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Abstract

Recent research suggests that humans perceive quantity using a non-symbolic “number sense.” This sense is then thought to
provide a foundation for understanding symbolic numbers in formal education. Given this link, there has been interest in the
extent to which the approximate number system (ANS) can be improved via dedicated training, as this could provide a route to
improving performance in symbolic mathematics. However, current evidence regarding the trainability of the ANS comes largely
from studies that have used short training durations, leaving open the question of whether improvements occur over a longer time
span. To address this limitation, we utilized a perceptual learning approach to investigate the extent to which long-term (8,000+
trials) training modifies the ANS. Consistent with the general methodological approach common in the domain of perceptual
learning (where learning specificity is commonly observed), we also examined whether ANS training generalizes to: (a) un-
trained locations in the visual field; (b) an enumeration task; (c) a higher-level ratio comparison task; and (d) arithmetic ability. In
contrast to previous short-term training studies showing that ANS learning quickly asymptotes, our long-term training approach
revealed that performance continued to improve even after thousands of trials. We further found that the training generalized to
untrained visual locations. At post-test there was non-significant evidence for generalization to a low-level enumeration task, but
not to our high-level tasks, including ratio comparison, multi-object tracking, and arithmetic performance. These results dem-
onstrate the potential utility of long-term psychophysical training, but also suggest that ANS training alone (even long-duration
training) may be insufficient to modify higher-level math skills.
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Introduction (Dehaene, Dehaene-Lambertz, & Cohen, 1998; Feigenson,

Dehaene, & Spelke, 2004; Livingstone et al., 2014; Manuela

A wealth of research conducted over the past several decades
has demonstrated the presence and importance of a core set of
processes, known as the approximate number system (ANS),
that are devoted to the non-symbolic understanding of number
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Piazza, 2010; Sulkowski, 2001). This system underlies the
ability to estimate quantities rapidly without counting or using
symbols. The general capacity is present very early in human
development (Feigenson et al., 2004; Izard, Sann, Spelke, &
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Streri, 2009; Lipton & Spelke, 2004), and has also been iden-
tified both in non-human primates (Nieder, 2016; Nieder &
Dehaene, 2009) and in other non-human animals (Dehaene
et al., 1998).

The ANS has been of particular interest to educational re-
searchers due to findings indicating a positive correlation be-
tween ANS ability and mathematics performance. Such a rela-
tion has been found in many different age-groups — including in
preschoolers (Libertus, Feigenson, & Halberda, 2011), kinder-
garteners (Gilmore, McCarthy, & Spelke, 2010), and 8-year-
olds (Inglis, Attridge, Batchelor, & Gilmore, 2011). This includes
work involving both typically-developing individuals and studies
of individuals with dyscalculia (severe difficulties with mathe-
matics). For example, Pinheiro-Chagas et al. (2014) found that
children with math difficulties had impairments in performing
multiple ANS-related tasks, in particular in non-symbolic numer-
ical comparison and non-symbolic addition (but see Castronovo
& Gobel, 2012; Fuhs & McNeil, 2013; Gobel, Watson, Lervag,
& Hulme, 2014, for studies that failed to find a relation between
the ANS and mathematics abilities).

In addition to these correlational studies, longitudinal studies
examining scores across two or more time points have found the
same basic positive relation. For instance, Starr, Libertus, and
Brannon (2013) found that 6-month-old infants’ numerical pref-
erence scores correlated with their standardized math test scores
and non-symbolic number comparison scores at 3.5 years of age.
Similarly, Halberda et al. (2008) found that ANS acuity of 14-
year-olds correlated with their past standardized math scores go-
ing as far back as kindergarten. Libertus, Odic, and Halberda
(2012) similarly found a positive relationship between ANS
scores measured in college students and their past Quantitative
SAT (SAT-Q) scores, even when controlling for SAT-Verbal
scores.

The observed correlation between the ANS and mathematics
performance has led to interest in whether the ANS can be
altered (e.g., Wilson, Revkin, Cohen, Cohen, & Dehaene,
2006). Such interest has been further spurred by cross-
sectional studies showing that ANS ability continues to increase
from age 3 into adolescence, suggesting that the system is plas-
tic (at least for some time during development — see Halberda,
Ly, Wilmer, Naiman, & Germine, 2012, and Piazza & Izard,
2009 for a meta-analysis of this literature). And indeed, the few
intervention studies that exist in this domain have provided
some evidence that ANS training can produce enhancements
in mathematics performance (e.g., DeWind & Brannon, 2012;
Park & Brannon, 2014a; Pinheiro-Chagas et al., 2014; Price,
Palmer, Battista, & Ansari, 2012).

However, these previous studies have typically been quite
short (e.g., between one and six sessions). The longest report-
ed study involved training young children for approximately
25 10-min sessions on numerical tasks, which was associated
with improvements on a standard ANS test when compared to
children in a control group (Van Herwegen, Costa, &
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Passolunghi, 2017). However, this study did not systematical-
ly test the degree of generalization, nor did it involve precise
control and analysis of training sessions. Interestingly, in stud-
ies that do report performance across several days of training
(e.g., DeWind & Brannon, 2012; Park & Brannon, 2014 — six
training sessions), very little improvement in ANS ability was
found after the first session (for a discussion of this pattern of
results, see Lindskog & Winman, 2016). This lack of im-
provement after the first several hundred trials stands in stark
contrast to most studies in the domain of perceptual learning,
where improvements often continue for thousands or tens of
thousands of trials (Fahle & Edelman, 1993; Larcombe,
Kennard, & Bridge, 2017; Yang & Maunsell, 2004).

Despite the published empirical results showing some de-
gree of generalization to mathematics, even from somewhat
short ANS training, several critical reviews have emerged
pointing out numerous design limitations that the authors
claim undermine strong causal claims that ANS training trans-
fers to higher-order mathematical skills (Lindskog &
Winman, 2016; Merkley, Matejko, & Ansari, 2017; Sziics &
Myers, 2017). For example, Sziics and Myers (2017) have
suggested that many studies that have claimed to train the
ANS (e.g., studies using the Number Race; Wilson et al.,
2006) actually train a variety of cognitive skills ranging from
basic ANS functions to more advanced symbolic number
skills or even the retrieval of explicit facts. As for studies that
have trained the ANS in the strict sense (i.e., trained on an
explicit ANS task rather than having trained on a non-ANS
task that is nonetheless meant to enhance ANS ability;
DeWind & Brannon, 2012; Park & Brannon, 2013; 2014),
Sziics and Myers (2017) argue that active mental operations
on the quantities, rather than mere experience with quantity
comparison, is critical for any observed transfer. These same
authors also discuss two additional ANS training studies that
they categorize as “brief exposure,” and therefore argue that
they do not qualify as training studies per se (Hyde, Khanum,
& Spelke, 2014; Wang, Odic, Halberda, & Feigenson, 2016a).
These criticisms have maintained that different timescales of
improvements (e.g., minutes vs. days vs. weeks) are likely to
involve distinct mechanisms of change, ranging from rapid
task response mapping to lasting perceptual augmentation.
Long-term change specifically, which has not yet been con-
clusively demonstrated in the ANS training literature, is likely
to result in the most practically relevant outcomes (e.g., lasting
educational benefits). It is therefore important to experimen-
tally test the time course of change in ANS training.

Here we sought to resolve the issue of whether ANS per-
formance is susceptible to enhancement via long-term train-
ing. Specifically, we used a common definition of the ANS
derived from previous studies paired with a much longer train-
ing regimen. We then quantitatively modeled the time course
of change over this long duration. This is important because
the time course of improvements may implicate different
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mechanisms of change as well as different routes for applied
training programs (e.g., Ahissar & Hochstein, 1993; Ahissar
& Hochstein, 2004; Ball & Sekuler, 1987; Crist, Kapadia,
Westheimer, & Gilbert, 1997; Fiorentini & Berardi, 1980;
Shiu & Pashler, 1992). If learning is only observed in a fast,
early phase, with performance then hitting a hard asymptote,
this would likely be consistent with what is sometimes re-
ferred to as “learning about the task,” but with no true im-
provements in the underlying process(es) of interest (i.e.,
would encompass things like learning to use buttons to re-
spond, learning the procedure, etc.). Conversely, if learning
follows a protracted time-course, particularly one captured by
the same function (e.g., exponential) throughout, this would
be consistent with continued improvements in the ability to
complete the task due to changes in the underlying ability.
Indeed, the extent to which learning follows an exponential
form has been of interest in a number of domains, because this
is consistent with improvements in a single underlying pro-
cess (as improvements in multiple processes with different
time courses, either simultaneous or cascading, will produce
a power function rather than an exponential function; Dosher
& Lu, 2007; Heathcote, Brown, & Mewhort, 2000).

While the previous research on ANS training has been
interpreted as evidence for a “fast phase” of learning that takes
place over the first few sessions after which learning asymp-
totes, because the longest of these studies stopped after around
1,000 trials, it is unclear whether learning continues to prog-
ress beyond this early part of learning (DeWind & Brannon,
2012). Indeed, the current data leave two distinct possibilities:
(1) that there is truly a disjunctive fast-phase followed by a
hard asymptote; or (2) that what was previously identified as a
“fast phase” is simply part of a continuous exponential learn-
ing process. Here we made use of classic perceptual learning
approaches in the service of training performance on the ap-
proximate number comparison task and thus provide the first
evidence to truly address this issue.

In doing so, we made use of many of the commonly ac-
cepted best practices in the domain of perceptual learning. For
instance, because one of the single best predictors of improve-
ments on a perceptual learning task is simply time on task (as
is true of most, if not all learning tasks — Badiru, 1992; Fahle
& Edelman, 1993; Heathcote, Brown, & Mewhort, 2000), we
made use of an extremely large number of training trials
(8,000+). Indeed, given the shape of most perceptual learning
curves, without employing a substantial number of training
trials, it can often be quite difficult to determine whether learn-
ing has truly reached a hard asymptote at some final level of
performance or instead is continuing to improve in the slow
phase of an exponential function (Fahle & Edelman, 1993).
Furthermore, again consistent with best practices in training,
practice was distributed through time (Larcombe et al., 2017),
immediate informative feedback was provided (Fahle &
Edelman, 1993; Herzog & Fahle, 1997; Shiu & Pashler,

1992), and task difficulty was modified throughout training
to keep the task difficult, but doable (C. S. Green & Bavelier,
2008). Finally, we took an additional method from classic
studies in perceptual learning by making use of experienced
psychophysical observers (although see Discussion for the
limitations of this approach, including the ability to generalize
to the broader population). Our final sample included two of
the authors (A.C. & L.C.) as well as eight other individuals
from the laboratory of the senior author (C.S.G). The ap-
proach of using trained observers has historically been used
when the question at hand focuses on whether a given task is
learnable, from the perspective that if motivated and experi-
enced individuals are unable to show improvements through
intensive training, it is unlikely that naive participants would
be so capable. This is particularly true when the task necessi-
tates performing a task in peripheral vision (or parafoveal
vision as is the case here) where the ability to consistently
fixate on a non-target stimulus (in our case, a central fixation
cross) is key.

While the primary question at hand was whether individ-
uals would continue improving their ANS ability through ex-
tended training on an ANS task, because previous examina-
tions of ANS learning/generalization have not included ade-
quate measures of low-level transfer, we selected generaliza-
tion measures both from the domains of perceptual learning as
well as from the domain of mathematical cognition. In partic-
ular, perceptual learning is commonly retinotopically specific
(Hung & Seitz, 2014; Intriligator & Cavanagh, 2001,
Schoups, Vogels, & Orban, 1995; Tootell et al., 1998). This
means that no benefits of training are observed if the trained
task/stimuli are presented in a spatial location other than the
trained location. We thus chose to examine whether learning
would generalize to new spatial locations, which is the first, to
our knowledge, assessment of generalization of ANS training
across retinotopic locations. This is particularly relevant given
the evidence for topographic cortical representations of ANS
(Harvey, Klein, Petridou, & Dumoulin, 2013).

In addition to these more perceptual-based transfer assess-
ments, we also made use of additional generalization tasks that
one might think of as being perceptually “above” and
“below” the trained task in a hierarchical sense. The training
task, a typical non-symbolic numerical comparison task, in-
volved viewing a large number of black and white dots and
then indicating which color had more dots. An operation
“below” this numerical comparison then would be estimation
of numerosity itself. However, this also involves a process that
is not necessary in numerical comparison tasks, namely con-
version of approximate number into a symbolic number. The
conversion is a crucial link between the low-level approximate
number system and its educational applications, but its ab-
sence in our numerical comparison task does obscure the de-
gree to which enumeration is strictly “lower-level” than our
training. To test the degree to which training would generalize
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to magnitude estimation combined with symbolic-number la-
beling, we employed a simple dot enumeration paradigm.

An operation “above” numerical comparison would be a
comparison of comparisons (i.e., seeing two different clouds
of black and white dots and indicating in which cloud the ratio
of black-to-white was larger). We thus employed a previously
studied ratio comparison task (Matthews et al., 2016). Like
other studies, we also examined potential generalization to
mathematical competence (as measured by a standardized
mathematics test: The Woodcock-Johnson Test of
Achievement math fluency subtest). Generalization of numer-
ical comparison training to math ability would be somewhat
surprising from both the perceptual learning perspective and
the previous ANS training literature (Park & Brannon, 2014),
but testing this generalization can still provide evidence (or a
lack thereof) for certain mechanisms of training-related im-
provements (e.g., low-level vs. high-level changes). Finally,
we employed a peripheral multiple-object tracking
(MOT) task (Pylyshyn & Storm, 1988). The purpose of this
task was to rule out the possibility that, if we saw improve-
ments on the numerical comparison training task, this was due
to simple changes in peripheral vision or peripheral visual
attention (as opposed to estimations of number). We did not
predict generalization to performance on MOT or math tasks,
but instead expected them to demonstrate the limits of learn-
ing generalization.

Our expectation was that clear evidence of long-term learn-
ing (i.e., improvements that continue beyond just the first
session or first few sessions) would be observed. Indeed, there
are few (if any) examples in the domain of perceptual learning
wherein properly designed dedicated training on a perceptual
task has failed to produce enhancements in that task. The
predictions for the generalization tasks were less clear. In
terms of generalization to new spatial locations, we know that
perceptual learning is commonly retinotopically specific.
This, combined with recent evidence suggesting that brain
areas involved in ANS computations may also have
retinotopic representations (Harvey, Fracasso, Petridou, &
Dumoulin, 2015; Harvey et al., 2013), suggested that we
may fail to see any generalization of learning to new locations.
However, if learning is truly at the level of numerical estima-
tion, one might expect to see significant generalization across
spatial locations. And in terms of generalization to the other
tasks, no research to our knowledge has assessed whether
dedicated numerical comparison training positively impacts
simple estimates of numerosity. Furthermore, although num-
ber comparison and ratio comparison both involve compari-
sons and could be thought of as being related hierarchically
(i.e., with the comparison of ratios being “above” single ratio
tasks), recent evidence has suggested that these tasks might in
fact depend on separable abilities (Matthews et al., 2016). We
therefore predicted limited transfer from the ANS task to the
ratio comparison task.

@ Springer

Methods
Participants

Eleven individuals participated in the study (five male, M4, =
22.1, SD4q. = 3.5). All 11 participants were, at the time of their
participation, members of the Learning and Transfer lab at the
University of Wisconsin-Madison (the lab of senior author
C.S.G). The participants included two of the authors (L.C. &
A.C.). Both of these participants were aware of the experimen-
tal hypotheses and were also experienced psychophysical ob-
servers, including some limited experience with both the to-
be-trained task and the generalization tasks (e.g., through
piloting/preparing the tasks). Of the remaining nine partici-
pants, none were aware of the experimental hypotheses. All
nine were, to varying degrees, experienced psychophysical
observers, though none had experience with either the to-be-
trained task or any of the generalization tasks. The use of this
sample was motivated by the need for compliance and moti-
vation over the course of several weeks of training. Previous
experience with psychophysical tasks was particularly impor-
tant for participants’ ability to maintain a central fixation
throughout training. All participants had normal or
corrected-to-normal vision. All participants were compensat-
ed with lab-credit for their participation.

Given effect sizes reported in previous ANS training stud-
ies (e.g., a training-induced difference in means of over 50
standard errors; Park & Brannon, 2014), training-task im-
provements should be detectable using a t-test with 80% pow-
er with only two participants. While our sample size was
small, it should be more than enough to detect changes in
ANS ability with training.

Experimental setup

All computerized tasks were programmed in MATLAB using
the Psychophysics Toolbox (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007). These tasks were presented on a
22-in. Dell widescreen monitor by a Dell Optiplex computer
running Windows 7. Participants sat approximately 59 cm
from the screen.

Experiment overview

The experiment was a standard pre-test => training = post-test
design (see below for additional details about each individual
task). The pre-test battery consisted of eight different tasks.
All tasks had short (approximately five-trial) practice compo-
nents consisting of very easy trials. Furthermore, before each
task, participants were given written instructions, which
among other things, emphasized the importance of keeping
their eyes on the fixation cross (for tasks where stimuli were
presented peripherally) and trying not to shift their eyes to the
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stimuli once the stimuli appeared. The pre-test began with four
versions of the non-symbolic numerical comparison task.
These versions were identical except for the spatial position
of the task. The first block of testing was always at the to-be-
trained spatial location for the given participant, which was
pseudo-randomly assigned.

This was followed by a block where the task appeared in
the location across the vertical meridian from the to-be-trained
location, a block where the task appeared in the location
across the horizontal meridian from the to-be-trained location,
and then, finally, a block where the task appeared in the direct
center of the screen (e.g., if the top-left quadrant was going to
be trained, the participant would complete the task in the top-
left quadrant, then the top-right quadrant, then the bottom-left
quadrant, then the screen center).

The participants then completed an enumeration task,
followed by a ratio comparison task, a timed arithmetic task,
and a multiple-object tracking task (MOT). The pre-test was
completed in a single session with breaks available in between
each task. At least 24 h after the pre-test was completed, par-
ticipants began their training. The training consisted of repeat-
ed practice on the non-symbolic numerical comparison task in
a single quadrant (same quadrant throughout training, chosen
pseudorandomly for each participant). All participants com-
pleted a minimum of 13 sessions of the training task over a
minimum span of 30 days (range of sessions completed: 13—
41; range of days to complete: 30—103; see Supplementary
Information for additional detail on individual training
completion).

One of the participants completed fewer than 20 sessions of
training and we thus report results from the remaining ten
participants (range of sessions complete: 22—41). Each train-
ing session consisted of 384 trials. Participants were allowed
to complete no more than one session per day. At least 24 h
after the conclusion of training, participants completed a post-
test, which consisted of the same tasks as in the pre-test.

Stimuli and tasks
Non-symbolic numerical comparison task

Basic stimuli The stimuli consisted of intermixed black and
white dots presented on a gray background. The color of dots
with the smaller number (set to be between 5 and 23) on a
given trial had a randomly selected mean diameter of .35°, .4°,
.45°, or .5° of visual angle (DVA), with each dot’s size ran-
domly varying by 25% above or below the mean size. The
mean dot size of the larger number (determined by multiply-
ing the smaller number by a number ratio) on a given trial was
randomly selected from .7, .9, 1.1, or 1.3 times the size of the
smaller-number dots, also with a 25% random variation, then
this larger-number dot size was ad hoc adjusted to minimize
the within-session correlation between total dot area ratio and

numerosity ratio (» = .02; while still maintaining a small cor-
relation between mean dot size ratio and numerosity ratio, r=
-.35). These procedures are similar to those used throughout
the ANS literature (e.g., Gebuis & Reynvoet, 2012; Halberda
et al., 2012; Halberda et al., 2008; Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004), and meet, or exceed, the typical
control over the relation between numerosity, spatial extent,
and density. Critically, our use of intermixed dots also mini-
mizes concerns about convex hull (e.g., Gebuis & Reynvoet,
2012), as the numerosities share a single outer contour. The
dots were constrained to fall within an invisible circular aper-
ture (radius = 5°). Dot locations were chosen from amongst
the relevant crossing points (i.e., nodes) of a square grid,
circumscribed within a circle, then randomly jittered by up
to .25°. The grid size (i.e., the number of nodes) for each trial
was determined by adding five free nodes to the number of
nodes necessary to hold the black and white dots. The grid
was then rotated at a random angle. Black and white dots were
then assigned, one by one, to random nodes in the grid based
upon the number ratio for the given trial (see below). The
center of the circular aperture in which the dots could appear
was offset from the screen center and corresponding fixation
cross by 5° in both the x- and y-direction (with the direction of
offsets depending on the quadrant being assessed/trained) in
all versions except the central version (where the circular ap-
erture was centered on the screen center). Additionally, as part
of a concurrent task to ensure fixation for all peripheral task
versions, a red dot appeared randomly at the end of either the
top or the bottom arm of the fixation cross (for similar
methods see Green, Kattner, Siegel, Kersten, & Schrater,
2015; Lu, Chu, Dosher, & Lee, 2005). This secondary task
was trivially easy when fixating properly. While adding task
demands may have increased overall difficulty and therefore
improved generalization (Schmidt & Bjork, 1992; Xiao et al.,
2008; cf. Jaeggi et al., 2010), central tasks such as this are
designed to require minimal effort from experienced partici-
pants such as ours.

Trial by trial procedure Figure 1 outlines the stimulus events
for this task. An 800-Hz beep signaled the start of a new trial.
Simultaneously, the first stimulus screen appeared with a red
dot presented either on the top or the bottom arm of a fixation
cross, for a random duration between 250 ms and 500 ms.
Next, the number ratio stimuli, consisting of the black and
white dots presented in the assigned quadrant, appeared for
500 ms. After these two stimulus screens, participants were
first asked to indicate, via a key press, whether they believed
there were more white dots or black dots presented. They were
then asked to indicate whether the red dot appeared on the top
or bottom arm of the fixation cross. Feedback was given (in-
correct = low tone (600 Hz); correct = no tone) after each
response (fixation response and main response) during train-
ing. No feedback was given during pre-test or post-test.
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Training Task

o
800 Hz

500 ms

600 Hz if incorrect 4)
300 ms after response

Fig. 1 Illustration of non-symbolic numerical comparison task. A fixa-
tion cross, paired with an auditory preparatory beep, was first presented.
This was followed by the cloud of black and white dots. Participants then
were asked to make two responses. In the first response, they were asked
to indicate whether they perceived there to be more black dots or more
white dots. They then had to indicate the position of the red dot on the
fixation cross. Note that auditory feedback was given during training, but
not during the pre-test or post-test

Number ratios used for pre-test/post-test and total trials
Actual number ratios tested could deviate from the preset ra-
tios, which ranged from 1.1 to 1.8 in .10 increments, due to the
need to increment dots by whole numbers (for examples of
different ratio displays, see Supplemental Information). For all
analyses, actual number ratios were calculated and recorded
for each combination of smaller number and preset number
ratios. The total set of trials were determined by performing a
complete crossed design on the smaller number (i.e., 5, 11, 17,
and 23), number ratio, and size ratio parameters. All pre-test/
post-test task versions consisted of 32 repetitions per number
ratio, or 256 actual trials. Each task took approximately
15 min to complete. Before each task, ten practice trials were
given using easier number ratios (outside the range used for
both training and generalization tasks).

Number ratios used for training and total trials The same
basic parameters were used for training sessions, with the ex-
ception of the number of repetitions per number ratio. In train-
ing, each number ratio was repeated 48 times, resulting in 384
trials per session (no practice trials were given prior to any
training session). Each training session lasted approximately
25 min. The number ratios used in each training session were
set adaptively based upon prior participant performance, with
the goal of keeping the task continuously challenging, but do-
able. After each training session, a 79% threshold was calculat-
ed and recorded in a training log file. At the beginning of each
successive training session, the program read in the previous
session’s 79% threshold and set the easiest number ratio to be
.05 greater than the 79% threshold. For the first six training
sessions, the range of number ratios was set to eight number
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ratios decreasing in .10 increments from the easiest number
ratio (set to 1.8 for first session). Afterwards, the range of num-
ber ratios was set to eight number ratios decreasing in .05 in-
crements from the easiest number ratio. If the easiest number
ratio exceeded 1.6 for any of the training sessions, the easiest
number ratio was set to 1.6 (upper bound for easiest ratio).
Likewise, if the easiest ratio fell below 1.1 for any of the train-
ing sessions, the easiest ratio was set back to 1.1 (lower bound
for easiest ratio). When any of the eight number ratios fell
below 1.01, the number ratio for that trial was set to 1.01 (lower
bound for hardest ratio), effectively meaning that the high-
number color had one more dot than the low-number color.

Enumeration task

Figure 2b outlines the stimulus events for this task. The stimuli for
this task appeared in the same quadrant used for training. The
stimuli consisted of either all black or all white dots (random
across trials) on a gray background. The dot positions were gen-
erated in a similar manner as described above in the numerical
comparison task. On each trial, an 800-Hz beep signaled the start
of'a new trial. A fixation cross with a red dot either on the top or
the bottom arm was presented for a random duration between
250 ms and 500 ms, followed by an array of black or white dots
presented for 500 ms in the participant’s assigned quadrant. Then,
awhite number line with tick marks from 0 to 100 in five number
increments was shown either at the top or the bottom of the screen
depending on the stimuli presentation quadrant. Any response
between 0 and 100 was allowed. The number line was at the top if
the quadrant was a top-quadrant and bottom if the quadrant was a
bottom-quadrant, in order to decrease the distance between the
number line and the presented stimuli and, thus, reduce the dis-
tance the participants’ eyes need to shift in between stimulus
events. The participant clicked on the number line to indicate
the number of dots he/she believed was presented and then indi-
cated whether the red dot was on the top- or bottom-arm of the
fixation cross via a keypress. The number of dots presented
ranged from 11 to 74. This range reflected the range of total
number of dots participants saw during training. Three repetitions
per numerosity were used, resulting in 192 trials. The dot sizes
used were .3, .4, .55, and .6 in degrees of visual angle. Prior to the
start of the task, four practice trials were given to give participants
asense ofthe range of numerosities in the task. One trial presented
anumerosity between 11 and 20, one trial between 25 and 35, one
between 45 and 55, and one between 65 and 74. The task took
approximately 15 min to complete.

Ratio comparison task

Figure 2¢ outlines the stimulus events for this task. An 800-Hz
beep signaled the start of a new trial. On each trial, a fixation
cross with a red dot either on the top or bottom arm was
presented for a random time between 250 ms and 500 ms.
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Fig. 2 Schematic depiction of transfer tasks. Stimulus events are displayed
vertically for tasks (b), (c), (d), and the training quadrant of (e). Task (a)
depicts the four quadrants used to test for retinotopic specificity of
approximate number system (ANS) learning (four total non-symbolic
numerical comparison tasks). Task (b) represents the enumeration task.
This task began with a fixation point after which a cloud of dots (of a
single color) was presented. Participants then used a number line to
indicate how many dots they believed were presented. The location of the

Next, two clouds (one cloud presented to the left of fixation
and one cloud to the right of fixation separated by 4°) of
intermixed black and white dots (dot locations generated in
a manner consistent with that described in the numerical com-
parison task above) for 1,000 ms. Participants were asked to
indicate via a keypress which cloud, the left or the right, had a
larger ratio, and then indicate whether the red dot appeared on
the top or at the bottom of the fixation cross.

Table 1 outlines the parameters used for our transfer tasks.
Comparison ratios refer to the ratio of one cloud’s ratio of dots

Table 1 Parameter ranges used for transfer tasks

Opposite Quadrant

Where was the red dot?

number line (top or bottom) matched the location of presented cloud of dots
(top or bottom). Task (c) represents the ratio comparison task. It was
conceptually similar to the task in (a) except, rather than a single mixed
cloud of black and white dots, two such clouds were presented. Participants
then needed to indicate which cloud had the bigger ratio. Task (d) represents
the standard Woodcock Johnson math fluency sub-test. Task (e) represents
the multiple object-tracking task (presented in both the trained quadrant and
the fully opposite diagonal quadrant)

to another cloud’s ratio of dots. As with all number comparison
tasks, cloud ratios tested could deviate slightly from the preset
ratios, which in this case were 1.2, 1.3, 1.8, 2.1, and 3. In all
cases, actual cloud ratios were calculated and used in setting the
comparison ratios. The comparison ratios were then set to 1.33,
1.5, 1.8, 2.4, and 4 (or the closest possible value; as always,
actual ratios were used in all analyses). Trials were determined
by performing a complete crossed design on the smaller num-
ber, cloud ratio, and comparison ratio parameters. In all, there
were 50 repetitions per comparison ratio, or 250 actual trials

Non-symbolic Numerical Comparison

Enumeration

Ratio Comparison

Smaller numbers: 5-23
Dot Sizes: .35-.5

Size Ratios: .7-1.3
Number Ratios: 1.1-1.8

Numbers: 11-74
Dot Sizes: .3-.6

Smaller numbers: 3—11

Dot Sizes: .35-.55

Size Ratios: .7-1.5

Number Ratios per cloud: 1.2-3
Comparison Ratios: 1.33—4

Note. The parameters used for the training task were the same as the ones listed above under “non-symbolic numerical comparison” except for the
number ratios. Smaller numbers denote lower number of dots in a ratio. Dot Sizes were measured in degrees of visual angle (diameter). Size Ratios refer
to the relationship between black and white dot sizes. Number Ratios refer to the number of black dots versus white dots. Comparison Ratios refer to the

ratio of one cloud to another cloud of dots
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that took approximately 15 min to complete. Ten practice trials
were given that used easier comparison ratios (that did not
overlap with the ones used in the generalization task).

Arithmetic test

‘We used the Woodcock-Johnson III Test of Achievement, a com-
mon standardized test that has often been used as a math outcome
measure in studies of ANS acuity (Halberda et al., 2008; Inglis
et al., 2011; Lourenco, Bonny, Fernandez, & Rao, 2012), as a
measure of (relatively) far transfer to assess whether prolonged
non-symbolic numerical comparison training increases arithmetic
fluency and accuracy. In this study, we used the math fluency
subtest as it is easy to administer, consisting of a 3-min timed test,
and covers a range of arithmetic operations, including addition,
subtraction, and multiplication. While fluency is only one dimen-
sion of arithmetic ability, this simple test does allow for a basic test
of generalization from low-level training to higher-level skills. We
used Forms A and B (one at pre-test and one at post-test)
counterbalanced across participants. Birthdates, test dates, raw
score, and time left were recorded for each participant and entered
in CompuScore® to calculate scaled scores and grade equivalents.

Multiple object-tracking (MOT) task

Figure 2e outlines the stimulus events. A white fixation cross was
present at the center of the screen throughout the task. Awhite circle
with a radius of 6° was centered in one of the quadrants (in one
block of trials, the trained quadrant, in the other block, the diago-
nally opposite quadrant). Atthe beginning of each trial, anumber of
moving blue (N=2) and yellow (N=06) dots, 0.4° (diameter), ap-
peared in the white circle. After 2 s, the two blue circles changed to
yellow. The (now all yellow) circles continued to move for two
additional seconds. The dots did not bounce off one another, but
instead passed through one another. Finally, one of the eight circles
changed to white and the participant had to indicate whether or not
this white probe circle was one of the original blue target circles.

Note that the parameters of the task were chosen based upon
pilot data. In particular, because the task was performed in the
participant’s periphery, most of the parameters (e.g., number of
targets, number of distractors, movement speed, tracking time,
etc.) were easier than the corresponding values when the task is
performed at fixation. The task consisted of 20 trials per loca-
tion and took approximately 5 min to complete.

Data analyses

Non-symbolic numerical comparison task — generalization
tasks

All relevant tasks were programmed simply in terms of the ratio

of the larger number of dots (or the larger ratio) to the smaller
number of dots (or the smaller ratio), with the color identity
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randomly assigned. For analysis, this ratio was converted into a
symmetric distribution around zero by first subtracting from 1 all
ratios wherein there were more black dots (e.g., a ratio of 1.2
black dots to every 1 white dot would be converted into a ratio of
.8), then subtracting 1 from all ratios. This scaled the ratio space
such that larger negative values indicated more black dots relative
to white dots, while larger positive values indicated more white
dots for each black dot. The absolute value of the exact decimal
value indicates the percent more of one color than the other color
that was present. These values were then fit to a standard logistic
psychophysical function and a 79% threshold (a psychophysical
convention indicating the number ratio at which performance
would be expected to be approximately 79% correct; Leek,
2001) was calculated, thus providing an estimate of the percent
more of a given color that has to be present for a person to
reliably identify it as the larger-number color (i.e., a threshold
of .2 would mean that a person could reliably identify the larger-
number color at a ratio of 1.2:1). In this, and all pre- and post-test
tasks described below, only trials with correct fixation tasks were
used in data analysis. In all cases, performance on the fixation
task was near ceiling (e.g., trained quadrant pre-test mean = 91%
correct, trained quadrant post-test mean = 95% correct), indicat-
ing good compliance with fixation instructions.

Additional statistical tests, including those that are robust to
violations of some assumptions of the logistic fits and t-tests
discussed below, are reported in the Supplemental
Information. For all t-tests, corresponding Bayes factors are
reported on a log;, scale to assist with interpretability (e.g., a
BF of about .3 indicates twice as much evidence for the alter-
native than the null, a BF of -.6 indicates four times as much
evidence for the null than the alternative, a BF of 1 indicates
10 times as much evidence for the alternative than the null).

Non-symbolic numerical comparison task - training

To examine performance on the trained task, we fit a hierar-
chical parametric continuous logistic function to the re-
sponses. We have previously shown that an exponentially
changing logistic function provides a better fit to perceptual
learning data than the more typical block-by-block fitting ap-
proach (see Kattner, Cochrane, & Green, 2017, for details). As
an extension of previous by-participant fitting methods, here
we fit all subjects simultaneously in a hierarchical model using
R package Ime4 (Bates, Méachler, Bolker, & Walker, 2015). In
brief, this approach models performance as a continuous
change in threshold across all trials of training. To accomplish
this, threshold (8) for each participant is each fit as a three-
parameter exponentially decaying function of time (i.e., on a
trial-by-trial basis), while bias (3) is fit as a by-participant
constant (for full equations, see Supplemental Information).
The approach thus provides an estimate of the 79% threshold
on each trial of training. All participants are fit simultaneously,
drawing participant-level performance parameters from
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group-level parameters. We note that none of the conclusions
of the paper depend on this choice of data analysis and more
traditional block-by-block data fitting (with learning being
assessed by a comparison of the first block threshold and last
block threshold) reveals the same learning patterns (see
Results and Supplementary Information).

Results

Question 1: Is performance on the non-symbolic
numerical comparison task improved via training,
and, if so, does the improvement follow a protracted
time course?

Consistent with our hypotheses, every participant's perfor-
mance improved over the course of training (see Fig. 3). The
estimated last-trial thresholds (M = 0.15, SD = 0.03) were
reliably lower than the estimated first-trial thresholds (M =
0.27, SD = 0.10, paired-samples t-test #(9) = -4.22, p = .002,
BF=1.32). This result is mirrored when examining the change
in performance from pre-test to post-test (see Fig. 5).
Performance on the trained quadrant improved significantly
from pre-test to post-test (#8) = -3.77, p = .005, BF=1.08).
Because the trained quadrant was always tested first, the anal-
ysis above may overestimate the size of the change (partici-
pants may have still been learning how to perform the task
during the pre-test). However, the outcome is unchanged (i.e.,
significant learning is still found) if the post-test threshold in

the trained-quadrant is compared to either the average of all
pre-test thresholds (#9) = -4.64, p = .001, BF=1.54) or to the
last quadrant tested during pre-testing (#9) = -3.46, p = .007,
BF=0.909). Thus, performance on this task shows unambigu-
ous improvement via dedicated training. Consistent with ear-
lier approaches to the interactions between stimulus dimen-
sions (e.g., DeWind & Brannon, 2012), we analyzed pre-test
and post-test differences in performance depending on the
overall ratio of black and white area (i.e., pixels) on the screen.
These analyses revealed no systematic pre-test or post-test
differences due to stimulus area (see Supplemental
Information).

Critically, the training data also demonstrate that improve-
ment followed a protracted time course. The hierarchical
learning model fit converged with group-level starting thresh-
old 0f 0.263 +.0080, asymptote of 0.145 £.0019, and learning
rate of 3.394 +.0439. This estimate corresponds to a typical
learner starting by responding 79% correctly on number ratios
of approximately 20:25 and, by trial 8,000, responding 79%
correct on number ratios of approximately 20:23, while taking
about 1,717 trials to complete half of this improvement. While
there is quite a large range in learning rate across participants
(see Fig. 3), the results are clearly indicative of a reasonably
slow learning process (perhaps too slow to be detected in the
previous literature — see Discussion). Further evidence for this
can be seen in Fig. 4, which shows that performance on days 1
through 5 are each significantly different than participants’
thresholds on training session 22 (i.e., the last day of training
that all participants completed).

Threshold

—  Subj_01
— Subj_02
— Subj_03
— Subj_04
— Subj_05
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— Subj_08

o
[
1
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Trial Number

Fig. 3 Participant-level approximate number system (ANS) threshold
fits. Each line is the best-fit threshold for a participant, evaluated as
random effects using the hierarchical time-evolving logistic regression.

10000 15000
10000 1D000

As is clear, not only do all participants show clear evidence of learning,
they show evidence of protracted learning (i.e., still showing significant
improvements even after 1,000 s of training trials)
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Fig. 4 Approximate number system (ANS) threshold T plot. Paired t-
tests were calculated to compare each participants’ 22nd day (i.e., the
last day that all participants completed) with their previous days’
thresholds. Holm-Bonferroni adjusted significance is denoted with a
black outline. When testing the difference between participants’

Question 2: Did the training gains generalize
to untrained spatial positions?

If the improvements in ANS were specific to the trained location
in the visual field, we would expect no change in threshold in the
untrained quadrants. If, on the other hand, the learning general-
ized completely across spatial locations, we would expect a sig-
nificant reduction in the thresholds seen in the untrained loca-
tions. The latter pattern of results, consistent with significant
learning generalization, was observed (see Fig. 5). All of the
quadrants' post-test thresholds (both trained and untrained) were
reliably lower than their pre-test thresholds (trained quadrant: #(8)
=-3.77., p = .005, BF = 1.08, horizontally switched quadrant:
#8) = -4.85, p < .001, BF = 1.65, vertically switched quadrant:
#9) = -3.55, p = .006, BF = 0.96). Robust comparisons provide
evidence for the same conclusions (see Supplementary
Information). Furthermore, the post-test quadrants' (i.e., both
the trained and untrained quadrants) thresholds were not different
from one another (F(2,18)= 0.72, p> .4). In all, this is consistent
with learning that has fully generalized across spatial location.

Question 3: Were any changes noted in the additional
generalization tasks?

Enumeration

In general, enumeration performance was consistent with previ-

ous studies of enumeration (e.g., Izard & Dehaene, 2008;
Krueger, 1984). Participants’ estimates increased with
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thresholds on their 22nd training day to their previous training days,
their first 5 days (including over 1,900 trials) have significantly higher
thresholds than their 22nd day. Clearly improvement is a very gradual
process

numerosity, but tended to underestimate the actual numerosity,
with the degree of underestimation increasing with increasing
numerosity. In terms of improvement, there are two metrics that
are typically used to assess number estimation performance: (1)
power exponents, which reflects how well the participants’ re-
sponse set matches the objective number of dots (Krueger, 1984)
and (2) coefficient of variance (CV), which indexes the amount
of noise in participants’ estimates (ideally corresponding to the
perceptual discrimination thresholds; see Cordes, Gelman,
Gallistel, & Whalen, 2001, for a discussion). Alternative analy-
ses, which indicate a mix of significant and non-significant ef-
fects, are reported in the Supplemental Information.

We fit each participant’s data to a three-parameter power curve
using the likelihood function defined in Odic, Im, Eisinger, Ly,
and Halberda (2016; see Table S2 in Supplementary Information
for individual participant’s fit values). We found no improvement
in power exponents from pre-test (M = .63, SD =.19) to post-test
(M = .64, SD = .08), 1(9) = -.192, p =852, BF = -0.50. The
coefficients of variance decreased from pre-test (M = .23, SD =
.06) to post-test (M = .16, SD = .14), but this difference was not
significant, #(9) = 1.725, p = .119, BF = -.03. See Supplementary
Information for enumeration plots.

Ratio comparison

In a paired-samples t-test, the difference between ratio compar-
ison threshold at post-test (M = 1.71, SD = 1.37) and ratio
comparison threshold at pre-test (M = 4.1, SD = 7.61) was not
significant, #9) =-1.23, p > .2, BF = -0.25. One participant had
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Fig. 5 Approximate number system (ANS) thresholds fit to pre- and
post-blocks, separated by quadrant. Each pair of bars presents the pre-
(left bar/red) and post-test (right bar/teal) performance at a given
location. The first pair is at the trained location. The next pair is data
in the quadrant across the horizontal meridian from the trained
location. The third pair is data in the quadrant across the vertical

particularly poor performance at pre-test. Analyses that account
for this outlier can be found in the Supplementary Information.

Arithmetic task

In a paired-samples t-test, the difference between scaled score at
pre-test (M = 112.3, SD = 12.1) and post-test (M = 114.1 SD =
9.5) was not significant, #9) = 0.726, p = .49, BF = -0.41.
Examination of the raw scores showed a significant increase from
pre-test (M = 142.7, SD = 20.9) to post-test (M = 150.6, SD =
18.6), 1(9) = 3.43, p < .001, BF=0.90, but this was partially offset
by a nonsignificant increase in time taken from pre-test (M =2:53,
SD = 11 s) to post-test (M = 2:56, SD = 6.2 s). Because of (1) the
possibility for speed-accuracy trade-offs and (2) the bounded na-
ture of the task (max time allotted was 3 min), Woodcock-
Johnson manuals and materials indicate that scaled scores should
be used for comparative analyses. When the amount of time taken
is considered, via the scaled score, we find no evidence for

meridian from the trained location. The key finding is that all post-
test blocks are very similar and are vastly superior to pre-test
performance. This indicates not only learning, but fully generalized
learning. Note that pre-test blocks likely differ primarily because the
trained quadrant was always completed first. Error bars represent 95%
confidence intervals

transfer from our ANS training task to formal math fluency, de-
spite longer and more intensive training than used in other studies.

Multiple-object tracking

The difference between MOT untrained-quadrant percent cor-
rect at pre-test (M = 0.78, SD = 0.16) and at post-test (M = 0.86,
SD = 0.12) was not significant, #(8) = 1.322, p > .2, BF =-0.20.
Although several participants have missing data due to a mis-
understanding regarding the task instructions, trained-quadrant
MOT shows a similar pattern (pre-test M = 0.8, SD = 0.15; post-
test M =0.81, SD = 0.1; #5) = 0.208, p > .8, BF =-0.42).

Discussion

Here we applied perceptual learning methods to examine the
extent to which the approximate number system (ANS) can be
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improved via long-term training. As has been found in many
other domains in visual processing, we found that perfor-
mance on a non-symbolic number comparison task can be
enhanced by extensive experience. In contrast to previous
ANS training studies (e.g., Park & Brannon, 2014), we found
that improvements in ANS task performance continue over
the course of thousands of training trials. Remarkably, some
participants did not appear to reach a performance asymptote
even after training for over 20 days including over 8,000 trials.
This protracted time course of learning implicates slowly
progressing neuroplastic change. In addition to having more
training sessions, our study also had more days of spacing in
between training days (M = 3.32 days, SD = 2.20 days; see
Supplementary Information — Table S3 for details on spacing
for each individual) than previous ANS studies; for example,
Park and Brannon (2014) had six sessions across an average
of 9 days, or an average of .6 intervening.

We also tested the specificity of the ANS improvements
through a battery of tests with varying degrees of transfer
distance. Perceptual learning paradigms often produce very
specific improvements in processing, with an extreme exam-
ple being a lack of transfer even to untrained retinotopic loca-
tions. Given the commonness of specificity of perceptual
learning, and the exploratory nature of this study (we know
of no other ANS training study of this duration), we included
several near-transfer tasks to test for retinotopic specificity
(vertically switched quadrant differences) and hemifield spec-
ificity (horizontally switched quadrant differences above and
beyond the top-vertically switched differences) as well as far-
transfer tests to higher-level and lower-level tasks. We found
no evidence for retinotopic specificity, with all locations im-
proving considerably with final post-test values that were sta-
tistically indistinguishable. It is important to note that al-
though the fixation task (i.e., determine whether a red dot
appeared at the top or bottom of the fixation cross) was im-
plemented to ensure that the stimuli were presented in partic-
ipants’ periphery and performance on this task (90%-+)
showed compliance with fixation instructions, we do not have
direct data evidence that participants’ eyes did not, in fact,
move from fixation cross to stimuli during the 250-ms to
500-ms interval between their presentations. Eye movement
was possible, though we believe unlikely due to the highly-
trained participants’ ability and motivation to comply with
instructions (for similar approaches see, e.g., Green et al.,
2015; Samaha & Postle, 2017).

Importantly, we found no evidence for generalization to a
more-complex ratio comparison task and the arithmetic task,
while the evidence for generalization to a numeric estimation
task was also not reliable. These patterns of results indicate that
our trained participants had induced improvements in a general-
purpose approximate number processing that was not specific
to the trained location in their visual field, but may not have
been sufficient to affect beneficial changes in related tasks.
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The transfer of improvements across the vertical meridian
of visual processing, however, suggests cortical changes at a
fairly high level (at some point along the visual processing
hierarchy where the full visual field is represented rather than
a single hemifield). This is interesting, as some other percep-
tual effects on numerosity have been shown to be restricted to
one hemifield. For example, in the numerosity adaptation ef-
fect (Burr & Ross, 2008; Ross & Burr, 2010), participants first
adapted to two dot arrays composed of different numbers of
dots, one in each hemifield. After adaptation, a negative after-
effect of numerosity was observed: the hemifield that previ-
ously contained the larger numerosity was perceived as con-
taining the smaller numerosity. As this illusion depends on
separate estimates of numerosity in each hemifield, it was
inferred that it arose from adaptation of neurons that represent
(at most) an entire hemifield, and which do not integrate
across the hemifields to yield a single estimate of numerosity.
Given that our training effects transferred across all visual
locations equally, we infer that they must occur after the stage
at which numerosity adaptation takes place.

In contrast to our clear evidence for perceptual learning, and
contrary to previous studies, we did not find compelling evi-
dence for transfer to non-ANS tasks. This is especially striking
given that our training duration was at least eight times longer
than the training durations in those studies. One interpretation
of these results is that mere non-symbolic numerical compari-
son is insufficient to elicit transfer to other non-ANS tasks
(Sziics & Myers, 2017), as other studies that have found some
evidence for training (e.g., Park & Brannon, 2014) used training
paradigms that included not only estimation, but also mental
arithmetic on non-symbolic quantities. Indeed, a direct compar-
ison of ANS training with mental arithmetic and two conditions
without mental arithmetic (non-symbolic numerical
comparison, as we have done here, and matching) suggested
that only non-symbolic arithmetic training yielded improve-
ments in exact symbolic arithmetic (Park & Brannon, 2014).

Another possibility for the lack of generalization to non-
ANS tasks may be the particular tasks used. For instance, the
Woodcock-Johnson Test of Achievement math fluency sub-
test may have been an inappropriate measure for assessing
arithmetic improvements from ANS training as the test largely
relies on the retrieval of a known number facts (i.e., simple
and automatic arithmetic knowledge). This stands in contrast
to arithmetic that requires individuals to work through prob-
lems, which may rely more upon an understanding of relative
magnitude to solve arithmetic problems. This is especially
important to consider in a developmental context; while the
math fluency test is an assessment of highly automatized pro-
cesses in adults, it is more likely to test effortful processes in
children, and in even in adults may reflect lifetime learning
history. Finally, the literature on whether performance on the
Woodcock-Johnson math fluency test, in particular, correlates
with ANS acuity is inconclusive (see De Smedt et al., 2013;
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Schneider et al., 2017). We speculate that effortful versus au-
tomatic task demands in this test may mediate magnitude-
dependent versus magnitude-independent processing, which
in turn could determine the influence of ANS training on math
test performance. However, this speculation is far outside the
scope of the current work, and we hope that future research
may test this hypothesis.

For the enumeration task, we used a number line from 0 to
100 with tick marks in increments of 5, which may have
biased participants to give estimates to decades and mid-
points between decades and encouraged them to use the full
range (0-100) for estimates. This in turn may have influenced
the change in estimation from pre-test to post-test as there was
more room on the number line for huge shifts in estimates than
in the range presented (11-74). While most participants gave
estimates within the range of numerosities presented, Subject
7 and Subject 8 gave many estimates in the range 75-100 at
post-test (see Supplemental Information, Fig. S2).

Finally, the different tasks may have unexpected working
memory demands related to the fixation task. Holding the an-
swer to the fixation task in working memory may have been
more difficult for some tasks, such as the enumeration task
where the response is a numerical guess that needs to be located
on the number line as opposed to a left-right key response. In
addition, participants had practice accounting for this working
memory demand for the non-symbolic numerical comparison
task during training, but not for the non-ANS tasks.

Despite the lack of compelling transfer to non-ANS tasks,
caution is warranted in interpreting this as evidence against the
possibility of utilizing ANS training for applied contexts (e.g.,
education). Our small proof-of-concept test involved relative-
ly high-performing adults, and thus the applicability to other
populations is unclear. Rather, our clear improvements in
ANS performance over many days of performance (with less
than 30 min a day of training), combined with the lack of
retinotopic specificity characteristic of some perceptual learn-
ing as well as the possible improvements seen in the enumer-
ation task, should encourage further investigations into wheth-
er ANS training can be applied to other non-ANS tasks. Our
long-term training with experienced psychophysical observers
indicates the existence of protracted ANS plasticity that may
be used to inform the construction and test of future applica-
tions. Indeed, the base learning results are consistent with a
number of recent models in the domain of perceptual learning
including those that involve changes in certain forms of noise
(Lu & Dosher, 2009), those that involve the development of
better templates for the key information in the task and
through this more efficient accumulation of statistical evi-
dence (Bejjanki et al., 2014; Green, Pouget, & Bavelier,
2010), and those that view perceptual learning as involving
a mixture of low-level (e.g., sensory) and high-level (e.g.,
task-related) learning (Shibata, Sagi, & Watanabe, 2014;
Wang et al., 2016). These hypotheses can be disambiguated

via more definitive patterns of generalization and this would
be a key future direction.

Indeed, the approach utilized here was specifically meant
to show that ANS performance can be improved through
training (cf. Lindskog & Winman, 2016), that improvements
continue for many sessions (cf. Park & Brannon, 2014), and
that these improvements do not have the location-specificity
characteristic of low-level perceptual learning. We did not
intend this study to definitively answer questions about the
possibility for generalization to non-ANS tasks. Future studies
in this vein would require a shift in a number of the methods
(e.g., as the use of an appropriately chosen control group
Green, Strobach, & Schubert, 2014). However, to this point,
we also note that participants in general did not show changes
in the abilities of the sort that would be controlled for via such
studies (e.g., changes in performance from pre-test to post-test
were not uniform across tasks).

Studies designed with the goal of engendering learning
generalization would also likely need to be adapted to incor-
porate principles known to increase the likelihood/magnitude
of learning generalization (Deveau, Lovcik, & Seitz, 2013;
Vinogradov, Fisher, & de Villers-Sidani, 2012). For instance,
in the current study, we utilized the exact same task through-
out training with no variety/variability in any aspect (other
than the particular number ratios in the blocks). While this
will tend to be effective in producing learning on the task, it
is not the best procedure for inducing learning generalization —
which would necessitate additional variety of experience
(Braun, Aertsen, Wolpert, & Mehring, 2009; Schmidt &
Bjork, 1992; Xiao et al., 2008).

It may also be the case that our pattern of results would be
different in a less expert group. For instance, it is currently
unclear whether expertise should amplify or suppress learning
generalization (Behrmann & Ewell, 2003; Rosalie & Miiller,
2014). These, plus the fact that the use of a highly-selected
population leads to concerns regarding the ability to generalize
results to a broader population, mean that further studies with
novice psychophysics participants are necessary. In addition,
we hope that the neuroplasticity in high-functioning young
adults we demonstrated will be tested in higher-powered studies
including children and individuals with dyscalculia in order to
inform the development of the applications of this extended
training paradigm.

We have demonstrated plasticity in ANS using extensive
training, and these improvements are not specific to the exact
task trained. Our data complement the plasticity observed in
previous short-term training studies while also providing the
motivation for future long-term training in novices.
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