICING MANNER PLACE

[p] – Stop Anterior

[t] – Stop Central

[k] – Stop Posterior

[b] + Stop Anterior

[d] + Stop Central

Stimulus [g] + Stop Posterior PLACE

[f] – Fricative Anterior

[s] – Fricative Central Errors

[v] + Fricative Anterior

[m] + Nasal Anterior

Response [n] + Nasal Central MANNER

Only the VOICING feature is decoded correctly. The incorrect features
are shown in bold, underlined text

Table 2 A hypothetical phonetic-feature analysis, in which a consonant
confusion (mistaking a [g] for the segment [d]) is illustrated

Segment VOICING MANNER PLACE

[p] – Stop Anterior

[t] – Stop Central

[k] – Stop Posterior

[b] + Stop Anterior

Stimulus [d] + Stop Central Place

Response [g] + Stop Posterior Error

[f] – Fricative Anterior

[s] – Fricative Central

[v] + Fricative Anterior

[m] + Nasal Anterior

[n] + Nasal Central

In this example, Voicing and Manner are correctly decoded; only Place is
incorrect. The incorrect feature is shown in bold, underlined text
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mirror-image condition in which Manner serves as the Base
feature and Voicing as the conditional feature. If the features
Voicing and Manner are processed independently, decoding
accuracy should be comparable across conditions. However,
they are not. Instead, we see that Manner is decoded more
poorly (55%) when Voicing is incorrectly decoded, but that
Voicing is decoded more accurately (than Manner) when the
latter feature is decoded incorrectly (80%). It is this form of
asymmetry inAPF-decoding accuracy (i.e., 55% vs. 80%) that
is of primary interest in our study.

In Table 8, the values of interest are the percent correct for
Manner given incorrect decoding of Voicing (55%) relative to
the percent correct for Voicing, given incorrect decoding of
Manner (80%). This ratio (55/80) yields a “conditional feature
accuracy ratio” (CFAR) of 0.69, well below the neutral (i.e.,
hypothetical independence) value of 1.0. Analogous compu-
tation for Voicing, relative to Place decoding, yields compara-
ble results (69% correct decoding for Place when Voicing is
incorrect; 96% correct decoding of Voicing, when Place is
incorrect). The CFAR for this condition is 69/96 = 0.72.

Table 4 Example confusion matrices for the 1,500-Hz slit condition summed across the six test subjects

R e s p o n s e

p t k b d g s f v n m Total

p 7 11 2 3 4 2 1 1 3 1 1 36
t 4 15 2 1 5 0 2 2 3 1 1 36
k 7 7 12 3 1 1 1 0 3 0 1 36
b 1 0 0 14 11 3 0 0 3 3 1 36
d 0 0 1 5 24 5 0 0 0 0 1 36
g 1 0 2 9 9 7 0 1 3 0 4 36
s 1 3 1 0 1 0 13 3 1 6 7 36
f 1 7 0 1 1 0 6 9 3 2 6 36
v 0 2 2 0 2 3 0 3 16 4 4 36
n 0 0 0 2 1 1 0 1 0 24 7 36

S 
 t 

 i 
 m

  
u 

 l 
 u

  
s

m 0 0 0 1 2 3 1 0 0 11 18 36

Total 22 45 22 39 61 25 24 20 35 52 51 396
Row values pertain to the stimulus presented, while column values are the listener responses. Table 4 shows the raw responses to the consonant-
recognition task. For example, test subjects reported hearing [t] 11 times when the stimulus was [p]. Correct response counts are indicated in bold.
Consonant-recognition accuracy for this example is 40.2 percent. Tables 5, 6 and 7 show the confusion matrices derived from Table 4 for Voicing,
Manner, and Place, respectively, as described in the Analysis section. The sum of all elements from the left-most sub-matrix in Table 4 yields the number
of correctly identified stop consonants (179), which in turn is the upper left-hand element in Table 6. Similarly, the 23 stop consonants confused for
fricatives in the right-most box of Table 4 correspond to the upper middle element of Table 6. Reprinted from Christiansen and Greenberg (2012) with
permission

Consonant-recognition accuracy: 159/396 = 40.2%

Table 6 Derived confusion matrix for Manner

Response

Stimulus Stop Fricative Nasal Total

Stop 179 23 14 216

Fricative 25 54 29 108

Nasal 10 2 60 72

Total 214 79 103 396

Decoding precision: 293/396 = 74.0%

Table 5 Derived confusion matrix for Voicing

Response

Stimulus Voiced Unvoiced Total

Voiced 201 15 216

Unvoiced 62 118 180

Total 263 133 396

Decoding precision: 319/396 = 80.6%
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This computation can be repeated for the six Feature X /
Feature Y conditions to determine which features are decoded
accurately without other features being decoding correctly, as
illustrated in Table 9.

In this example, there is an asymmetry between the
accuracy of feature decoding for Manner and Voicing.
When Manner is decoded correctly (98%), Voicing is cor-
rectly decoded almost as well (80%). In contrast, when
Voicing is decoded correctly (94%), Manner is not
decoded nearly as well (55%) for this condition.

The data used to illustrate the conditional probability
calculation and the CFAR up to this point are from one
condition out of the many investigated. Let’s now exam-
ine the conditional probability patterns for the entire data
set in two different ways. In Table 9, the proportion of
features (or consonants) correctly decoded (or recognized)
are shown for two different scenarios. In the first (to the
left of the grey vertical bar), the conditional feature,

Place, Manner, or Voicing, is correctly decoded. In the
second, these same features are decoded inaccurately.

Place is closely associated with Consonant recognition,
while Voicing and Manner are not nearly as much.
Moreover, there appears to be a hierarchical relationship be-
tween Place and Manner. Although decoding of the Manner
feature is not so tightly linked to the decoding of Place, the
latter feature’s decoding is considerably more accurate when
the former is correctly decoded.

The Conditional Feature Accuracy Ratio exhibits an asym-
metric pattern across many stimulus conditions (e.g. Voicing/
Manner values differ greatly from Manner/Voicing values for
many of the conditions). In slit conditions spanning a broad
frequency range, cross-spectral integration may account for
the CFARs close to 1 (Table 10).

Table 8 An illustration of how conditional probabilities are computed
in the analysis of feature decoding

Feature Class Accuracy Accuracy Math CFAR

Base X VOICING Correct Incorrect

Conditional Y Manner Correct Correct

94% 55% 0.55

Base Y Manner Correct Incorrect × =

Conditional X VOICING Correct Correct

98% 80% 0.8 0.69

In this example, there is an asymmetry between the accuracy of feature
decoding for Manner and Voicing. When Manner is decoded correctly
(98%), Voicing is decoded correctly almost as well (80%). In contrast,
when Voicing is decoded correctly (94%), Manner may not be decoded
nearly as accurately (55%). The conditional feature accuracy (CFAR) is
the proportion of feature Y’s conditional accuracy (given incorrect
decoding of feature X) [0.55] divided by feature X’s conditional accuracy
(given incorrect decoding of feature Y) [0.80]

Fig. 2 Voicing, Manner, and Place decoding accuracy as a function of
consonant-recognition accuracy for the same conditions and listeners as
shown in Fig. 1. With each phonetic feature, a best-fit linear regression
and a correlation coefficient (r2) are shown. Not all phonetic features are
decoded equally well. Manner and Voicing are often correct, even when
the consonant is incorrectly recognized. Place of articulation is the only
feature (of the three) for which decoding is (almost) perfectly correlated
with consonant recognition. Reprinted from Christiansen and Greenberg
(2012) with permission

Fig. 3 Diagram showing the accuracy of the different base and
conditional feature-decoding combinations. The open (white) rectangles
designate conditions where the base feature is correctly decoded. The
gray boxes are associated with conditions where the base feature is
incorrectly decoded. Note that the decoding of Voicing is mostly correct
when Manner (80%) and Place (96%) are incorrectly decoded. In
contrast, Place is not well decoded when Voicing (69%) or Manner
(54%) are incorrectly decoded. Manner decoding is severely impacted
when Voicing (55%) is inaccurately decoded, but isn’t so much when
Place (85%) is incorrectly decoded

Table 7 Derived confusion matrix for Place

Response

Stimulus Anterior Central Posterior Total

Anterior 96 69 15 180

Central 39 95 19 144

Posterior 32 18 22 72

Total 167 182 56 396

Decoding precision: 213/396 = 53.8%
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Decoding of Manner appears to be associated with
accurate decoding of Voicing. This is reflected in the
relatively low CFAR for the Voicing/Manner conditions.
The disparity between Voicing/Manner and Manner/
Voicing CFARs suggests that Voicing may be the more
fundamental feature, in that the CFAR is usually greater
for the Manner/Voicing condition relative to the
Voicing/Manner condition. In this sense, Manner and
Voicing may be kindred (i.e., linked) features with re-
spect to their conditional behavior (e.g., Table 10).

The decoding of Place information may be tied to accurate
decoding of Manner and Voicing, particularly when the
speech spectrum is only partially available, as is the case for

the one-slit and 2-slit conditions. This is because Place is
not decoded nearly as accurately when Manner and
Voicing are incorrectly decoded. The absence of such a
pattern for the three-slit condition may be a consequence
of the broad distribution of spectral information associat-
ed with Place (consistent with Miller & Nicely (1955)’s
study). A comparison of the Manner/Place CFARs relative
to Place/Manner CFARs suggests that decoding of Place
is facilitated when Manner is correctly decoded. This re-
sult is also consistent with machine-learning experiments
reported by Chang, Wester and Greenberg (2005), in
which Place-feature classification benefitted appreciably
from Manner-dependent training.

Table 9 The proportion of phonetic features (and consonants) correctly decoded (or recognized), depending on whether the conditional element is
correctly or incorrectly decoded

Reference Element Conditional element

Correct Incorrect

Element PLACE MANNER VOICING PLACE MANNER VOICING

Slits Consonant 0.965 0.901 0.878 0 0 0

PLACE – 0.907 0.904 – 0.811 0.875

3 MANNER 0.971 – 0.969 0.937 – 0.813

VOICING 0.993 0.994 – 0.991 0.959 –

Consonant 0.915 0.759 0.713 0 0 0

PLACE – 0.773 0.754 – 0.526 0.638

2 MANNER 0.931 – 0.919 0.815 – 0.489

VOICING 0.966 0.979 – 0.943 0.793 –

Consonant 0.749 0.521 0.462 0 0 0

PLACE – 0.557 0.539 – 0.431 0.448

1 MANNER 0.800 – 0.813 0.707 – 0.425

VOICING 0.875 0.918 – 0.829 0.655 –

The base elements are listed vertically. For example, when MANNER is decoded correctly, Place is decoded correctly with a probability of 0.971 in the
three-slit condition

Table 10 The Conditional Feature Accuracy Ratio (CFAR) computed for six phonetic-feature pairs across seven slit conditions

Stimulus Condition Phonetic Features

Slit Center
Frequency (Hz)

VOICING MANNER MANNER PLACE VOICING PLACE Base Feature
MANNER VOICING PLACE MANNER PLACE VOICING Conditional Feature

750 0.47 0.78 0.98 0.96 0.76 0.96

15000 0.51 0.63 0.58 0.95 0.87 0.95

3000 0.57 0.74 0.81 0.93 0.79 0.93

750 1500 0.43 0.74 0.72 0.99 0.92 0.99

1500 3000 0.56 0.78 0.58 0.94 0.78 0.94

750 3000 1.06 1.01 0.76 1.01 1.14 1.01

750 1500 3000 0.84 0.97 0.88 1.00 0.97 1.00

Note that the conditional features, Voicing and Manner, are somewhat insensitive to whether the base Place feature is correctly decoded or not. The
CFAR is asymmetric across many of the phonetic feature pair comparisons. Manner and Place show a greater statistical reliance on accurate decoding of
the base feature than Voicing
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Discussion

Historically, articulatory-acoustic features have been treated
as independent, descriptive elements within an analytical
framework for distinguishing the phonological units of a lan-
guage (e.g., Chomsky & Halle, 1968; Jakobson, Fant, &
Halle, 1963). But even perceptual scientists (e.g., Miller &
Nicely, 1955) often treat APFs as independent. Feature inde-
pendence has recently been called into question by
Christiansen and Greenberg (2012), as well as by this study.
For if APFs are truly independent elements, there should be
little or no asymmetry in decoding accuracy. However, as
Tables 8, 9 and 10 and Fig. 3 illustrate, decoding asymmetries
are pervasive. Decoding of higher-level features appears to be
linked to successful decoding of lower-level features.

To understand why, we present a hierarchical model of
phonetic-feature processing, and discuss how such an ap-
proach might account for the feature-decoding patterns shown
in Tables 9 and 10 and Figs. 2 and 3. In our view, the APFs of
Voicing, Manner and Place perform complementary roles in
the recognition of consonant segments (and by extension,
non-consonants, such as vowels and semi-vowels). But before
discussing the model, let’s examine each phonetic feature by
itself to better understand its perceptual relationship to the
other APFs.

Voicing is the feature most accurately decoded across stim-
ulus conditions (Fig. 1). One reason is its binary character (i.e.,
+Voice, –Voice), meaning that its decoding “floor” (i.e.,
chance level) is 0.5. In contrast, the decoding floor for
Manner and Place is 0.333, as each feature may assume one
of three values.

However, there may be other reasons why Voicing’s
decoding is superior. It is the most resilient of the APFs, per-
ceptually robust even in the face of background noise or dis-
tortion (e.g., narrow spectral slits, like those used in the current
study, see Fig. 1). Moreover, voicing cues are broadly distrib-
uted across the speech spectrum. And yet, reliable decoding
only requires a narrow portion of the spectrum (i.e., a single
slit) (Fig. 1). Additional slits improve decoding only slightly
(Fig. 1). Such a pattern suggests that Voicing information can
be reliably extracted from most parts of the frequency spec-
trum, and that it is not tied to any given region. This means
that the “ideal” listener need not analyze the entire spectrum to
determine whether a segment is Voiced or not. Such spectral
flexibility likely facilitates the decoding process.

Voicing is also the APF least necessary to infer a phonetic
segment’s “underlying” (i.e., phonemic) identity. This is be-
cause a consonantal segment’s Voicing “sign” (from +Voice to
–Voice, or vice versa) is mutable in that linguistic context can
disambiguate the phonetic fuzziness of spoken discourse. A
consonant’s Voicing quality, especially in coda position, re-
flects a syllable’s prosody (e.g., stress-accent) not just its pho-
nological identity (Greenberg, Carvey, & Hitchcock, 2001),

and may enhance intelligibility in challenging listening con-
ditions (e.g., Divenyi, 2004).

Manner of articulation is often temporally aligned with the
phonetic segment. Contiguous segments within a syllable usu-
ally differ in their Manner affiliation, an observation consis-
tent with this feature being closely associated with the phone
and its underlying representation (i.e., the phoneme). Unlike
Voicing, Manner cues are distributed over approximately an
octave range of the spectrum (Miller & Nicely, 1955). This
may be why Manner features are decoded reasonably well (if
imperfectly) in single-slit stimuli. Adding a second slit im-
proves decoding only slightly (to near-ceiling performance).
A third slit benefits Manner decoding hardly at all (Fig. 1).

Place of articulation differs from Voicing and Manner in
several ways. Its decoding cuts across a broad frequency range
that encompasses much of the speech spectrum. This is
reflected in the following association between spectral peaks
and Place of articulation. Anterior vocal tract constrictions
(“Front”) are associated with a low-frequency (<1,000 Hz)
peak, while posterior occlusions (“Back”) are linked to a
high-frequency (> 2,500 Hz) peak. Intermediate constrictions
(“Central”) have their energy peak between 1,200 and 2,400
Hz. These loci roughly correspond to the lowest three vocal-
tract resonances or formants (F1 < 800 Hz, F2 1,000–2,400
Hz, F3 2,500–3,200 Hz).

Place decoding is relatively poor for single-slit stimuli, irre-
spective of their spectral locus. The addition of a second slit
significantly improves decoding accuracy. However, near-
perfect decoding requires all three slits, a pattern consistent with
Miller and Nicely (1955)’s finding that Place information is dis-
tributed over a broad swath of the speech spectrum. A potential
“downside” of Place’s broad spectral distribution is its suscepti-
bility to acoustic interference, distortion or hearing impairment.
Place of articulation cues are alsowidely distributed over time, so
much so that information in the preceding and/or following vow-
el is often used to recognize consonants (e.g., Cole et al., 1996;
Kewley-Port, Burke, & Lee, 2007; Lee & Kewley-Port, 2009).

Place of articulation also differs from other APFs in its
close connection to visual speech cues (Grant, Walden, &
Seitz, 1998; McGurk and MacDonald, 1976). These cues per-
tain to the movement of the lips, tongue, and jaw, and are
highly dynamic, closely paralleling the formant patterns asso-
ciated with Place of articulation.

Let’s now consider howAPFsmay interact during the process
of consonant recognition. Phonetic features can be likened to
(visual) perceptual primitives (Marr, 1982). In a hierarchical pro-
cessing model, the feature classes, Voicing, Manner, and Place
carry different (often adjustable) weights, and perform comple-
mentary roles in the recognition of consonant segments.
Information critical for decoding Voicing, Manner, and Place of
articulation is differentially distributed across time and frequency.
Such differences are key to how each feature interacts with the
others during consonant recognition.
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Voicing is a temporally fine-grained feature in which the
critical interval is 30–40 ms (Lisker & Abramson, 1964). The
distinction between voiced and unvoiced stop consonants
may involve voice-onset time differences as brief as 20–
30 ms (Abramson & Lisker, 1970; Liberman, Cooper,
Shankweiler, & Studdert-Kennedy, 1967). This acute time
sensitivity, in tandem with spectral flexibility, allows for
Voicing decisions to be made quickly and reliably.
Voicing is a sub-phonemic feature associated with the
speech signal’s spectral and temporal microstructure. Its
decoding time is likely to be very fast, about 40 ms, about
half a consonant’s duration.

Manner and Place information unfold over much longer
time intervals. Manner’s information is usually distributed
over the entire segment (80–100 ms for consonants) and spec-
trally localized. Such localization likely requires more time to
analyze than Voicing.

Place of articulation decoding relies on a broadband,
spectral-shape analysis over a comparatively long interval of
time spanning two or more segments.

Given that decoding of Voicing, Manner, and Place of ar-
ticulation occur over different time scales and spectral regions,

some high-level mechanism likely monitors and guides their
interaction during the process of consonant recognition.

Such differences in feature information distribution provide a
theoretical framework for how Voicing, Manner, and Place inter-
act in consonant recognition. Voicing requires a relatively brief
amount of time to reliably decode, usually less than half a seg-
ment’s duration. For this reason, a listener is likely to have made
a Voicing decision in advance of decoding Manner of articula-
tion, which requires most of the segment to accomplish. Place of
articulation requires a longer time span to process, as critical
information frequently spans two or even three segments.
Under challenging listening conditions, speech may require even
longer to decode (e.g., Greenberg & Christiansen, 2008).

The perceptual flowmodel (Fig. 4) posits that a lower-level
feature, such as Voicing, is decoded in advance of higher-level
features, which integrate information from below. This suppo-
sition is consistent with our finding that a lower-level feature
(e.g., Voicing) is rarely impacted by the decoding of a higher-
level feature (e.g., Manner), but not vice versa. By the time an
intermediate-level feature (i.e., Manner) or high-level feature
(i.e., Place) is processed, the lower-level feature has already
been decoded.

Fig. 4 A schematic illustration of the phonetic flow model of phonetic
processing. The coarsest, lowest level of analysis is Voicing, with a
postulated processing time of 40 ms. The flow of phonetic information
proceeds to the finer-grained, higher-level features of Manner and Place

of articulation. The (estimated) interval associated with each analysis is
shown in the middle column. A functional description of each level’s role
is shown at right
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Support for such a hierarchical, perceptual-flowmodel also
comes from studies of audio-visual speech processing. Van
Wassenhove, Grant, and Poeppel (2005) have shown that the
inclusion of visual speech cues may accelerate speech pro-
cessing by approximately 100 ms. With the integration of
visual, speech-reading information, the brain would have ac-
cess to key information about Place of articulation well in
advance of it being available through the auditory modality
alone. This bi-sensory input could also facilitate integration
with Manner and Voicing cues (that are usually not accessible
in speech-reading cues) to provide a more robust representa-
tion of speech. The perceptual flow model is also consistent
with a study by Grant and Greenberg (2001), in which the
intelligibility of sparse spectral sentences was shown to be
relatively insensitive to desynchronization of the audio and
visual channels when the video channel preceded the audio
by as much as 200 ms (but not vice versa).

Although Place of articulation is the key phonetic feature
for consonant recognition, Manner and Voicing also play im-
portant roles. Voicing is a hybrid feature in that it serves not
only to distinguish voiced from unvoiced consonants, but also
provides a perceptual foundation for prosodic (syllabic) prom-
inence and lexical stress in speech communication. Manner of
articulation is the feature most temporally aligned with the
phonetic segment, and as such provides important information
germane to phonemic representations. It is the intricate inter-
play of phonetic-feature decoding that provides the perceptual
foundation for the (usually) seamless recognition of segments
and higher-level elements (e.g., syllables, words, and phrases)
in spoken discourse.

Conclusions

Consonant-confusion patterns were analyzed to gain insight
into phonetic-feature decoding involved in consonant recog-
nition. Asymmetries in decoding articulatory-acoustic phonet-
ic features are consistent with a perceptual flow model in
which the decoding of Manner of articulation derives substan-
tial benefit from the decoding of Voicing (but not vice-versa),
and decoding of Place of articulation benefits from decoding
of Manner (but not the converse). Such a hierarchical pattern
of feature decoding may facilitate the integration of fine-
grained phonetic detail into more global linguistic representa-
tions associated with prosody and other supra-segmental ele-
ments important for understanding speech, especially in ad-
verse acoustic environments.

Acknowledgements This research was funded by the Carlsberg
Foundation, Technical University of Denmark, and the United States
Air Force Office of Scientific Research. The authors thank Torsten Dau
for helpful suggestions and comments on various aspects of this research,
as well as AndyLotto and an anonymous reviewer for helpful suggestions
on improving the original draft of this paper.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Abramson, A., & Lisker, L. (1970). Discriminability along the voicing
continuum: Cross language tests. Proceedings of the 6th
International Congress of Phonetic Sciences (pp. 569–573).

Allen, J. B. (2005). Consonant recognition and the articulation index. The
Journal of the Acoustical Society of America, 117, 2212-2223.

ANSI (1969). Methods for the calculation of the articulation index. ANSI
Standard S3.5-1969.

ANSI (1997). Methods for the calculation of the speech intelligibility
index. ANSI Standard S3.5-1997.

Basbøll, Hans (2005). The phonology of Danish. Oxford: Oxford
University Press.

Bell, T. S., Dirks, D. D., & Trine, T. D. (1992). Frequency-importance
functions for words in high- and low-context sentences. Journal of
Speech and Hearing Research, 35, 950-959.

Bonatti, L., Peña, M., Nespor, M., & Mehler, J. (2005). Linguistic con-
straints on statistical computations: The role of consonants and
vowels in continuous speech processing. Psychological Science,
16, 451–459.

Boothroyd, A., & Nittrouer, S. (1988). Mathematical treatment of context
effects in phoneme and word recognition. The Journal of the
Acoustical Society of America, 84, 101-114.

Braida, L. D. (1991). Crossmodal integration in the identification of con-
sonant segments. Quarterly Journal of Experimental Psychology,
43, 647-677.

Chan, D., Fourcin, A., Gibbon, D., Granström, B., Huckvale, M.,
Kokkinakis, G., …, Zeiliger, J. (1995). EUROM—A spoken lan-
guage resource for the EU, in Proceedings of the 6th European.
Conference on Speech Communication and Technology
(Eurospeech’95), pp. 867-870.

Chang, S., Wester, M., & Greenberg, S. (2005). An elitist approach to
automatic articulatory-acoustic feature classification for phonetic
characterization of spoken language. Speech Communication, 47,
290-311.

Cheung, C., Hamilton, L. S., Johnson, K., & Chang, E. F. (2016). The
auditory representation of speech sounds in the human motor cortex.
eLife, 5, e12577.

Chomsky, N., & Halle, M. (1968). The sound pattern of English. New
York: Harper & Row.

Clements, G. N. (1985). The geometry of phonological features.
Phonology Yearbook, 2, 225-252.

Cohen M. M., & Massaro, D. W. (1995). Perceiving visual and auditory
information in consonant-vowel and vowel syllables, In C. Sorin, J.
Mariani, H. Meloni,, & J. Schoentgen, (Eds.), Levels in speech
communication: Relations and interactions (pp. 25-37).
Amsterdam: Elsevier.

Cole, R., Yan, Y., Mak, B., Fanty. M, & Bailey, T. (1996). The contribu-
tion of consonants versus vowels to word recognition in fluent
speech. Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (pp. 853–856).

Diehl, R., & Lindblom, B. (2004). In S. Greenberg, W. Ainsworth, A.
Popper, & R. Fay (Eds.), Speech processing in the auditory system
(pp.101-162). New York: Springer.

Divenyi, P. (Ed.) (2004) Speech separation by humans and machines.
Boston: Kluwer.

Elhilali, M., Chi, T., & Shamma, S. (2003). A spectro-temporal modula-
tion index (STMI) for assessment of speech intelligibility. Speech
Communication, 41, 331-348.

Atten Percept Psychophys (2019) 81:884–896 895



Fletcher, H. (1953). Speech and hearing in communication. New York:
Van Nostrand. Reprinted by the Acoustical Society of America, with
a forward by J. Allen (1995).

Frankel, J., Wester, M., & King, S. (2007). Articulatory feature recogni-
tion using dynamic Bayesian networks. Computer Speech and
Language, 21, 620-640.

French, N. R., & Steinberg, J. C. (1949). Factors governing the intelligi-
bility of speech sounds. The Journal of the Acoustical Society of
America, 19, 90-119.

Ghosh, P. K., & Narayanan, S. (2011). Automatic speech recognition
using articulatory features from subject-independent acoustic-to-
articulatory inversion. The Journal of the Acoustical Society of
America, 130, EL251-257.

Grant, K.W., Walden, B. E., & Seitz, P. F. (1998). Auditory-visual speech
recognition by hearing-impaired subjects: Consonant recognition,
sentence recognition, and auditory-visual integration. The Journal
of the Acoustical Society of America, 103, 2677-2690.

Grant, K.W., &Braida, L. D. (1991). Evaluating the articulation index for
auditory-visual input. The Journal of the Acoustical Society of
America, 89, 2952-2960.

Greenberg, S., & Ainsworth, W. A. (2004). Speech processing in the
auditory system: An Overview. In S. Greenberg, W. A. Ainsworth,
A. R. Popper, & R. R. Fay (Eds.), Speech processing in the auditory
system (pp. 1-62). New York: Springer.

Greenberg, S., Carvey, H., & Hitchcock, L. (2002). The relation between
stress accent and pronunciation variation in spontaneous American
English discourse. Proceedings of the ISCA Workshop on Prosody
and Speech Processing.

Greenberg S., & Christiansen, T. U. (2008). Linguistic scene analysis and
the importance of synergy, in T. Dau, J. M. Buchholz, J. M. Harte, T.
U. Christiansen (Eds.), Auditory signal processing in hearing im-
paired listeners. Elsinore, Denmark: Danavox, (pp. 351-364).

Grønnum, N. (1998). Illustrations of the IPA: Danish, Journal of the
International Phonetics Association, 28, 99-105.

Hasegawa-Johnson, M., Baker, J., Borys, S., Chen, K., Coogan, E.,
Greenberg, S.,… Wang, T. (2005). Landmark-based speech recog-
nition: Report of the 2004 Johns Hopkins summer workshop.
Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vol.1.

Jakobson, R. Fant, G., & Halle,M. (1963). Preliminaries to speech anal-
ysis: The distinctive features and their correlates. Cambridge, MA:
MIT Press. [Originally published in 1952 as a research monograph
by the MIT Research Laboratory of Electronics].

Juneja, A. (2004). Speech recognition based on phonetic features and
acoustic landmarks. Ph.D. thesis, University of Maryland.

Kewley-Port, D. Pisoni, D. B., & Studdert-Kennedy, M. (1983).
Perception of static and dynamic acoustic cues to place of articula-
tion in initial stop consonants. The Journal of the Acoustical Society
of America, 73, 1779-1793.

Kewley-Port, D., Burkle, T. Z., & Lee, J. H. (2007). Contribution of
consonant versus vowel information to sentence intelligibility for
young normal-hearing and elderly hearing-impaired listeners. The
Journal of the Acoustical Society of America, 122, 2365-2375.

Kryter, K. D. (1962). Methods for the calculation and use of the articula-
tion index. The Journal of the Acoustical Society of America, 34,
1689-1697.

Ladefoged, P. (1971). Preliminaries to linguistic phonetics. Chicago:
University of Chicago Press.

Ladefoged, P., & Maddieson, I. (1996). The sounds of the world’s lan-
guages. Oxford: Blackwell.

Lee, J. H., & Kewley-Port, D. (2009). Intelligibility of interrupted
sentences at subsegmental levels in young normal-hearing and el-
derly hearing-impaired listeners. The Journal of the Acoustical
Society of America, 125, 1153-1163.

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy,
M. (1967). Perception of the speech code. Psychological Review, 74,
431-461.

Lisker L, & Abramson A. (1964). A cross-language study of voicing in
initial stops: Acoustical measurements. Word, 20, 384–442.

Livescu, K., Çetin, Ö., Hasegawa-Johnson, M., King, S., Bartels, C.,
Borges, N.,… Saenko, K. (2007). Articulatory feature-based
methods for acoustic and audio-visual speech recognition: 2006
JHU summer workshop final report. Proceedings of IEEE
International Conference on Acoustic, Speech, and Signal
Processing (pp. 621–624).

Marr, D. (1982). Vision: A computational investigation into the human
representation and processing of visual information. New York:
Freeman.

McGurk H., & MacDonald, J. (1976). Hearing lips and seeing voices.
Nature, 264, 746–748.

Massaro, D. W. (1987). Speech perception by ear & eye: A paradigm for
psychological inquiry. Hinsdale, NJ: Lawrence Erlbaum.

Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic
feature encoding in human superior temporal gyrus. Science, 343,
1006-1010.

Miller G. A., & Nicely, P. (1955). An analysis of perceptual confusions
among some English consonants. The Journal of the Acoustical
Society of America, 27, 338-352.

Pavlovic, C. V. (1994) Band importance functions for audiological appli-
cations. Ear and Hearing, 15, 100-104.

Pavlovic, C. V. (2006). The speech intelligibility index standard and its
relationship to the articulation index and the speech transmission
index. The Journal of the Acoustical Society of America, 119, 3326.

Rasipurama, R., & Magimai-Doss, M. (2016). Articulatory feature based
continuous speech recognition using probabilistic lexical modeling.
Computer Speech & Language, 36, 233-259.

RedfordM., &Diehl, R. L. (1999). The relative perceptual distinctiveness
of initial and final consonants in CVC syllables. The Journal of the
Acoustical Society of America, 106, 1555-1565.

Steeneken, H. J., &Houtgast, T. (1980). A physical method formeasuring
speech-transmission quality. The Journal of the Acoustical Society
of America, 67, 318-326.

Stevens, K. N. (2002). Toward a model for lexical access based on acous-
tic landmarks and distinctive features. The Journal of the Acoustical
Society of America, 111, 1872-1891.

Sussman, H. M., McCaffrey, H. A., & Matthews, S. A. (1991). An inves-
tigation of locus equations as a source of relational invariance for
stop consonant place categorization. The Journal of the Acoustical
Society of America, 90, 1309-1325.

Trubetzkoy, N. (1969). Principles of phonology. Berkeley: University of
California Press. Originally published in 1939 as Grundzige der
Phonologie. Travaux du Cercle Linguistique de Prague, 7. Prague.

van Wassenhove, V., Grant, K. W., & Poeppel, D. (2005). Visual speech
speeds up the neural processing of auditory speech. Proceedings of
the National Academy of Sciences, 102, 1181-1186.

896 Atten Percept Psychophys (2019) 81:884–896


	The perceptual flow of phonetic information
	Abstract
	Introduction
	Methods and procedures
	Design
	Stimuli
	Procedure and subjects
	Analysis

	Results
	Discussion
	Conclusions
	References


