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Abstract Humans excel at finding objects in complex natural
scenes, but the features that guide this behaviour have proved
elusive. We used computational modeling to measure the con-
tributions of target, nontarget, and coarse scene features to-
wards object detection in humans. In separate experiments,
participants detected cars or people in a large set of natural
scenes. For each scene, we extracted target-associated fea-
tures, annotated the presence of nontarget objects (e.g.,
parking meter, traffic light), and extracted coarse scene struc-
ture from the blurred image. These scene-specific values were
then used to model human reaction times for each novel scene.
As expected, target features were the strongest predictor of
detection times in both tasks. Interestingly, target detection
time was additionally facilitated by coarse scene features but
not by nontarget objects. In contrast, nontarget objects predict-
ed target-absent responses in both person and car tasks, with
contributions from target features in the person task. In most
cases, features that speeded up detection tended to slow down
rejection. Taken together, these findings demonstrate that
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humans show systematic variations in object detection that
can be understood using computational modeling.
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Detecting objects such as cars or people in natural scenes is
effortless for us (Li, VanRullen, Koch, & Perona, 2002;
Thorpe, Fize, & Marlot, 1996), but extremely challenging
for computer algorithms (Everingham et al., 2014). It is chal-
lenging because natural scenes vary not only in target appear-
ance but also in the surrounding objects and overall scene
layout, all of which can potentially facilitate detection. To
illustrate these three different properties, consider the scene
of Fig. la. Finding a person in this scene could be slow due
to the unusual view, but could be aided by objects such as a
bag or dustbin that co-occur near people, and by the coarse
scene layout typical of people-associated market scenes.
Likewise, finding a car in Fig. 1b may be aided by many cars,
informative objects such as traffic lights and by the coarse
layout typical of car-associated road scenes. The goal of our
study was to characterize how these three information chan-
nels (targets, nontargets, and coarse scene features) influence
target detection in both tasks. Below we review the existing
literature in relation to this overall goal.

Object detection in humans
The general approach taken to understand target features used

by humans has been to characterize how performance changes
with various image manipulations. Object detection, for
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Fig.1 Representative scenes and experiment design. a Leff: Example image
in the person detection task. Right: Targets, nontarget objects (pram, stand,
bag), and coarse scene structure. All these properties can potentially influence
the eventual detection of the target. b Example image from the car detection

instance, is unaffected by removal of color or Fourier phase
(Harel & Bentin, 2009; Joubert, Rousselet, Fabre-Thorpe, &
Fize, 2009; Morrison & Schyns, 2001), but depends on coarse
object features (Fabre-Thorpe, 2011; Mohan & Arun, 2012)
that may vary in their spatial frequency (Harel & Bentin,
2009). It is generally thought that object detection is driven
by category-diagnostic features of intermediate complexity
(Delorme, Richard, & Fabre-Thorpe, 2010; Reeder &
Peelen, 2013; Ullman, Vidal-Naquet, & Sali, 2002).

There is also evidence that, apart from using target features
to perform object detection, humans can exploit scene regu-
larities to efficiently search for target objects (Castelhano &
Heaven, 2010; Malcolm, Nuthmann, & Schyns, 2014;
Torralba, Oliva, Castelhano, & Henderson, 2006) and use
these predictions to facilitate object recognition (Auckland,
Cave, & Donnelly, 2007; Bar, 2004; Bar & Ullman, 1996;
Biederman, Mezzanotte, & Rabinowitz, 1982; Joubert, Fize,
Rousselet, & Fabre-Thorpe, 2008; Zimmermann, Schnier, &
Lappe, 2010). Informative scene layouts also make it possible
to detect targets at coarse resolutions (Barenholtz, 2013), and
coarse scrambling of surrounding context has been shown to
impair face detection (Lewis & Edmonds, 2003). However,
the surrounding context can consist of either nontargets
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task, with targets, nontargets, and coarse scene information. ¢ Stimuli used in
the two tasks. Subjects performed either a car detection task or a person
detection task consisting of 1,300 scenes. Scenes unique to each task and
common to both tasks are shown. (Color figure online)

similar to the target, dissimilar but co-occurring nontargets,
or informative scene layouts—all of which might influence
search for a target. There have been very few attempts to
disentangle these factors, with two notable exceptions. The
first is the finding that nontargets similar to the target attract
gaze (Zelinsky, Peng, & Samaras, 2013a) and more generally,
influence search difficulty (Duncan & Humphreys, 1989;
Vighneshvel & Arun, 2013). The second is the finding that
fixation locations of subjects searching for a person in a scene
can be predicted to some extent using local salience and target
features, but best of all by coarse scene features (Ehinger,
Hidalgo-Sotelo, Torralba, & Oliva, 2009).

While most studies of object detection have naturally fo-
cused on target-present scenes, human performance on target-
absent scenes is relatively less understood. Are target-absent
responses systematic, and, if so, what makes a scene easy or
hard to reject? In general, targets are harder to find or reject
with increasing clutter (Neider & Zelinsky, 2011; Wolfe,
Alvarez, Rosenholtz, Kuzmova, & Sherman, 2011), and fixa-
tions in target-absent scenes are driven by target and coarse
scene features (Ehinger et al., 2009; Zelinsky et al., 2013a).
However, the influence of targets, nontargets, and coarse
scene features on target rejection is poorly understood.
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Object detection in machines

Although machine vision systems do not yet match humans in
performance, they nonetheless indicate the detection perfor-
mance possible with each class of features. For instance,
models of object detection based on even rudimentary target
features such as configurations of gradient-based whole object
detectors (Dalal & Triggs, 2005) or containing representations
of the whole object and its parts (Felzenszwalb, Girshick,
McAllester, & Ramanan, 2010) have been reasonably suc-
cessful in object detection. These suggest that object detection
can be driven primarily by target features alone without rely-
ing on nontarget objects or context. Hierarchical models with
biologically plausible operations (Serre, Oliva, & Poggio,
2007) have been used to categorize objects with some success.
Recently, convolutional neural networks have outperformed
all other detectors (Krizhevsky, Sulskever, & Hinton, 2012),
although our understanding of their features remains elusive.
While object features have typically been modeled using in-
tensity gradients, contextual information has been modeled
using coarse Gabor features computed across the entire scene.
Such coarse scene information has been used to classify
scenes, constrain object detection, and even identify incongru-
ent portions of scenes (Choi, Torralba, & Willsky, 2012; Oliva
& Torralba, 2001, 2008; Torralba, 2003).

Overview of the current study

To summarize, studies of object detection in humans and ma-
chines have shown that target features and scene context can
guide detection, but the relative influences of target, nontarget,
and coarse scene features in object detection remain unclear.
To address this issue, we performed two experiments in which
participants performed person and car detection. In each ex-
periment, we measured human performance on real-world
scenes and used this data to train computational models.
There were two distinctive aspects of our approach: First,
we measured human performance on detecting two different
objects (people or cars) on the same set of scenes. This
allowed us to measure task-specific and task-independent con-
tributions on object detection. Second, we trained computa-
tional models on three distinct information channels: isolated
target object features, presence/absence of other objects, and
features extracted from blurred scenes. This allowed us to
characterize how each type of information in a scene (targets,
nontarget objects, and coarse scene structure) influences ob-
ject detection. We sought to explain the scene-by-scene vari-
ation in the average response time of subjects performing the
person or car detection tasks. However, we fit separate models
on target-present and target-absent scenes based on the pre-
mise that they may be qualitatively different: for example, a
fast response on a present scene may occur for a scene with an

easy target, whereas a fast response on an absent scene may
occur for a scene where it is easy to reject a target. Our main
finding is that different channels contribute to target-present
and target-absent responses in a task-dependent manner.
These results yield insights into the relative importance of
three types of scene information during rapid object detection
and the underlying mechanisms.

Method
Participants

In all, 30 subjects (20-30 years old, five female) participated
in the person detection task, and 31 subjects (20-30 years old,
11 female) participated in the car detection task. All subjects
had normal or corrected-to-normal vision and gave written
informed consent to an experimental protocol approved by
the Institutional Human Ethics Committee of the Indian
Institute of Science.

Person task stimuli

A total of 1,300 full color real-world scenes (measuring
13.5° % 10.1°, native resolution 640 x 480 pixels) were select-
ed from a wide range of environments, from natural to urban,
with varying numbers of people. Half of these scenes (n =
650) contained no people or cars and were common to both
person detection and car detection tasks. Of the 650 person-
present scenes, 225 also contained cars (common to both
tasks), and the remaining 425 contained only people (unique
to this task). Thus, there were 1,725 unique scenes that were
used across both tasks (650 + 225 common and 425 scenes
unique to each task). A large fraction of these scenes were
from the LabelMe dataset (Russell, Torralba, Murphy, &
Freeman, 2008) and were used in a previous fMRI study
(Peelen, Fei-Fei, & Kastner, 2009), and the rest were from a
personal collection of one of the authors (M.V.P).

The 425 person-present scenes varied widely in their field
of view and included buildings, streets, residential neighbor-
hoods, shop-fronts, parks, sports venues, lakes, rivers, moun-
tainous terrains, and so on. The 225 scenes that contained both
cars and people were relatively less variable in their scene
properties because both objects tend to co-occur in scenes
such as neighborhoods with streets and parking areas.
Although there was plenty of overlap of scene types between
the 650 person-present and 650 target-absent scenes, there
was greater variability in terms of field of view and scene
depth for the absent scenes. Target-absent scenes also
contained scenes such as highways that are associated more
with cars than people.
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Car task stimuli

The stimuli consisted of 1,300 full-color real-world scenes
with cars in a variety of scene locations, poses, and environ-
ments. Of these, 650 scenes contained one or more cars, and
the remaining 650 contained neither cars nor people and were
common to both tasks. Of the 650 car-present scenes, 225 also
contained people and were common to both tasks. Car-present
scenes had a greater incidence of highways, parking lots, and
urban streets.

Procedure

Subjects were seated ~60 cm from a computer monitor under
control of custom programs written in PsychToolbox
(Brainard, 1997; Pelli, 1997). Each trial began with a fixation
cross (measuring 0.45° square) presented for 500 ms, follow-
ed by a scene that flashed briefly for 83 ms, and then by a
noise mask (measuring 13.5° x 10.1°) that stayed on for 450
milliseconds and was replaced by a blank screen until a re-
sponse was made. Noise masks were created by
superimposing naturalistic textures on a mixture of white
noise at different spatial frequencies (Walther & Fei-Fei,
2007). Subjects in the person (car) detection task were
instructed to respond as quickly and accurately as possible
using a key press to indicate whether they saw one or more
people (cars) in the scene, using the key “Y” for present and
“N” for absent. The trial timed out after 4.5 seconds. Trials
with incorrect or no responses were repeated after a random
number of other trials. In all, we collected 1,300 correct re-
sponses from each subject in each task. Although repeated
scenes may have elicited qualitatively different responses
(due to memory or priming effects), in practice they were
too few in number to analyze because subjects were highly
accurate (>92% correct in both tasks; 76 incorrect trials for
1,300 correct trials for the person task; 103 incorrect for 1,300
correct trials for the car task). Their accuracy was high, even
upon considering the first responses to all scenes (average
accuracy: 94% for person; 92% for car task). Excluding these
repeated scenes from our analyses yielded extremely similar
results. All results reported in the main text are (for simplicity)
based on analysis of correct trials that included responses to
repeated scenes.

Noise ceiling estimates

To estimate an upper bound on model performance for the first
approach (generalization across scenes), we reasoned that no
model can exceed the reliability of the data itself. Although
this number can be measured using the split-half correlation
between two halves of the data, it underestimates the true
reliability of the data, which is the correlation that would have
been obtained if there were two data sets of the same size.
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Since the cross-validated models are trained on RT data from
all subjects, we accordingly applied a Spearman-Brown cor-
rection (with data-split parameter =2), which estimates the
true reliability of the data. This is calculated as
rd = 2rs/(rs + 1), where rs is the split-half correlation and
rd is the data reliability or noise ceiling. The mean and stan-
dard deviation of the noise ceiling shown in the corresponding
figures was obtained by calculating the corrected split-half
correlation over many two-way splits of the data. Noise ceil-
ing estimates for the second approach (generalization across
subjects) were calculated as the average correlation between
each held-out subject’s response times across scenes with the
average response times across the remaining subjects.

Model fitting

We sought to explain the scene-by-scene variation in average
response time and fit separate models on target-present and
target-absent scenes. To evaluate the contributions of targets,
nontargets, and context, we fit separate models on each group
of features using linear regression. For instance, to predict
responses on target-present scenes using target features, we
compiled the average response times across all 650 scenes into
a single response vector, y. The corresponding target features
for each scene were compiled into a matrix, X, containing 650
rows and columns equal to the number of target features. We
then asked whether the response time could be predicted using
a linear combination of target feature activations: in other
words, whether y = Xb for some unknown activation weights
b. The weights b were found using standard linear regression.
This was done likewise for other groups of target features. In
addition to fitting the behavioural data to each channel sepa-
rately, we also fit composite models in which the feature vec-
tor for each scene corresponded to the concatenated feature
vectors from individual channels.

A channel with more features could yield a better model
solely because it has more degrees of freedom. We therefore
reduced the dimensionality of each channel using principal
component analysis performed across all scenes and projected
the features in each group along their first 20 principal com-
ponents. These principal components captured more than 85%
of variance across scenes for all three channels, indicating that
they provide a compact description of the features extracted in
each channel.

Model evaluation

We used two different approaches to evaluate model perfor-
mance. While these two approaches are quantitatively differ-
ent, the results were qualitatively highly similar and are de-
tailed below.

The first approach was to use the model to predict the
responses to novel scenes. Here, we evaluated how well a
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model trained on the average reaction times across subjects on
one set of scenes can predict reaction times on another, inde-
pendent set of scenes. To this end, we used a five-fold cross-
validation procedure: the scenes were split into five parts, and
for each split the predicted reaction time on this 20% of the
data was obtained from a model trained on the remaining 80%
of the data. This yielded predicted response times for all 650
scenes, where the response to each scene is based a model that
is never exposed to that scene during training. We then report-
ed model performance as the correlation between the predict-
ed and observed reaction times obtained in this manner across
5,000 random 80-20 splits of the data. This approach has the
advantage that it captures the group-averaged variation in re-
action times and allows for generalization across scenes.

The second approach was to use the model to predict the
responses of novel subjects. Here we evaluated model perfor-
mance using a leave-one-subject-out approach. We calculated
the degree to which a particular subject’s reaction times could
be predicted by a model trained on the remaining subjects.
This approach has the advantage that each subject is an inde-
pendent sample that can be directly used as degrees of free-
dom in statistical tests.

Choice of features in each channel

For each scene, we extracted image features corresponding to
each channel (targets, nontarget objects, and scene layout).
The features of each channel were designed to be distinct from
each other, and are summarized briefly below with details in
the Supplementary Material (Section S1).

Target features

We carefully selected target features that minimized any con-
tamination from the surrounding context features.
Histograms of oriented gradients (HOG), are commonly
used in object detection (Felzenszwalb et al., 2010). We chose
a total of 31 features optimized for person/car detection
learned from an independent set of close-cropped person and
car images with very little context. These templates contain
information about the coarse as well as fine grained structure
of people and cars (Fig. 2) and have been trained on large-
scale publicly available data sets distinct from those used in
this study. Six templates each for canonical appearances or
cars as well as people were obtained automatically by the
training algorithm (Felzenszwalb et al., 2010). The degree of
match to these HOG templates was obtained by convolving
the car/person appearance templates in an exhaustive manner
across image locations, at multiple scales. Strong matches to
the reference templates typically result in hits (Figs. 2g—h) and
weak or partial matches typically result in false alarms
(Figs. 2i—j). Since HOG-based templates can yield a different
number of matches, match-locations, scales, and detector

confidence on each scene, we summarized these statistics into
a 31 dimensional feature vector. These features are detailed in
Section S1 and included (1) the weighted sum of detector
confidence with detected box area for high-confidence
matches (i.e., potential hits); (2) weighted sum of detector
confidence with box area for low-confidence matches (i.e.,
potential false alarms). This method of aggregating target con-
fidence scores for each scene was motivated by the faster
detection of larger objects in real-world scenes (Wolfe et al.,
2011) and by participant feedback indicating ease of detecting
conspicuous and larger targets. Since there are six appearance
templates each for car and person, we computed the weighted
sum of hits and false alarms for each such template and
concatenated them to obtain a summary descriptor containing
pure object templates independent of context. We obtained
qualitatively similar results on using only the relevant tem-
plate for each experiment.

In contrast to earlier work (Ehinger et al., 2009), we used a
much richer appearance model having part statistics for eight
object regions in each view. Depending on the depicted view
in the HOG appearance template, these regions roughly over-
lap with head, arms, torso, and legs in the case of persons, and
wheels, windows and doors, hood and headlights, trunk and
rear windscreen for cars (Felzenszwalb et al., 2010), and this
allows us to quantify the part deformations relative to the
coarse appearance template. We recorded the average and
standard deviation of displacement of each part in a normal-
ized space with unit height and width (n = 16). Part deforma-
tion was quantified by normalizing each detection into a unit
square and finding the relative displacement of each detected
part from the respective mean part location in all target
matches over 1,300 scenes used in each task. This was done
separately for matches to car appearance and for matches to
person appearance. We found that summarizing the HOG de-
tector results in this manner was more informative than using
average HOG histograms directly (see Section S1).

We avoided using convolutional neural network activations
because these often pick up both target and context features,
which we subsequently confirmed (see Section S4).

Nontarget features

Nontarget features consisted of binary labels denoting the
presence or absence (0 for absent, 1 for present) for a variety
of objects in the scene (7 = 67). These binary labels were ob-
tained by manually annotating each scene exhaustively with
all the visual objects present in it (see Section S1). Cars and
people were specifically excluded from these labels since they
are potential targets. We also excluded large regions, such as
sky and mountain, that occur at scales large enough to influ-
ence coarse scene structure. Although we have chosen scenes
with a large variety of nontarget objects for this study, it re-
mains possible that the frequency of nontargets are not
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Fig. 2 Target feature models for person and car detection. Each panel
shows a visualization of the features extracted by the target feature model
for people and cars. The target feature model is a part-based model in
which target detection is based on a collection of part and whole-object
detectors, each of which match the orientations present in local image
patches with a part of whole template. a Histogram of oriented gradient
structure learnt for one of six canonical views of isolated cars. b
Histogram of oriented gradient structure learnt for eight parts within each
view of a car. ¢ Deformation penalties that are imposed on the eight parts
defined within each template for a car, where part detections in whiter

representative of natural experience. This remains a poorly
studied issue: many common datasets, such as MSCOCO
(Lin et al., 2014), contain similar numbers of categories, but
it is unclear whether humans are sensitive to nontarget occur-
rence statistics in general.

Coarse scene features

Coarse spatial envelope GIST features (Oliva & Torralba,
2001) were extracted from blurred versions of scenes (n =
512). The blurred scenes were obtained by convolving images
with a low-pass Gaussian filter (o =20 pixels), such that in-
ternal details of objects and parts were no longer discernible.
To confirm that this level of blurring removed all target-related
features, we trained HOG-based object detectors for both cars
and people on blurred scenes and confirmed that they yielded
poor detection accuracy (<5% correct across 100 representa-
tive target-present scenes). We also tried encoding coarse
structure using activations of a deep convolutional neural net-
work optimized for scene categorization (Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2014), but GIST features
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regions incur more penalty. d Histogram of oriented gradient structure
learnt for one of six canonical views of isolated people. e Histogram of
oriented gradient structure learnt for eight parts within each view of a
person. f Deformation penalties that are imposed on the eight parts
defined within each template for a person (part detections in whiter
regions incur more penalty). g, h High confidence matches to person
and car HOG templates, respectively. i, j Partial matches to person or
car HOG templates arising from coarse or fine-grained scene structure.
(Color figure online)

yielded better predictions of detection performance (data not
shown).

Results

We characterized human performance on two rapid object
detection tasks: 30 subjects performed a person detection task
and a separate group of 31 subjects performed a car detection
task (see Method section, Fig. 1). Subjects were extremely
accurate in both tasks (average accuracy: 94% +0.03 in the
person task; 92% + 0.03 in the car task, considering only their
first response to each unique scene). In general, they were
faster to confirm the presence of a target than to confirm its
absence (average reaction times for present and absent re-
sponses: 0.43 s and 0.50 s in the person task, p < .001 for main
effect of condition in an ANOVA on response times with
subject and condition [present/absent] as factors; 0.44 s and
0.53 s in the car task, p <.001 for main-effect of condition;
p <.001 for interaction between subject and condition in both
tasks). To assess whether reaction times are systematic across
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scenes, we calculated the correlation between the average re-
sponse times of one half of the subjects with the other half.
This yielded a significant positive correlation for detection
and rejection in both tasks (average split-half correlation for
detection and rejection times: 7s = .53 & .29 in the person task,
rs=.68 & .29 in the car task, p <.001 in all cases). These
numbers can be used to derive the upper limit for model per-
formance (see Method section; rd = .69 & .45 for person task,
rd=.81 & .45 in the car task). Thus, subjects were highly
consistent in both tasks.

Computational models for person detection

We started out by characterizing the influence of targets, non-
target, and coarse scene features on person detection. To this
end, we tested a number of models based on combinations of
target, nontarget, and coarse scene features (see Tables 1 and 2).
We evaluated models for their ability to predict the average
responses to novel scenes that were never used in model fitting
(Table 1) or their ability to predict responses of novel subjects
that were never used in model fitting (Table 2). Both measures
yielded qualitatively similar results (see Tables 1 and 2).

We sought to identify which combination of the three chan-
nels would provide the best account of the data. We illustrate
our model selection process using the example of person de-
tection using model generalization to new scenes (see
Table 1). The best model was one that contained target and
coarse scene features for the following reasons: (1) this model
had significantly better fits than models informed by any sin-
gle information type (p <.001 in all cases); (2) this model
yielded significantly better fits compared to other pairs of

Table 1  Model generalization to new scenes in person and car detection

channels (p <.005 vs. TN, p<.001 vs. NC); (3) this model
had comparable performance to a full model containing target,
nontarget, and coarse scene features (p >.25). We obtained
similar results with model generalization to new subjects
(see Table 2). Note, however, that target features are the dom-
inant influence on detection with only a slight benefit from
including coarse scene features.

The performance of the best person detection model on nov-
el scenes is shown in Fig. 3. This model yielded a significant
correlation between predicted and observed responses across all
scenes (r=.45, p<.001; Table 1, Fig. 3a), where the reliability
of the data is (rd = .69), suggesting that the model captures the
major sources of variation in person detection. Likewise, it
yielded a significant correlation between its predictions for each
individual subject and the observed responses for that subject
(average r across 30 subjects: »=.15; this correlation was sig-
nificantly different from zero, sign-rank test, p <.001; see
Table 2), reliability of the data is (rd = .23).

The predictions of the person detection model can be
interpreted as being inversely related to the strength of evi-
dence for a person in the image: the stronger the person fea-
tures in the image, the faster will be the response. Would
strong evidence in favor of a person in a person-absent scene
result in a slow response? To test this possibility, we used
person-absent scenes as input to the person detection model
and compared these predictions with the observed person-
rejection response times. This yielded a negative correlation
(r=-.17, p<.001; Fig. 3a). Thus, features that speed up per-
son detection in a scene slow down person rejection.

To gain further insights into model performance, we grouped
scenes by their detection time to see whether there were

Model name dof Person detection Car detection
rc p(Model > TC) rc p(Mode 1 > TC)
Noise ceil 0.69+0.02 0.81+£0.02
TNC 60 0.44+0.01 0.29 0.55+0.01 0.087
T 20 0.41+0.01 0.005 0.50+0.01 0
N 20 0.14£0.02 0 0.17+0.02 0
C 20 0.30+0.01 0 0.41+0.01 0
N 40 0.40+0.01 0.002 0.48+0.01 0
TC 40 0.45+0.01 - 0.57+0.01 0
NC 40 0.30+0.01 0 0.42+0.01 0

Note. The best performing model for both detection tasks was one that contained target as well as coarse scene features (values indicated in bold). We
characterized the performance of each model using the average cross-validated correlation (r¢) over 5,000 random 80-20 splits. Because the number of
random splits is entirely arbitrary, a direct statistical comparison is meaningless. Instead, we took the statistical significance to be the probability (i.e.,
fraction of times) each given model yielded a correlation higher than the best model. Thus a probability of 0.05 means that the model X outperformed the
best model only 5% of the time, implying that the best model is superior to model X. We chose the widely used criterion of & =0.05 for statistical
significance. Note that model performance sometimes reduces with the inclusion of extra features because of overfitting. Model abbreviations: T, N, C
represent targets, nontargets, and context. TN = targets & nontargets, TC = targets & context, rc = correlation between model predictions and observed

response times, dof = degrees of freedom in the model
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Table 2 Model generalization to new subjects in person and car detection

Model name dof Person detection Car detection
rc p(Model > TC) rc p(Model > TC)
Noise Ceil 0.23+0.09 0.34+0.1
TNC 60 0.15+0 0.1 0.23+0 0.18
T 20 0.14+0 0 0.21+0
N 20 0.05+0 0 0.07+0 0
C 20 0.10+0 0 0.17+0 0
TN 40 0.13+0 0 02+0 0
TC 40 0.15+0 - 0.24+0 -
NC 40 0.10£0 0 0.18+0 0

New. Each subject is held out and models are trained for car/person detection RT. Correlations of model predictions with the held out subject’s RT are
averaged over all participants in the task. The best performing model for both detection tasks was one that contained target as well as coarse scene
features (values indicated in bold). To compare the best model with each other model, we performed a paired nonparametric statistical comparison
(ranksum test) between the individual subject correlations produced by the best model and each individual model. The resulting statistical significance is

reported under the p(Model > T) column. Abbreviations as in Table 1

common visual elements as illustrated for a few representative
scenes that produced fast or slow responses (see Fig. 3b, top
row). The observed responses closely follow the predictions
from a model trained on target and coarse scene features. As
shown in Fig. 3b, relatively strong person evidence (e.g., stron-
ger and greater number of matches to person templates using
HOG models) predicted relatively fast responses typically as-
sociated with larger scales and numbers of people.

Computational models for car detection

Next, we investigated models based on target, nontarget, and
coarse scene features for their ability to predict car detection
performance. The results are summarized using model gener-
alization to new scenes (see Table 1). As with person detec-
tion, we found that the best model for car detection included
target and coarse scene features but did not benefit from in-
cluding nontarget features. Target features were the predomi-
nant influence on detection with only a slight benefit from
including coarse scene features. This model (target + coarse
scene features) yielded a significant correlation between pre-
dicted and observed responses (»=.57, p <.001; see Table 1
and Fig. 4a). Given the reliability of the data itself (rd = .81),
this indicates that the model captures the major sources of
variation in car detection. We obtained similar results using
model generalization to new subjects (see Table 2).

Next, we tested whether partial evidence in favor of target
presence, which speeds up the detection of targets that are
actually present, would slow down target rejection, as ob-
served in the person detection task. To test this prediction,
we used the target feature model (trained on car-present
scenes) to predict the response times on car-absent scenes.
These predicted responses show a weak but significant nega-
tive correlation with the observed car-absent response times
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(r=-.03, p<.001; see Fig. 4a). Thus, features that speed up
car detection in a scene slow down car rejection and suggests
that car rejection is influenced by target features.

To elucidate model performance on car detection, we illus-
trate model features for representative scenes with fast or slow
detection times (Fig. 4B). Scenes with fast detection responses
generally contained high confidence matches for cars in the
model and scene layouts that are strongly associated with cars
and also allow for easy detection. We conclude that target and
coarse scene features play a dominant role in car detection.

Computational models for person rejection

We then investigated whether computational models can ex-
plain times taken by humans to confirm the absence of people
in an image. To this end we again computed features corre-
sponding to target, nontarget, and coarse scene information
from each scene, and asked whether the average person-
absent response time can be explained as a linear combination
of these features. The results are summarized in Table 3 for
model generalization to new scenes and in Table 4 for model
generalization to new subjects. The best model in this case
was one that included both target and nontarget information
(see Tables 3 and 4). Including context features did not signif-
icantly improve the fit (see Table 3). This model yielded a
significant correlation between predicted and observed re-
sponses (r=.33, p<.001; see Table 3, Fig. 3c), close to the
reliability of the data (rd =.45), suggesting that the model
captures the major sources of variation in person rejection.
Importantly, the combined target-nontarget model performed
significantly better than the two simpler models (vs. target,
p <.0005; vs. nontarget, p <.0005) as well as other models
informed by two information channels (vs. TC, p <.001; vs.
NC, p<.001), adding coarse scene information did not
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Fig.3 Computational models predict person detection (Experiment 1). a
Left bar: Correlation between the best model predictions and person
detection response times. The noise ceiling, which estimates the upper
limit on model performance given the reliability of the data, is also shown
for comparison (blue). Right bar: Correlation between best model
predictions on target-absent scenes and person rejection response times,
showing a negative correlation. Here and throughout, error bars represent
standard deviations in cross-validated correlations obtained across 1,000
random 80-20 splits of the data. b Visualization of model features in

improve the performance of this model (p > .05). We obtained
similar results using model generalization to new subjects (see
Table 4).

As before, we reasoned that features that slow down person
rejection are presumably those that contribute evidence in fa-
vor of person present. To confirm this prediction, we took the
model trained on person-absent scenes (i.e., the target-
nontarget model) and calculated its responses to person-
present scenes. This yielded a negative correlation with
target-present responses (r=-.28, p<.001; Fig. 3c),
confirming that features that slow down person rejection in-
deed speed up person detection.

To illustrate model performance on person rejection, we
illustrate model features for representative scenes with fast
or slow detection times (Fig. 3c). Person rejection was slowed
down by partial target matches as well as by nontarget objects
that co-occur with people, such as trees, pillars, and parked

Nontarget (N)

Target (T)

Slow person rejection
scenes with fast (/eff) and slow (right) observed detection response times.
The first row depicts the original scene with the average response time
shown in red. The second row depicts target features: scenes are overlaid
with weak (yellow boxes) and strong (red boxes) matches to target
features. The third row depicts the blurred scenes used to extract coarse
scene features. ¢, d Analogous plots for person rejection with inset text in
first row showing nontarget labels and second row depicting weak
(vellow boxes) and strong (red boxes) matches to target features. (Color
figure online)

vehicles. It is also slowed by nontarget objects such as doors
that are similar to people in HOG feature space (see Fig. S2a,
Supplementary Section S3). Taken together our results show
that the target features and nontarget objects are the dominant
influence on person rejection.

Computational models for car rejection

We then investigated whether computational models can ex-
plain times taken by humans to confirm the absence of cars in
an image. To this end we again computed features correspond-
ing to target, nontarget, and coarse scene information from
each scene, and asked whether the average car-absent re-
sponse time can be explained as a linear combination of these
features. The results are summarized in Table 3 for model
generalization to new scenes and in Table 4 for model gener-
alization to new subjects.
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Fig. 4 Computational models predict car detection (Experiment 2). a—d
Analogous plots as in Fig. 3, but for car detection. a Correlation between
best model predictions and car detection response as well as best model
prediction on car absent scenes and car rejection response times, all
conventions as in Fig. 3. b Visualizing original scenes with overlaid

The best models for car rejection were those containing
nontarget features alone, with no contribution of either target
or coarse scene features (see Table 3). This model yielded a
significant correlation with car-absent response times (» = .34,
p <.001; see Table 3 and Fig. 4c), where the reliability of the
data itself is (nd =.45). Adding the target or coarse scene in-
formation did not improve performance. The nontarget model

Table 3 Model generalization to new scenes in person and car rejection

Slow car detection
.' ;

He A4
- "llll:l--ur
f it -

Target (T)

Context (C)

Nontarget (N)

Slow car rejection

observed car detection response times in the first row, target matches in
second row and coarse scene information in the third row. ¢, d Analogous
plots for car rejection with d showing nontarget labels visualized on novel
scenes sorted according to increasing car rejection response times. (Color
figure online)

performed significantly better than models containing only
target or only coarse scene information (vs. target, p <.0005;
vs. coarse scene information, p <.0005), and adding other
information channels did not significantly improve the perfor-
mance of the nontarget only model (vs. all other models with
two or three information types, p > .05). We obtained similar
results using model generalization to new subjects (see

Model name dof Person rejection Car rejection
rc p(Model > TN) rc p(Model > N)
Noise ceil 0.45+0.02 0.45+0.02
TNC 60 0.29+0.02 0.09 0.34+0.02 0.42
T 20 0.25+0.01 0 0.06+0.02 0
N 20 0.20+0.02 0 0.34+0.01 -
C 20 0.14+0.02 0 0.15+£0.02 0
N 40 0.33+0.02 - 0.35+£0.01 0.65
TC 40 0.23+£0.02 0 0.13+£0.02 0
NC 40 0.21£0.02 0 0.35+0.01 0.58

Note. The best model for person rejection was the TN, model and the best model for car rejection was the N model. Conventions are as in Table 1
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Table 4 Model generalization to new subjects in person and car rejection
Model name dof Person rejection Car rejection
rc p(Model > TN) re p(Model > N)
Noise ceil 0.12+0.08 0.12+0.05
TNC 60 0.07+0 0.04 0.085+0 0.71
T 20 0.07+0 0.001 0.02+0 0
N 20 0.05+0 0 0.09+0 -
C 20 0.03+0 0 0.04+0 0
N 40 0.085+0 - 0.09+0 0.8
TC 40 0.06+0 0.03+0 0
NC 40 0.05+0 0.09+0 0.67

Note. Each subject is held out, and models are trained for car/person detection/rejection RT. The best model for person rejection was the TN model, and
the best model for car rejection was the N model. All conventions are as in Table 2

Table 4). Both analyses show that nontargets have the domi-
nant influence on car-absent responses.

As before, we reasoned that features that slow down car
rejection are presumably those that contribute evidence in fa-
vor of car presence. To test this prediction, we took the model
trained on car-absent scenes using nontarget features alone
and calculated its responses to car-present scenes. These pre-
dicted responses were positively correlated with car-present
response times (r=.15, p <.001; see Fig. 4c). Though this is
contrary to our prediction, it agrees with participant feedback
indicating that many nontargets can add to clutter and slow
down detection (see Section S3).

When visually inspecting scenes grouped according to
slow or fast rejection (Fig. 4d), we found that increase in the
presence of associated nontarget objects, like signs and poles,
elements of urban facades like windows, and other coarse
scene structures such as urban environments all slow down
car-absent responses—and indeed these correspond to scenes
likely to contain cars (see Section S3).

Task specificity of computational models

So far, we have shown that target detection and rejection in
both car and person tasks can be predicted using computation-
al models. However, these results do not yet provide conclu-
sive evidence that the models are specific in predicting car or
person detection performance. It is possible, in principle, that
amodel that accurately predicts person detection (or rejection)
reaction times may similarly predict car detection (or rejec-
tion) reaction times, for example because it capitalizes on
factors that generally influence response times (e.g., visibility,
clutter, scene typicality). To test for task specificity, we ana-
lyzed the subset of scenes common to both tasks: these includ-
ed 225 car-and-person-present scenes and 650 scenes with
both targets absent. We first asked whether, across scenes
containing both cars and people, scenes that took longer for

person detection also took longer for car detection. We ob-
served no significant correlation between the average detec-
tion times across the 225 car-and-person-present scenes in the
two tasks (r=-.12 p = .08; see Fig. 5a). In contrast, there was a
positive correlation between car rejection and person rejection
times across the two tasks (r=.34, p <.001; see Fig. 5a). This
indicates the presence of common features such as clutter that
slow down target rejection in both tasks.

The above correlations raise the possibility that computa-
tional models may be capturing task-independent scene fea-
tures rather than task-specific ones. To test this possibility, we
took the best model for each condition and recalculated its
partial correlation on the detection times after accounting for
task-independent factors as well as low-level factors. For ex-
ample, in the case of the best model for person detection on
225 common scenes containing both cars and people, we
regressed out the observed as well as predicted car detection
times on the same set of scenes, as well as low-level factors
such as size of the largest target, its eccentricity, number of
targets and measures of clutter (see Section S2 for detailed
description of low-level features). This yielded a positive cor-
relation (r=.40, p <.001; see Fig. 5b). Likewise, the best
model for person rejection remained significant after
regressing out observed and predicted car rejection times
and low-level factors (r=.27, p<.001; see Fig. 5b) across
650 common scenes.

We performed similar analyses on the performance of com-
putational models for car detection and rejection. The best
model for car detection yielded a positive partial correlation
after accounting for person detection times and low-level fac-
tors (r=.43, p<.001; see Fig. 5c). Likewise, the best model
for car rejection yielded a positive correlation after factoring
out predicted as well as observed person rejection times and
low-level factors (= .35, p <.001; see Fig. 5c).

The drop in best model performance in the above analyses
indicates that the best models contained contributions from
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Fig. 5 Task-specificity of computational models. a Left: Correlation
between person detection times (Experiment 1) and car detection times
(Experiment 2) across the 225 scenes containing both people and cars.
Right: Correlation between person rejection times (Experiment 1) and car
rejection times (Experiment 2) across the 650 target-absent scenes that
contained neither cars nor people. b Partial correlation analysis for person
task: Left: Best model performance on person detection with observed

task-independent features and low-level factors. However, the
drop is relatively minor, suggesting that target detection and
rejection in both tasks depend largely on task-specific
features.

Validity of parceling scene information into three feature
channels

The approach described in the preceding sections involve
modeling human performance during rapid object detection
using features derived from three distinct information chan-
nels. But what evidence do we have that there are three distinct
channels? We addressed this question computationally by ask-
ing whether models trained on the entire scene perform better
than models that use features segregating into the three chan-
nels. To this end, we selected a popular convolutional neural
network (CNN) implementation (Krizhevsky et al., 2012),
projected the features of its most informative layer (FC7)
along their principal components such that it had the same
degrees of freedom as the best model for each of the four
conditions (detection/rejection x person/car). This model
yielded comparable fits to the data (correlation with detection
and rejection times: 7 = .38 & .37 for person task, » =.05 & .41
for car task, p <.001). In comparison, our models using best
subsets of target, nontarget, and coarse scene information
showed similar fits (»r=.45 & .33 for person detection and
rejection; r=.57 & .34 for car detection and rejection;
p<.001). We conclude that parceling scene information into
the three distinct channels results in similar performance on
object detection as using the intact scenes.

Incidentally, our general approach can be used to elucidate
how targets, nontargets, and coarse scene features explain the
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detection times (black) is reduced but not abolished after factoring out
dependence on car detection times and low-level factors such as size and
eccentricity of the largest target, number of targets and clutter (gray).
Right: Best model performance on person rejection (black) is reduced

but not abolished after factoring out dependence on car rejection times
and low-level factors (gray). ¢, d Analogous plots for the car task

performance of deep neural networks as well, and we have
included this analysis in the Supplementary Material (see
Section S4).

Assessment of data set bias

The relative contributions of target, nontarget, and coarse
scene features obtained in our results could potentially be
specific to the scenes used in the study. For instance, our
finding that nontargets do not contribute to car or person de-
tection might be a consequence of the fact that they were not
predictive of target presence in the scenes used here. To assess
this possibility we estimated the degree to which each channel
could predict the presence or absence of a target across scenes.
As before, we calculated the five-fold cross-validated accura-
cy of linear classifiers trained on the features obtained from
each channel. Target features were the most informative as
expected (average accuracy: 93% for detecting cars; 92% for
detecting people). Importantly, adding nontarget or context
features did not improve performance (average accuracy: tar-
gets + nontargets: 93% for car, 92% for person; targets +
coarse scene: 93% for car, 91% for people). Classifiers trained
only on nontargets and coarse scene features also performed
well above chance (average accuracy: 72% & 71%, respec-
tively, for detecting cars; 73% & 73%, respectively, for detect-
ing people), and combining them yielded a slight improve-
ment (accuracy for nontargets + context: 77% for car, 81%
for person). Classifiers trained on all three channels together
were only marginally better than classifiers trained on only
target features (average accuracy: 93% for car, 94% for per-
son). Thus, at least for the scenes in our study, target features
alone yielded the best possible performance. By contrast, our
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analyses reveal that humans are using distinct additional fea-
ture channels for target detection and rejection.

Performance of state-of-the-art CNNs

Even though deep convolutional networks have obtained 90%
to 95% categorization accuracies on top-five results on natural
scenes (Russakovsky et al., 2015), the actual performance on
the best result (or top-one) classification is much lower (74%
on detecting people, 87% for cars) using a popular
convolutional network (Ren, He, Girshick, & Sun, 2016). To
investigate this specifically on our image set, we evaluated the
performance of an AlexNet architecture fine-tuned for 20-way
object classification (Lapuschkin, Binder, Montavon, Muller,
& Samek, 2016) on the PASCAL object dataset (Everingham,
Van Gool, Williams, Winn, & Zisserman, 2010). This deep
network had an accuracy of 73% for car classification and
83% for person classification. By contrast, using the most
confident car or person detections using HOG models resulted
in much higher accuracies (93% accuracy on car, 92% on
person). We therefore used HOG-based features for evaluating
target features in this study.

General discussion

Here we have shown that human performance on person and
car detection in real-world scenes contain systematic scene-
by-scene variations that can be explained using distinct con-
tributions from target, nontarget, and coarse scene features.
While these three types of information are known to influence
object detection, their relative contributions on a scene-by-
scene basis have not been previously established.

Specifically, our main findings are as follows: (1) Target-
present responses in both car and person tasks are driven
mainly by target features and to a smaller degree by coarse
scene features but were not influenced by nontarget objects;
(2) target-absent responses in the person task were predicted
by target and nontarget features but not by coarse scene fea-
tures; (3) target-absent responses in the car task were predicted
primarily by the presence of nontarget objects; (4) features
that speed up target detection slow down rejection, and vice-
versa; and (5) human performance in both tasks is influenced
largely by task-specific features and to a smaller degree by
task-independent features. Below we review our findings in
the context of the existing literature.

Our main finding is that human performance during rapid
object detection can be understood by separating scene fea-
tures into distinct channels comprising target, nontarget, and
coarse scene features. Importantly, separating features into
distinct channels did not adversely affect the ability of models
to predict human performance, thus validating this separation.
While specific types of target features (Harel & Bentin, 2009:
Ullman et al., 2002), similar nontargets (Zelinsky, Peng, &

Samaras, 2013b), co-occurring nontargets (Auckland et al.,
2007) and coarse scene features (Ehinger et al., 2009; Oliva
& Torralba, 2008) can affect object detection, in this study we
have quantified their relative contributions. Our results also
represent a general approach to determine the influence of
targets, nontargets, and coarse scene features in any task.

Our approach resembles that of Ehinger et al. (2009), who
separately assessed the contributions of targets and coarse
scene features towards the distribution of eye fixations.
Although our approach also includes target and coarse scene
features, our goal and experimental methodology are different
in several ways. First, we sought to explain object detection in
briefly flashed scenes that precluded shifts in eye position or
attention, in contrast to the Ehinger et al. (2009) task, which
allowed free viewing until the target was detected. The differ-
ence in viewing duration alone and/or the response modality
(hand vs. eye) could potentially drive different feature chan-
nels. Secondly, we used more sophisticated target features, rig-
orously separated the contributions of targets, nontargets, and
coarse scene features. Finally, we used two detection tasks
(people, cars) to establish both task-specific and task-general
contributions of each feature channel.

Our finding that different channels contribute towards tar-
get detection and rejection offers possible insight into how
humans perform this task. Our analysis of data set bias shows
that in principle, object detection could be performed entirely
using target features without recourse to nontargets or coarse
scene features. Yet humans show evidence of using nontarget
and coarse context features, suggesting that their feature rep-
resentations may be optimized for real-world scene statistics
that are potentially different from the scenes used in our study.
However, the fact that target features alone suffice for object
detection in computational models raises the important ques-
tion of whether different features contribute to target detection
and rejection. According to widely accepted models of deci-
sion making, evidence in favor of a response accumulates
towards a threshold and upon reaching it, triggers a ballistic
motor response (Kiani, Corthell, & Shadlen, 2014; Schall,
Purcell, Heitz, Logan, & Palmeri, 2011). In principle, a single
accumulator could produce two responses by triggering one
response when evidence reaches the threshold and an opposite
response when it does not reach threshold within a prescribed
time limit. This is unlikely for several reasons: First, rejection
times are systematically modulated by scenes, which rules out
a fixed time limit predicted by a single accumulator. Second,
the contribution of different channels towards detection and
rejection suggests two separate accumulators for rejection and
detection. Third, at least in person detection, target features
contribute to both detection and rejection but have opposite
effects, again suggesting two accumulators driven by the same
evidence in opposite directions.

We found that the target detection in both tasks is driven
mainly by target features with a relatively small contribution
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of context but not nontarget features. The fact that the specific
target features used in our modeling—namely, HOG features
with deformable parts—predict human performance indicates
that the underlying features are similar or at least partially
correlated (see Fig. 2, Figs. S1-S2). However the model
consisting of HOG features and coarse scene features did not
fully explain the observed data, which could indicate features
not captured by either channel (Delorme et al., 2010; Evans &
Treisman, 2005; Reeder & Peelen, 2013; Ullman et al., 2002).
We have also found that target features influence rejection
times in the person task, suggesting that partial matches to
target features slow down rejection. This is consistent with
visual search studies where search becomes difficult even
when a few distractors are similar to the target (Duncan &
Humphreys, 1989; Jacob & Hochstein 2010; Motter &
Holsapple, 2007).

Our finding that coarse scene features contribute only weak-
ly to object detection is at odds with the many demonstrations
of contextual influences in the literature. For instance, context
strongly facilitates search by narrowing down possible target
locations (Castelhano & Heaven, 2010; Malcolm et al., 2014;
Torralba et al., 2006) and is a major determinant of eye fixa-
tions made during searching (Ehinger et al., 2009). Likewise,
search in natural scenes is more efficient than expected given
the number of distractors (Wolfe et al., 2011) and is facilitated
by familiar spatial configurations of objects (Kaiser, Stein, &
Peelen, 2014). These studies differ from ours in that scenes
remained visible for a relatively long time, allowing scene
context (or nontargets) to guide eye movements. Thus it is
possible that context only weakly facilitates object detection
at first (as in our study) but plays an increasingly important role
as it builds up in time across multiple fixations (as reported by
others). Whether contextual influences build up with viewing
time or across multiple fixations is an important issue that is
beyond the scope of this study. Nonetheless the fact remains
that subjects are highly accurate in finding objects even in
briefly flashed scenes and we have shown that this behaviour
is driven by specific types of features.

We have shown that nontargets can have task-independent
as well as task-specific influences (see Fig. S3). When nontar-
gets slow down target-absent responses in both tasks, this can
be interpreted as salient objects that divert attention and slow
down responses. However the finding that a nontarget object
can affect one task but not the other could be because of
semantic associations with the target (Auckland et al., 2007)
or due to biasing of target-related features throughout the vi-
sual field. Our results place important constraints on the de-
gree to which nontargets guide object detection; for instance,
we have shown that they are the dominant influence in car
rejection but contribute equally to person rejection as target
features.

Finally, the predictions of individual channels offer addi-
tional insights into the features underlying object detection in
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real-world scenes. First, for people but not cars, target-absent
responses are longer when there are partial matches to targets
in the scenes (i.¢., false alarms in the HOG model; see Fig. 3c).
This may be because people are easily confused with other
upright vertical objects, yielding many more false alarms.
False alarms for people in our computational models occurred
for objects such as tree trunks, poles, and other upright objects
matching in scale and shape with images of people. On the
other hand, cars are very reliably detected (Fig. 2) and yield
very few false alarms. Thus, the lack of modulation of car-
absent responses by target features could be because cars,
being rigid objects with distinctive parts (e.g., wheels), are
relatively easy to detect. Car false alarms largely seem to arise
from box-like structures such as entrances and building fa-
cades that could easily be discounted by our visual system
(see Fig. S2).

Conclusions

To summarize, our results show that humans have systematic
variation in object detection performance across real-world
scenes that can be predicted using computational modeling.
Our results provide a quantitative framework to study the con-
tribution of target, nontarget, and coarse scene features in real-
world object detection.
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