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Abstract
Studies of vowel systems regularly appeal to the need to understand how the auditory system encodes and processes the
information in the acoustic signal. The goal of this study is to present computational models to address this need, and to use
the models to illustrate responses to vowels at two levels of the auditory pathway. Many of the models previously used to study
auditory representations of speech are based on linear filter banks simulating the tuning of the inner ear. These models do not
incorporate key nonlinear response properties of the inner ear that influence responses at conversational-speech sound levels.
These nonlinear properties shape neural representations in ways that are important for understanding responses in the central
nervous system. The model for auditory-nerve (AN) fibers used here incorporates realistic nonlinear properties associated with
the basilar membrane, inner hair cells (IHCs), and the IHC-AN synapse. These nonlinearities set up profiles of f0-related
fluctuations that vary in amplitude across the population of frequency-tuned AN fibers. Amplitude fluctuations in AN responses
are smallest near formant peaks and largest at frequencies between formants. These f0-related fluctuations strongly excite or
suppress neurons in the auditory midbrain, the first level of the auditory pathway where tuning for low-frequency fluctuations in
sounds occurs. Formant-related amplitude fluctuations provide representations of the vowel spectrum in discharge rates of
midbrain neurons. These representations in the midbrain are robust across a wide range of sound levels, including the entire
range of conversational-speech levels, and in the presence of realistic background noise levels.
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The broad goal of this research is to understand the neural
coding of the speech signal in the auditory pathway using
computational neural models based on existing physiological
data. We focus on the coding of vowel contrasts in the neural
pathways from the auditory periphery to the midbrain. We
present example model responses that illustrate how the prop-
erties of vowels that are essential for vowel contrasts, their
formant structure, are robustly coded in the auditory pathway.
Thus, the computational models presented here provide a

framework for investigating the auditory system’s contribu-
tion to the structure of vowel spaces.

Vowels and vowel spaces

The focus of the present study is to illustrate how the nonlinear
responses of the auditory periphery influence the representa-
tion of vowels in the midbrain. Two principle reasons for
focusing on vowels exist. First, the neural representations of
vowel sounds differ substantially from acoustic representa-
tions, which have traditionally served as the basis for our
understanding of vowels and vowel systems. Given a vowel
sound, a critical question concerns the neural coding of that
sound along the auditory pathway. Many auditory models
used to explore speech responses use linear filter banks, which
do not incorporate key nonlinear response properties of the
auditory system. Yet the nonlinear response properties in the
periphery shape the neural representations in ways that are
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important for understanding more central neural responses.
Second, vowel systems behave in systematic ways; they are
composed of sets of phonemic contrasts that disperse them-
selves within an acoustically defined vowel space, in distinct
cross-linguistic patterns, and independent of the number of
vowels in any given system. The basis of these patterns is
incompletely understood, and the effects of realistic physio-
logical properties of the auditory system on these spaces is
largely unexplored. The model described here provides a plat-
form for future work investigating the possible constraints that
the auditory system may impose on vowel spaces and on the
structure of linguistic systems in general.

Attempts to model vowel spaces

How vowels pattern in linguistic systems has been under
study for several decades, starting with work by Liljencrants
and Lindblom (1972), with a hypothesis called dispersion the-
ory (DT), later summarized as follows by Lindblom and
Maddieson (1988, pp. 63): BIf we know the number of vowels
in an inventory, we know what their phonetic qualities are.^
The details underlying this observation relate to strong regu-
larities in the way vowel systems develop and pattern cross
linguistically. Languages disperse their vowels within an area
defined by the first two vowel formants, irrespective of how
many vowels are in the system (Crothers, 1978; Maddieson,
1984). Several investigators have built on this work, includ-
ing, to name some classic examples, studies of the structure of
consonant inventories (Lindblom & Maddieson, 1988), and
revisions to Lindblom’s DT, including Badaptive dispersion^
and the inclusion of neural phase locking (Diehl & Kluender,
1989). The Grenoble group in the 1990s added a local focal-
ization feature to dispersion (dispersion focalization theory,
DFT) (Schwartz, Boë, Vallée, & Abry, 1997a, 1997b), to ad-
dress the overpredictions along the F2 parameter. Stevens’s
(1972, 1989) quantal theory grounded the discussion in the
asymmetries between articulatory movement and its acoustic
output. Apart from quantal theory, the research on vowel
spaces has had a strong auditory bias, based on the assumption
that the objects of speech perception are auditory (Diehl &
Kluender, 1989; Diehl, Lindblom, & Creeger, 2003;
Kingston & Diehl, 1994; Nearey, 1997). Nearey (1997) laid
out a Bdouble-weak^ hypothesis, which, while maintaining
the strong auditory bias, proposed that three critical compo-
nents interact with each other to shape the speech system: the
independent production and perception systems and the ab-
stract elements of the phonology. Becker-Kristal’s (2010)
UCLA dissertation took on a crucial issue underlying this
discussion, the relationship between the symbolic system
(phonemes) and the physical phonetic realization patterns, fo-
cusing on the phonetic patterns rather than the vowel symbols.
Becker-Kristal’s study addressed the vowel-space question

and dispersion-theory hypotheses based on an instrumental
phonetic analysis of vowel systems using extensive data gath-
ered from acoustic phonetic databases. Although these studies
have been successful in addressing many aspects of the struc-
ture of vowel systems, unexplained differences between the
predicted and actual vowel spaces persist.

The potential benefit of understanding the coding of speech
sounds by the auditory system has long been recognized (e.g.,
Diehl, 2000; Diehl & Kluender, 1989; Diehl, Kluender, Walsh,
& Parker, 1991; Diehl & Lindblom, 2004; Diehl et al., 2003;
Liljencrants & Lindblom, 1972; Lindblom &Maddieson, 1988;
Lindblom &Maddieson, 1988). While acoustic waveforms and
spectrograms have been crucial to the study of speech for more
than 100 years, the acoustic speech signal is the output of the
production system and does not represent the responses of the
auditory pathway nor the coding of the speech signal (Carlson&
Granström, 1982; Diehl, 2008; Diehl et al., 2003; Lindblom,
1986; Nearey, 1997). The need to model the auditory responses
have long been acknowledged, even in studies with a strong
articulatory bias (Ghosh, Goldstein, & Narayanan, 2011). The
role of temporal coding of sounds by phase-locked responses of
auditory-nerve (AN) fibers has been explored (Diehl &
Kluender, 1989; Diehl et al., 2003) with success in resolving
some problems. But issues remain; these representations are
not sufficient to explain the distribution of vowels in the F1–F2
space in the linguistic vowel systems. The set of vowels predict-
ed by dispersion theory does not fully map the vowel spaces
found in human languages, even when logarithmic frequency
representations and frequency-dependent temporal information
are considered (Diehl, 2008; Diehl et al., 2003) and even under
the expansion of dispersion theory to include a local or focaliza-
tion factor (Schwartz et al., 1997a, 1997b). Each step in this
progression of studies has come closer to explaining the vowel
space, but limitations remain, especially in the front-to-back (F2)
and peripheral–nonperipheral vowel dimensions.

Modeling nonlinearities of the auditory
periphery

The key nonlinearities that are included in the model of the
auditory periphery used in this study are (i) cochlear compres-
sion and suppression in the mechanical responses of the bas-
ilar membrane, (ii) saturation of the transduction from me-
chanical to electrical responses in the sensory inner hair cells
(IHC), and (iii) adaptation and saturation of the synapse be-
tween IHCs and AN fibers. Each of these stages of the model
will be introduced here, and their effects on low-frequency
fluctuations in AN responses will be described. Finally, the
sensitivity of neurons in the auditory midbrain for low-
frequency fluctuations, in the frequency range of voice pitch,
will be described below. This report focuses on neural re-
sponses to vowel sounds, for which the relation between
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fluctuation amplitudes and the harmonic spectrum are easily
described. However, the concepts presented here rely upon
profiles of low-frequency fluctuations that are present in re-
sponses to all complex sounds, including both voiced and
unvoiced speech.

Cochlear compression and amplification

Compression is perhaps the most studied nonlinear property
of the auditory periphery, partly because compression changes
with sensorineural hearing loss. The cochlea can be described
as an Bactive^ amplifier of incoming sounds (Hudspeth, 2014;
Kim, 1986). The amount of amplification is controlled locally
along the frequency axis of the inner ear; that is, the gain of the
so-called cochlear amplifier varies as a function of sound level
at each place along the cochlea. The compressive nonlinearity
refers to the decrease in cochlear amplification as sound level
increases; the amplification is maximal (50–60 dB) at sound
levels below 20–30 dB SPL and progressively decreases at
higher levels. The sound level at one frequency influences
the amplification not only at the place in the inner ear tuned
to that frequency, but also across a small range of surrounding
frequencies (Cody, 1992). The off-frequency influence on
gain is referred to as suppression, which can Bsharpen^ the
representation of sound spectra (Sachs & Young, 1980). Both
compression and suppression involve level-dependent, and
thus nonlinear, changes in the gain of the cochlear amplifier
(Ruggero, Robles, & Rich, 1992). Cochlear amplification is
also influenced by descending signals from the brain, via the
auditory efferent system (Guinan, 2011), which receives in-
puts from both the periphery and from the midbrain (e.g.,
Terreros & Delano, 2015; reviewed in Carney, 2018). All of
these factors that influence the cochlear amplifier play impor-
tant roles in determining the amplitude of the mechanical in-
put signal to the IHCs.

Inner-hair-cell saturation

The mechanical response of the cochlea is transduced into an
electrical signal by the IHCs (see Fig. 1). The complete process
of this transduction is an active area of study; transduction
involves complex mechanical and fluid-coupled movements
of microstructures in the inner ear (Howard, Roberts, &
Hudspeth, 1988). Microelectrode recordings of the electrical
signals in IHCs cells show that the electrical signal saturates
as the input signal increases in amplitude (see Fig. 1). The act of
making recordings from IHCs, which requires penetration of
the cell membrane by an electrode, distorts the electrical signals
(Zeddies & Siegel, 2004). Nevertheless, although the quantita-
tive details of the input/output relationship are difficult to spec-
ify, reports agree that the electrical signal saturates gradually
over a wide range of input sound levels (e.g., Dallos, 1985,
1986; Russell & Sellick, 1983; Russell, Richardson, & Cody,

1986). The description of IHC saturation in the ANmodel used
here was based on in vivo recordings in the AN, which avoided
damage to IHCs. The IHC stage of the ANmodel was designed
to reproduce the effects of IHC saturation on AN responses
(Zhang, Heinz, Bruce, & Carney, 2001).

IHC saturation becomes significant over the range of sound
levels used for conversational speech (50–70 dB SPL), thus
the influence of IHC saturation on responses to speech sounds
is important to consider. The IHC saturating nonlinearity is
often omitted from peripheral models for the following rea-
son: It is a gradual saturation that occurs over a range of sound
levels that is higher than the saturation of the IHC-AN synap-
se, described below. However, IHC saturation is critical in
shaping the fluctuations in the time-varying responses of AN
fibers and is particularly relevant for sounds at conversational
speech levels (Carney, 2018).

BCapture^ and its effect on fluctuations in AN
responses

IHC saturation is associated with a key aspect of AN re-
sponses to harmonic sounds, referred to as synchrony capture
(Deng, Geisler, & Greenberg, 1987). In response to harmonic
sounds, AN-fiber responses are phase-locked to some combi-
nation of a harmonic near the fiber’s characteristic frequency
(CF) and to the beating between harmonics that creates a
strong periodicity at f0. AN fibers tuned to a frequency near
a peak in the spectral envelope, or formant, are dominated by
the harmonic that is closest to the formant peak (see Fig. 2;
Delgutte & Kiang, 1984; Miller, Schilling, Franck, & Young,
1997). This Bcapture^ of the response by a single harmonic
near CF can be explained by the combined actions of the
cochlear amplifier and IHC saturation (see Fig. 1; Zilany &
Bruce, 2007). Although capture is present in response to all

Fig. 1 Saturating input/output function that describes transduction from
input pressure to output voltage in the IHC. As implemented by Zhang
et al. (2001) and used in Zilany, Bruce, and Carney (2014)
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harmonic sounds, this phenomenon is particularly strong in
AN responses to vowels, for which vocal tract resonances
shape the amplitudes of harmonics into peaks at the formant
frequencies.

The nonlinear phenomenon of capture has generally been
discussed in terms of its influence on phase-locking to tempo-
ral fine structure (Delgutte & Kiang, 1984; Deng et al., 1987;
Miller et al., 1997). However, capture by one harmonic also
reduces the influence on AN responses of f0, which is due to
beating between two or more harmonics. For example, the
time-varying response of an AN fiber to a single harmonic
has relatively weak amplitude fluctuations at f0 (Fig. 2a; see
responses of fibers with CF near F1 and F2), as compared with
responses of fibers tuned between formants. Thus, the tempo-
ral response component at f0 is reduced for AN fibers with
CFs near formant peaks (Fig. 2b, highlighted rectangle).
Because midbrain neurons are sensitive to amplitude fluctua-
tions in the frequency range of voice pitch, capture plays a
significant role in shaping the response of midbrain neurons to
voiced sounds (see below).

Nonlinear response properties that are generally included
in peripheral auditory models are the saturation of the IHC-
AN synapse and the rectification of the signal (i.e., only
Bpositive^ discharges occur on AN fibers). All of the nonlin-
ear response properties of the auditory periphery described

above, plus basic properties such as frequency tuning, are
included in the computational AN model that was used to
create the figures presented here (Zilany et al., 2014).

The temporal responses of AN fibers are characterized by
both phase-locking to the detailed fine structure in waveforms
and to the low-frequency fluctuations in amplitude associated
with f0 in voiced sounds (Joris, Schreiner, & Rees, 2004). The
AN models used here include both of these types of temporal
responses and their frequency dependence. The models for
central auditory neurons include sensitivity to the temporal
information in the peripheral responses. In particular, although
the ability to phase-lock to temporal fine structure decreases
along the ascending auditory pathway (Joris et al., 2004),
many midbrain neurons are tuned to fluctuations in the fre-
quency range of f0. This sensitivity to a strong temporal aspect
of voiced sounds provides another transformation of vowels
sounds along the auditory pathway (Carney, Li, &
McDonough, 2015).

It is worth emphasizing that the nonlinear properties de-
scribed above, and included in the ANmodel, have substantial
effects on neural responses to speech at the sound levels used
for conversation. At these sound levels, single AN fibers typ-
ically respond to a very wide range of frequencies; these re-
sponses are not well described by models that focus on the
sharp tuning of the inner ear that is the hallmark of threshold

Fig. 2 Phase-locking to temporal fine structure and envelope features of
vowels, and Bcapture^ of neural timing by harmonics. The two forms of
temporal information carried by AN fibers in response to a vowel are
illustrated by peri-stimulus-time (PST) histograms (a) and by the domi-
nant components, or the strongest periodicities in the AN responses,
shown as a function of the AN fiber characteristic frequencies (CF) (b).
Phase-locking to temporal fine structure near each fiber’s CF (a) appears
as frequency components in the AN responses at harmonic frequencies
near formants (b, horizontal dashed lines) or near the fiber’s CF (b,
dashed curve). Temporal phase-locking to the vowel pitch, F0, is the

result of the envelope fluctuations created by beating between two or
more harmonics, observed in the AN responses as a strong periodicity
locked to each pitch period (compare PST histograms in a to vowel
waveform in c). Phase-locking to f0 (b, highlighted rectangle) is reduced
in fibers tuned near formant peaks (B, vertical dashed lines) due to syn-
chrony capture, or dominance by a single harmonic near the spectral peak
(see text). Synchrony capture is apparent on the left in the responses of
fibers tuned near formants, which have responses dominated by a single
harmonic and reduced phase-locking to the pitch period. aModified from
Delgutte (1987). b Modified from Delgutte and Kiang (1984)
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tuning curves. Although it is beyond the scope of the present
study, this computational AN model also allows
Bimpairment^ of the active cochlear amplifier and reduction
of IHC sensitivity, two features of sensorineural hearing loss
(Carney, Kim, & Kuwada, 2016). Here we will present re-
sponses of a model of the healthy periphery.1

Modeling the auditory midbrain

The auditory midbrain (inferior colliculus, IC, in mammals) is
a major hub in the subcortical auditory system that receives
convergent inputs from nearly all ascending auditory path-
ways. In terms of its position along the sensory processing
pathway, the auditory midbrain is at the same level of sensory
processing as the output neurons of the retina, the retinal gan-
glion cells. For example, both of these major sensory hubs
project directly to the sensory thalamus; the auditory and vi-
sual thalamic regions that receive inputs from the auditory
midbrain and retina then project to the primary cortical regions
for each sensory system. Our understanding of neural repre-
sentations of visual scenes is strongly influenced by an under-
standing of the complex properties of retinal output neurons.
Thus, it is natural to reconsider auditory representations of
speech sounds based on the response properties of auditory
midbrain neurons.

The auditory midbrain is the first site along the ascending
pathway where discharge rate depends strongly on amplitude

modulations in the stimulus (see Fig. 3). Similar to most auditory
neurons, midbrain cells are tuned to a given audio frequency; this
tuning is inherited from the frequency tuning of the inputs to the
midbrain. Frequency tuning is first established by the tonotopic
map in the cochlea. However, in addition to basic frequency
tuning, most midbrain neurons have large (many fold) changes
in discharge rate associated with tuning to the frequency of am-
plitude fluctuations in the stimulus. A simplified model of mid-
brain tuning to the frequency of input fluctuations is based on the
interaction of excitatory and inhibitory inputs to the neurons
(Carney et al., 2015; Nelson & Carney, 2004). This simple mid-
brain model omits several interesting features of midbrain neu-
rons (e.g., binaural response properties) and focuses on the rate
and timing of the responses to complex sounds that are presented
to one ear.

Approximately 50% of midbrain neurons have band-
enhanced tuning to fluctuation frequency, that is, the average
response rate over some range of fluctuation frequencies is
elevated with respect to the response to an unmodulated stim-
ulus (see Fig. 3; Nelson & Carney, 2007). The other 50% have
band-suppressed responses, with average rates over some
range of fluctuation frequencies that are suppressed with re-
spect to the response to unmodulated sounds. Band-enhanced
neurons are generally broadly tuned bandpass filters, with best
modulation frequency (BMF) typically in the range from 16–
128 Hz (Langner & Schreiner, 1988; Nelson&Carney, 2007).
Band-suppressed responses can be modeled as neurons that
are excited by ascending inputs to the midbrain and inhibited
by the band-enhanced neurons within the midbrain (see Fig. 4;
Carney et al., 2015).

Band-enhanced neurons are driven well by fluctuations in
the f0 range of most voices. Because synchrony capture re-
duces the f0 fluctuations in peripheral responses tuned near
formant peaks, the responses of band-enhanced neurons tuned
near formants are reduced (Carney et al., 2015). However, the
band-enhanced neurons also tend to have weak responses in
quiet, or if they are tuned to frequencies in a wide gap between
formants (e.g., for midfrequency neurons responding to the
vowel /i/). Thus, there is ambiguity in interpreting a weak
response in the band-enhanced neurons—a weak response
could indicate either a spectral peak that Bflattens^ the fluctu-
ations of the inputs, or it could indicate a spectral valley. This
ambiguity is resolved by band-suppressed neurons: these neu-
rons respond strongly to spectral peaks that yield reduced
fluctuations in peripheral responses, but they respond weakly
in quiet or to inputs with large fluctuations (Carney et al.,
2015). The response properties of band-suppressed midbrain
neurons yield population responses that are more easily com-
pared with the spectra of the stimuli; therefore, the population
midbrain responses shown here will be based on models of
band-suppressed neurons.

As described in Fig. 3, midbrain neurons have discharge
rates that are sensitive to low-frequency (f0-related) temporal

1 Differences across AN fibers in synaptic saturation results in three different
types of AN fibers: low-, medium-, and high -spontaneous -rate (LSR, MSR,
HSR) fibers that differ in their thresholds and dynamic ranges (Liberman,
1978). The properties of these groups of AN fibers are often interpreted in
terms of their average discharge rates; this simple approach suggests that
saturated fibers cannot encode changes in the input signal. For this reason,
several studies of neural coding have combined the three different types of AN
fibers to explain the wide dynamic range of hearing (reviewed in Delgutte,
1996). This approach neglects the considerable information contained in the
time-varying responses of AN fibers that have saturated average discharge
rates. Here, we will focus on the responses of HSR fibers, the largest group
of fibers, which have low thresholds and a relatively small dynamic range
based on average discharge rate. HSR fibers provide the primary inputs to
the ascending auditory pathway, and the fluctuation amplitudes of their time-
varying responses encode speech spectra over the full range of levels encoun-
tered in speech sounds (Carney et al., 2015).
The LSR and MSR fibers have relatively wide dynamic ranges for average

discharge rates, and thus they are often included in studies of neural encoding
of complex sounds. Although these fibers project into the major ascending
brainstem nuclei, the primary brainstem cells that project to the midbrain have
low thresholds and limited dynamic ranges, consistent with dominance by
their HSR inputs. Although we are not including them in the neural represen-
tations presented here, the LSR and MSR fibers provide exclusive inputs to a
region of the brainstem that projects to the efferent system, which is involved
in control of cochlear gain (reviewed in Carney, 2018). Thus, the LSR and
MSR fibers may play a role in shaping the responses of HSR fibers, due to the
important interaction of cochlear gain and IHC saturation. In addition to satu-
ration and rectification of the IHC-AN synapse, adaptation of the synapse
enhances responses to onsets in sounds, but also enhances synchronization
to relatively low-frequency features in sound, including the pitch period, F0
(Zilany et al., 2009).
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fluctuations of their inputs. This sensitivity represents a trans-
lation of temporal information carried by AN responses into a

profile of discharge rates across the population of midbrain
neurons. Midbrain neurons also phase-lock to very low-

Fig. 4 Schematic diagram of midbrain neuron models and modulation
transfer functions. a The SFIE model (blue; Nelson & Carney, 2004) is a
simple combination of excitatory and inhibitory inputs, first at the level of
the cochlear nucleus (CN) in the brainstem and again at the midbrain
level. The band-suppressed model neuron (red) receives inhibition (white
terminals) from the band-enhanced neuron, and excitation (black termi-
nals) from the brainstem (Carney et al., 2015). b Most shapes of modu-
lation transfer functions (MTFs) observed in the IC can be explained by

these two simple models. The blue curves are band-enhanced MTFs;
different best modulation frequencies (MTFs) result from different dura-
tions of the excitatory and inhibitory potentials in the model. The red
curves illustrate different types of band-suppressed MTFs; these curves
are suppressed with respect to the response to an unmodulated tone over
some range of modulation frequencies. (After Carney et al., 2015)

Fig. 3 Modulation transfer functions (MTFs) of midbrain neurons in cat
illustrate the sensitivity of these cells’ average discharge rates to ampli-
tude fluctuations in a tone stimulus over a range of modulation frequen-
cies (fm). Stimuli were tones at each cell’s characteristic frequency (CF),

sinusoidally modulated across a range of low frequencies. Percentages of
several different MTF types from one physiological study are shown (BP
= band pass; LP = low pass; HP = high pass; BR = band reject; AP = all
pass). Figure adapted from Nelson and Carney (2007)
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frequency periodic inputs (including tones or the lower har-
monics in a vowel) and to f0-related fluctuations (Joris et al.,
2004). Investigation of the responses of fluctuation-sensitive
midbrain neurons is therefore a logical step forward in the
progression of studies of temporal coding of speech features
(e.g., Diehl, 2008).

Method

Vowel stimuli

Vowel waveforms were from the Hillenbrand, Getty, Clark,
and Wheeler (1995) database. The figures below show re-
sponses to a subset of eight speakers from the database.
Selected speakers had average f0s that were approximately
evenly spaced, ranging from 95 to 223 Hz (Speaker IDs:
M03, M23, M08, M33, M40, W46, M10, W38).
Illustrations below show responses to the vowels /α/ (see

Fig. 5), and /i/, /e/, /æ/, and /u/ (see Figs. 6, 7, and 8). For each
speaker, the average f0 across all vowels was used to specify
the best modulation frequency of the midbrain model used to
process that speaker’s vowel waveforms.

The formant frequencies of the vowels in the Hillenbrand
et al. (1995) database change over time (Hillenbrand &
Nearey, 1999). The model neural responses track the changes
in the formants during the course of the vowel (see Rao and
Carney, 2014); however, the changes in the formant frequen-
cies tend to degrade the response profiles which are based on
average responses over fixed time windows. To reduce the
effect of changes in the formant frequencies on the average
model responses, the central 100ms of the steady-state portion
of each vowel was extracted, and 5-ms raised-cosine on/off
ramps were applied. Responses were studied for the vowel
recordings provided in the Hillenbrand et al. (1995) database
or to the same sounds with added background noise. The
added noise had a long-term spectrum that matched the aver-
age speech spectrum (LTASS noise; Byrne et al., 1994). To

Fig. 5 a Schematic diagram showing stimulus waveform, AN population
model, and brainstem/midbrain population models. The stimulus is /α/
from Hillenbrand et al. (1995), spoken by a male with average f0 = 128
Hz, presented at 65 dBSPL. Formant frequencies: F1 = 748 Hz, F2 = 1293
Hz, F3 = 2446Hz, F4 = 3383Hz. b Time-frequency population responses.
All AN model fibers are high-spontaneous-rate fibers; 50 BF channels

from 150 to 4000 Hz. Midbrain responses are for band-suppressed neu-
rons created by band-enhanced cells with BMF = 128 Hz (see Fig. 4). c
Discharge rates averaged over time, for each BF channel, plotted on
logarithmic frequency axes; model AN responses (left) and midbrain
responses (right)
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adjust the signal-to-noise ratio (SNR) of the speech in back-
ground noise, the speech level was kept constant (70 dB SPL
for Figs. 6, 7, and 8), and the noise level was set at 65 dB SPL
overall level, for a +5 dB SNR (see Figs. 7 and 8).

AN and IC model implementations

The illustrations here are based on models for AN fibers and
for neurons in the auditory midbrain (inferior colliculus, IC, in
mammals) that have band-suppressed responses to amplitude
modulations. The AN model (Zilany et al., 2014) has the key
nonlinearities mentioned above: cochlear compression/sup-
pression, IHC saturation, and synaptic adaptation and satura-
tion. The model was developed based on physiological re-
sponses of the AN in cat (Carney, 1993, Zhang et al., 2001;
Zilany & Bruce, 2006, 2007; Zilany, Bruce, & Nelson, 2009).
The version of the AN model used here has sharpened tuning
estimated from physiological and psychophysical measures
(Shera, Guinan, & Oxenham, 2002), as appropriate for the
human ear (Ibrahim & Bruce, 2010).

The midbrain model used here is based on the band-
suppressed model in Carney et al. (2015), modified to allow
convenient adjustment of the BMF of band-enhanced neurons.

The BMF of model neurons was approximately matched to the
average f0 of each speaker. The band-suppressed responses,
shown here, were excited by the same ascending inputs as the
band-enhanced neurons, and were inhibited by the band-
enhanced model neuron (see Fig. 4). The model parameters
and their dependence on BMF are described in Table 1.

The time-varying rate function, which represents the prob-
ability of neural responses as a function of time, for each
model stage, Routput(t), in response to an input rate function,
Rinput(t), is described by

Routput = A [ { α (τex,t) * Rinput(t) } – Cinh { α(τinh,t) *
Rinput(t - Dinh) } ],

where α (τ) is the alpha function used to simulate excitato-
ry and inhibitory response potentials, described by α (τ,t) = t
e-t/τ. The symbol * represents the convolution operation. The
output of each stage was half-wave rectified. For speed, the
alpha functions were implemented in the frequency domain;
the scalars in Table 1 were applied to alpha functions that were
normalized to have an area equal to 1.

Both physiological and psychophysical estimates of midbrain
modulation transfer functions suggest that they are broad, with
quality (Q = CF/bandwidth) factors equal to approximately 1
(i.e., the bandwidth is equal to the peak frequency.) Responses

Fig. 6 Model AN andmidbrain responses to four vowels ( /i/, /e/, /æ/, and
/u/, from top to bottom), spoken by eight speakers in the Hillenbrand et al.
(1995) database. All vowels were scaled to 70 dB SPL. The left column
shows population average discharge rate profiles for model AN re-
sponses, and the right column shows band-suppressed (BS) model

midbrain responses. Each midbrain model had a BMF that was matched
to the average f0 of each speaker across the vowels in the Hillenbrand
et al. (1995) database. Averages rate responses across the eight speakers
are shown as thick black lines in each panel
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of band-suppressed model neurons are shown here; the speech
features represented in these responses also influence the re-
sponses of band-enhanced neurons, except that the representa-
tions are Binverted.^ The presence of two groups of midbrain
cells that represent stimulus features with opposite Bpolarities^ is
reminiscent of retinal ganglion cells with on-center-off-surround
and off-center-on-surround receptive fields. Recall that auditory
midbrains are comparable, in terms of sensory processing level,
to retinal ganglion cells: Both cell groups project directly to the
sensory thalamus.

The response profiles shown below (see Figs. 6, 7, and 8) are
based on 80 frequency channels, log-spaced from 150 to 4000
Hz. The AN model includes a time-varying spontaneous rate,
which introduces variability in the simulations from repetition
to repetition, and across different model neurons in the popula-
tion. For the population responses presented here, 10 indepen-
dent AN fibers were simulated in each frequency channel, and
averages across these fibers were used as inputs to the midbrain
models. This number of AN fibers is a conservative estimate of
the number of AN fibers that are present in each frequency chan-
nel, as defined by the number of AN fibers that innervate each
inner hair cell in the cochlea, which ranges from approximately
eight to 30 (Keithley & Schreiber, 1987).

The computer code used to generate the illustrations pre-
sented here is available at https://www.urmc.rochester.edu/
labs/carney.aspx.

Results

A schematic diagram illustrating how the AN and midbrain
models were used to create population profiles is shown in
Fig. 5. The pressure waveform for the approximately steady-
state portion of the vowel /α/ was extracted (from the word
/hod/) for speaker M08 in the Hillenbrand et al. (1995) data-
base. The central 100 ms of the vowel was used as input to the
model; a 50-ms segment is illustrated in Fig. 5a–b for clarity.
The AN response is shown in Fig. 5 for 50 HSR fibers with
best frequencies (BFs) tuned from 150 to 4000 Hz, spaced
evenly on a log frequency scale. Figure 5b shows the time-
varying rate of each AN fiber over 50 ms of the vowel re-
sponse. The two types of temporal responses described above
are apparent in these responses: phase-locking to the fine
structure is clearest in responses to the low BFs, and phase-
locking to f0 is clear across all BFs (the six vertical bands in
the population response are responses across all BFs to the
onset of each pitch period.).

The effect of synchrony capture can be observed in the
time-varying AN responses in Fig. 5b (left). For AN fibers
with BFs near F1, F2, and even near F3, the responses are
dominated by phase-locking to the harmonic that is closest
to the formant frequency. These responses show up as
Bsmooth^ bands that have peaks evenly spaced in time, at
the frequency of the dominant harmonic. The phase-locking

Fig. 7 Model AN and midbrain band-suppressed rate profiles for vowels
at +5 dB SNR, in a background of LTASS noise. (Vowels were presented
at 70 dB SPL, and the added LTASS noise was at 65 dB SPL). Note that at

this moderate noise level, the AN responses are largely saturated, but the
model midbrain response profiles (bold black lines in the right-hand col-
umn) still have peaks at many of the formant frequencies
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of these Bcaptured^ fibers to f0 is relatively weak, as compared
to the fibers with BFs between the formant frequencies.

The band-suppressed model midbrain neurons (see Fig. 5b,
right) respond most strongly to inputs that have relatively
weak fluctuations; thus, these responses are strongest near
the formants, especially near F1 and F2. The changes in re-
sponses near F3 and F4 are not as clear in the time-frequency
plots of Fig. 5b. However, the changes in the response profile
across all frequency channels are more apparent in the plots of
average discharge rates (see Fig. 5c). For these plots, 10 inde-
pendent AN fibers were simulated for each frequency channel.
The average rate across the entire 100 ms segment of the
steady-state vowel, averaged across the 10 model AN fibers,
is plotted as a function of BF (Fig. 5c, left). The average
discharge rates are also shown for the population of band-
suppressed model midbrain neurons (Fig. 5c, right). Each
model midbrain neuron received an input based on an average
of the ten independent AN simulations.

The frequencies of F1–F4 can be observed in the average dis-
charge rate profile of the AN fibers, visible as four peaks at the
appropriate frequencies. These peaks in the AN model rates are
susceptible to addednoise, andwill vary fromspeaker to speaker,
as shown below. However, the f0-related temporal information
that is embedded in the AN responses (Fig. 5b, left) results in an
enhanced representation of the formants, especially F1 andF2, in
the rate profile across the population of model midbrain neurons
(Fig. 5c, right). It should be noted that f0 is also encoded in the
temporal responses of themodel midbrain neurons.

The strategy used to compute the model rate profiles in Fig.
5c were applied to four other vowels in Figs. 6, 7, and 8.

Responses for these figures were computed for eight speakers
with a range of average f0s. For each speaker, a midbrain
model with BMF matched to the average f0 for that speaker
across all vowels in the Hillenbrand et al. (1995) database was
used. For each response profile, the AN responses were aver-
aged across ten independent simulations for each of 80 fre-
quency channels, evenly spaced on a log axis from 150 to
4000Hz. The average of the ten AN simulations was provided
as the excitatory input to the midbrain models (see Fig. 4);
only the band-suppressed (BS) midbrain model responses are
shown in Figs. 6, 7, and 8.

Figure 6 shows responses of AN and midbrain models to
four vowels presented in Bquiet^ (i.e., no additional noise was
added to the database recordings.) The colored lines represent
each of the eight speakers. The thick black line is an average
of the model responses across the eight speakers. The formant
locations are visible in the AN rate profiles (Fig. 6, left
column), even in the responses of these HSR model AN fi-
bers, which have nearly saturated average discharge rates at
the 70 dB SPL presentation level used. As observed in Fig. 5,
the representations of formants are enhanced in the model
midbrain responses (Fig. 6, right column), due to the temporal
properties of the model AN responses.

A challenge to any neural representation based on average
discharge rates is the addition of background noise. Human
listeners with normal hearing can communicate at relatively
low signal-to-noise ratios (SNRs), though many neural
models (and automatic speech recognition systems) cannot.
For the responses in Fig. 7, vowel levels were held fixed at
70 dB SPL, and 65 dB SPL LTASS noise was added, for a +5

Fig. 8 Model response profiles for vowels in quiet (a, b) and in +5 dB SNR added noise (c, d). Model AN (a, c) and band-suppressed midbrain (b, d)
profiles for the four vowels in Figs. 6 and 7, averaged across the eight speakers
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dB SNR. At this SNR, the AN response profiles are largely
flat, as has been observed in other studies of AN coding
(reviewed in Delgutte, 1996). However, the temporal re-
sponses, especially phase-locking to f0, is still relatively ro-
bust in these AN responses, as reflected in the model midbrain
responses, which still encode many of the formant frequencies
based on peaks in the rate profiles.

Figure 8 compares the AN and midbrain responses, aver-
aged across the eight speakers, for both quiet and +5 dB SNR
vowel stimuli. Comparison of the panels in Fig. 8a and c
illustrate the deleterious effect of the added noise on the rep-
resentations of formants in terms of peaks in the average rate
profiles. However, the temporal aspects of the model AN re-
sponses that are important for driving the model midbrain
responses are relatively robust, even in the presence of noise.
Comparison of the plots in Fig. 8b (in quiet) and d (in noise)
illustrate that peaks in the midbrain profiles related to formant
frequencies are generally still present, although the peaks are
diminished in noise with respect to those in quiet. Measures of
intelligibility predicted by these responses would be degraded,
but not eliminated, by the added noise. It should be noted that
these plots only show representations of the vowel responses
based on average rate. The temporal response properties of the
midbrain neurons convey additional information related to
both the formant locations and f0. This temporal information
in midbrain responses is important in explaining formant dis-
crimination thresholds in a noise background in the parakeet,
an animal model that has discrimination thresholds compara-
ble to human listeners (Henry et al., 2017). Future studies of
the representations of vowels using these computational
models should include both average rate and temporal re-
sponse metrics.

Discussion

The goal of this paper is to introduce computational modeling
tools for auditory responses in the periphery and midbrain,
and to illustrate how peripheral auditory nonlinearities and
midbrain response properties may inform questions about
the organization of linguistic speech patterns. Examples of

responses to vowels, in quiet and in background noise, dem-
onstrate the potential utility of these tools for exploring neural
representations of speech. Model response profiles (see Figs.
6, 7, and 8) include the effects of several nonlinear properties
in the periphery. By including the sensitivity of midbrain neu-
rons to low-frequency fluctuations of their neural inputs, pro-
files are also shaped by temporal responses in the periphery to
the combination of the fine structure and f0-related fluctua-
tions in vowels. Any realistic description of auditory represen-
tations of speech must be robust at conversational speech
levels (shown here) and across a range of sound levels
(Carney et al., 2015). Furthermore, the representations must
be robust in background noise levels for which speech com-
munication is possible. Here, the focus was on introducing
these models and testing these basic requirements. These com-
putational tools provide a tool for ongoing tests of hypotheses
concerning the structure of vowel spaces.

The response profiles of model AN and midbrain neurons
(e.g., Figs. 6, 7, and 8) can be used to explore hypotheses
related to the structure of the vowel space, such as dispersion
theory and dispersion focalization theory. For example, the
model rate profiles can be used to assess Bdistances^ between
different vowels, using the strategy of Lindblom (1986),
which was inspired by Plomp’s (1970) quantification of the
similarity of sounds with timbre. Note that these representa-
tions, and the distances between them, are affected by the
vowel spectra, as well as by the temporal information in AN
fibers. This temporal information gradually transitions from a
combination of phase-locking to both fine structure and enve-
lope (f0-related) fluctuations in low-frequency channels, to
phase-locking to f0alone in high-frequency channels where
phase-locking to fine structure is diminished. A reevaluation
of distances between vowels and correlations to perceptual
similarities can be pursued using the neural representations
provided by the models presented here.

Becker-Kristal (2010) examined the acoustic realization
patterns of the phonemic contrasts in vowel systems to test
the veracity of Lindblom’s dispersion theory, and the disper-
sion and focalization theory (DFT) of the Schwartz group
(Schwartz et al., 1997a, 1997b). These theories hypothesize
that inventories are structured to maximize perceptual

Table 1 Parameters for the modified same-frequency inhibition-excitation (SFIE) model used for the simulations presented here

Excitatory input
time constant
τex (ms)

Inhibitory input
time constant
τinh (ms)

Inhibitory delay
Dinh (ms)

Amplitude of
inhibition re:
excitation
Cinh

Scalar for model
stage output A

Brainstem model 0.5 2.0 1.0 0.6 1.5

Midbrain Band-enhanced (BE) model τexBE =0.1/BMF τinhBE =1.5 τexBE 2 τexBE 0.9 1

Midbrain Band-suppressed (BS) model τexBS = 0.1/BMF τinhBS = τinhBE 1 4 0.5

Note. Themodel is modified from that inNelson and Carney (2004) and Carney et al. (2015) to allow convenient adjustment of the parameters based on a
desired best modulation frequency (BMF) for the band-enhanced midbrain model
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contrasts among the vowels, with the focalization feature fa-
voring a local merging of close vowel formants. The Becker-
Kristal study was based on acoustic measurements of phone-
mic representations of vowels, drawn from published data
from 550 studies, resulting in 304 separate inventories. His
results largely corroborated dispersion theory with noteworthy
differences. Among them were that the vowels within a sys-
tem disperse themselves in an acoustic space defined by the
number of vowels in the system, with larger inventories in
larger acoustic spaces, with significant differences between
the behavior of peripheral and nonperipheral vowels. The in-
creases in the number of peripheral vowels affect the F1 space.
He observes that inventories with increasing numbers of
nonperipherals tend to prefer vowels front of the midline, with
a F2 high close to F3, a focalization feature, and to disprefer
retracted vowels, building vertical systems and overriding the
repulsion of peripheral vowels in the system.

Becker-Kristal (2010) demonstrated that the vowel space is
well defined by an acoustic space and auditory principles
(Diehl & Kluender, 1989; Diehl et al., 2003). The model
discussed here demonstrates that the spectral envelope of
vowels is robustly encoded in midbrain response profiles.
Thus, changes in temporal coding by auditory neurons as a
function of frequency, together with the cochlear frequency
map, shape the responses in a manner that can be investigated
in the context of dispersion theory.
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