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Abstract Subjects observingmany samples fromaBernoulli
distribution are able to perceive an estimate of the gener-
ating parameter. A question of fundamental importance is
how the current percept—what we think the probability now
is—depends on the sequence of observed samples. Answers
to this question are strongly constrained by the manner in
which the current percept changes in response to changes in
the hidden parameter. Subjects do not update their percept
trial-by-trial when the hidden probability undergoes unpre-
dictable and unsignaled step changes; instead, they update
it only intermittently in a step-hold pattern. It could be that
the step-hold pattern is not essential to the perception of
probability and is only an artifact of step changes in the
hidden parameter. However, we now report that the step-
hold pattern obtains even when the parameter varies slowly
and smoothly. It obtains even when the smooth variation is
periodic (sinusoidal) and perceived as such. We elaborate
on a previously published theory that accounts for: (i) the
quantitative properties of the step-hold update pattern; (ii)
subjects’ quick and accurate reporting of changes; (iii) sub-
jects’ second thoughts about previously reported changes;
(iv) subjects’ detection of higher-order structure in patterns
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of change. We also call attention to the challenges these
results pose for trial-by-trial updating theories.

Keywords Bayesian modeling · Decision-making ·
Memory

Introduction

Perception can be generally described as an estimation problem
involving non-stationary stochastic processes. Incoming
sense data are random variables drawn from some distri-
bution whose parameters change over time. Non-stationary
stochastic processes have both quantitative and structural
properties: the data and parameters that generate them are
numerical quantities, but changes in parameters across time
may be described by a formal model. For example, the
intensity of sunlight striking an outdoor observer’s eyes is
a random variable due to cloud cover; yet the model gener-
ating these data has strong higher-order structure, namely,
circadian periodicity. Studies of perception should take into
account both of these elements.

With this in mind, Gallistel et al. (2014) studied the
human perception of a stepwise non-stationary Bernoulli
process. In their experiment, which roughly replicated a
similar experiment by Robinson (1964), subjects used a
computer interface to make thousands of individual draws
of red or green circles from a box. Subjects were asked
to estimate, draw-by-draw, the hidden parameter pg of the
Bernoulli process, that is, the proportion of green circles in
the box. The parameter pg would silently change on random
trials. Subjects were additionally required to signal when
they thought these silent changes occurred.
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Despite many differences in method and parameters, the
experiments of Robinson (1964) and Gallistel et al. (2014)
gave similar results: subjects tracked the hidden probability
accurately and precisely over the full range of probabili-
ties, and they responded quickly and abruptly to the hidden
changes. Moreover, they consciously detected and reported
these changes. Subjects sometimes had second thoughts
about a change report; after seeing more data, they decided
that their most recent report was erroneous, that there had
not in fact been a change. This suggests that subjects keep
a record of the observed sequence and recode earlier por-
tions of the sequence in the retrospective light thrown by
subsequent data.

A particularly surprising result was that subjects did
not update their estimates (move the lever or the slider)
observation-by-observation. They not uncommonly adjust
their estimate by a small amount after a long interval
(sometimes more than 100 observations). We call this
the ”step-hold” pattern in the perception of a probability.
The step-hold pattern is theoretically important, because
most computational models for the perception of probabil-
ity assume trial-by-trial delta-rule updating of the percept
(Glimcher, 2003; Sugrue et al. 2004, 2005; Behrens et al.
2007; Brown and Steyvers, 2009; Krugel et al. 2009; Wilson
et al. 2013). Because the observed outcomes of a Bernoulli
process are usually far from the current estimate of the
parameter pg (the percept), trial-by-trial delta-rule updat-
ing jerks the estimate around, unless it is also averaged
over many trials. However, an average over many trials
cannot change abruptly, and large, maximally abrupt adjust-
ments in response to changes in pg were observed in
both experiments. The obvious explanation—reluctance to
overtly adjust the lever or slider when the change required
by the most recent trial or two is small—is ruled out by
the form of the distribution of step heights. The small-
est steps, which would be eliminated from the distribution
by the hypothesized reluctance, were in fact the most
frequent.

Gallistel et al. (2014) explained subjects’ step-hold
behavior with a Bayesian model that constructs a represen-
tation of the history of the Bernoulli parameter pg in terms
of its estimated change-points. For example, suppose that
between trials 1 and 41, the model estimates pg = .25, after
which it detects the parameter has changed to pg = .9. The
representation of the pg parameter history would then be
the sequence of ordered pairs {(0, .25), (41, .9)}. The cur-
rent percept is the second element of the most recent entry
in the sequence.

The model detects change-points by computing the
Kullback–Leibler divergence of its current estimate from
the sequence observed since the most recent change point
in the parameter history. If and when the probability that
the current estimate is valid falls below a threshold, the

model re-estimates pg . In doing so, it decides which of three
possibilities is the most likely explanation for its failure
to predict the most recently observed relative frequency of
green circles:

1. The current estimate is inaccurate due to the
inescapable small sample errors that arise from making
a new estimate as soon as a change is detected. In this
case, it keeps its estimate of the most recent putative
change point but re-estimates the current p in the light
of the additional data seen since the initial estimate was
made.

2. The current estimate is inaccurate because, in the light
of subsequent data, the most recent change point was
not in fact a change point. In this case, pg is re-
estimated using the data extending back to the penulti-
mate putative change point, and the most recent putative
change point is dropped from the representation of the
parameter history.

3. The current estimate is wrong because there has been a
new change. In this case, it estimates the locus of that
change, adds that change point to its representation of
the parameter history, and estimates the new pg , using
only the data after the estimated new change point.

Because the computational model adjusts its estimates of
pg only when it has evidence that the current estimate is
invalid—the authors call this the “if it ain’t broke (IIAB),
don’t fix it principle”—it changes its estimate only inter-
mittently, as do human subjects. Henceforth, we call this
model IIAB. For an extensive comparison between IIAB’s
and delta-rule models’ ability to capture human behavior,
see Gallistel et al. (2014).

IIAB accounted well for subjects’ estimation of a step-
wise non-stationary process, but it remained unclear how it
would generalize to other types of non-stationary stochastic
processes, like those whose parameters change continuously
or have deterministic structure. The subjects in Gallistel
et al. (2014) may have been induced to display step-hold
behavior because the true parameter was generated by a
step function. In this case, the model would reflect only an
experimentally induced strategy rather than a basic prop-
erty of the probability perception mechanism. Further, the
stepwise process used in Gallistel et al. (2014) changed
completely at random, so the authors could not ask whether
subjects were able to deduce deterministic structure in the
process purely from data. They therefore could not confirm
the report of Estes (1984), who claimed subjects estimating
a sinusoidally changing Bernoulli parameter could explic-
itly detect periodicity, contrary to the predictions of his
delta-rule updating model.

The purpose of the current experiment is to go beyond
the comparison to delta-rule models presented in Gallistel
et al. (2014) and instead to extend IIAB to new types of
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data and emphasize the utility of an explicit change-point
memory in the detection of structure. Our subjects esti-
mated the generating parameter of a Bernoulli distribution
that changed continuously in one of two ways: pg either
changed smoothly between stationary sections, or varied
sinusoidally. We find that the step-hold pattern is seen in
every subject even when the hidden probability changes
continuously, that is, even when the characteristics of the
stochastic process to which subjects are exposed discour-
ages such a strategy. Further, we found that subjects in the
periodic condition demonstrated improved performance on
a structure-dependent measure compared to those in the ape-
riodic condition, supporting Estes’ conclusion that subjects
can detect periodic structure. Finally, we describe the IIAB
model in more detail and discuss some advantages models
encoding hierarchical structure have over delta-rule models
in perception, learning and memory.

Methods

Nine subjects participated in the experiment. Following
standard psychophysical assumptions, we consider each
subject as a replication. In this case, we have nine replica-
tions of all the essential findings. Because we are primarily
concerned with effects per trial, rather than per subject,
there is large experimental power in the 10,000 trials we
ran on each of the nine subjects. We note below wherever
between-subject differences occurred and how they can be
better captured by IIAB than by delta-rule models.

On a computer monitor, the subjects viewed the user
interface shown in Fig. 1. They used a mouse to draw a new
sample from the hidden distribution, the “Box of RINGS”,
by clicking on the “Next” button. Each click of the “Next”
button prompted the appearance of a green or red ring to
the right of the “Box of RINGS”. Subjects were told that
the hidden distribution contained some proportion of green

and red rings and that this proportion silently changes. They
were not told whether the change would be sudden, grad-
ual, periodic, etc. At their discretion, subjects updated their
current estimate of the hidden proportion of green rings,
pg , by adjusting a slider. We made it clear to our subjects
that their goal was to estimate the hidden proportion pg and
not the observed proportion, which is the total number of
drawn green rings divided by the number of draws. Subjects
were told to set the slider to some initial estimate before
any rings were observed. The mean initial slider setting was
.47, suggesting subjects had an unbiased prior as to the ini-
tial proportion of rings. Note that, as in the previous version
of this experiment, subjects drew rings at their leisure and
updated the slider setting whenever they felt the need.

On the right of the user interface was a box containing
1000 green and red rings accurately representing the sub-
ject’s current estimate of pg . Though this was intended as
a visual guide to the subjects, most said they ignored it.
Unlike in the version reported by Gallistel et al. (2014),
subjects were not told to explicitly record their detection
of change-points by clicking on boxes marked “I think the
box has changed” or “I take that back!”. As there were no
discrete change points, these requests would not have made
sense.

After practicing with the user interface, subjects com-
pleted ten sessions of 1,000 trials (draws) each. At the end of
each session, subjects were allowed to take a break. Subjects
were paid a baseline of $10 per session and given a bonus
corresponding to their accuracy. In Gallistel et al. (2014),
there was no performance bonus; in Robinson (1964), sub-
jects were penalized according to their error.

The hidden parameter pg varied smoothly and periodi-
cally for four subjects and smoothly and aperiodically for
five. In the first case, pg was a sine function of trial number,
oscillating between 0 and 1 with a period of 200 trials. This
oscillation continued for all sessions until the last, at which
point the parameter was fixed at .5. In the smooth, aperiodic

Fig. 1 Grayscale cartoon of the computer screen. Subjects clicked on the NEXT button to draw another red or green circle from the Box of Rings.
They used the slider to indicate their current perception of pg , the fraction of green circles in the box. The large box at upper right showed the
proportion of red and green indicated by the slider’s position
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case, the hidden parameter was generated in two steps. First,
pg was modeled as a step function like that controlling the
hidden parameter in Gallistel et al. (2014). The probability
of a step change after any trial was .005, so the changes were
geometrically distributed with an expected interval between
change-points of 200 trials. This aperiodic step function was
then smoothed by three Gaussian kernels with different vari-
ances. The result was a hidden pg that was constant on long
intervals but then gradually changed in a smooth way (see
solid lines in Fig. 3). In both conditions, the value of the hid-
den parameter changed only by very small amounts between
any two trials.

Two of the subjects in the periodic condition mistakenly
exited the experiment computer program, effectively delet-
ing a total of four sessions, about 2% of all trials, from
our data. We consider this an unsubstantial decrease in total
experimental power.

Results

We include two types of results for this experiment. First,
we report the “quantitative performance” of the subjects;
namely, how accurate are they across trials and what are
the distributions of slider movements? We call these “quan-
titative” as they do not explicitly measure subjects’ ability

to detect non-local properties of the model generating
observed data. Next, we describe the “structural perfor-
mance” of subjects; namely, how quickly do they detect
changes in the hidden parameter, and can they detect the
current derivative of the generating model or its periodicity?

Because of the large number of samples from each sub-
ject (10,000), reported effects are trivially significant (p <

10−6). Hence, we only explicitly state effect sizes (Cohen’s
d) below.

Quantitative performance

Step-hold updating. Examples of subject slider movements
in an early session, together with the samples actually
observed by subjects, are displayed in Fig. 2. All nine sub-
jects displayed the step-hold updating pattern originally
observed in Robinson (1964) and replicated in Gallistel
et al. (2014). They adjusted the slider at irregular inter-
vals, often keeping their estimate constant across many trials
(Figs. 3, 4). This confirms (Robinson, 1964)’s finding that
he had observed this pattern even in pilot experiments with
a continuously varying Bernoulli parameter.

The joint distribution of step widths and step heights for
the data pooled across subjects is shown in Fig. 5a, with con-
trasting distributions from two individual subjects in Fig. 5b
and c. One subject (Fig. 5b) produced a bimodal distribution

Fig. 2 Third-session slider movements plotted against observed sam-
ples. The solid blue line is the true pg ; the dotted red line is subject
estimate; the red and green dots at top and bottom of graph are the
actual samples viewed by subjects. Data for the first 100 trials from
the session are shown. a) After a string of ten green samples, the unex-
pected red sample on trial 2011 may have caused subject ‘BC’ to adjust

the slider downward, only to cancel the adjustment after a subsequent
string of greens. b) Notice that, between trials 2000 and 2080, sub-
ject ‘JM’ never moves the slider downward despite 12 red samples.
Only when two red samples occur back-to-back on trials 2081-2 after
a long string of mostly green does the subject begin to adjust the slider,
correctly, downward



1484 Atten Percept Psychophys (2017) 79:1480–1494

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
0

0.2

0.4

0.6

0.8

1

Trials

E
st

im
at

e

True p
g

Subject estimate

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
0

0.2

0.4

0.6

0.8

1

Trials

E
st

im
at

e

True p
g

Subject estimate

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
0

0.2

0.4

0.6

0.8

1

Trials

E
st

im
at

e

True p
g

Subject estimate

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Trials

E
st

im
at

e

True p
g

Subject estimate

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
0

0.2

0.4

0.6

0.8

1

Trials

E
st

im
at

e

True p
g

Subject estimate

Fig. 3 Aperiodic slider settings. Trial-by-trial slider settings (red dotted lines) and hidden pg values (blue solid lines) for the last session for the
five subjects in the aperiodic condition. Subjects typically moved the slider by small amounts after long intervals (the step-hold behavior)

of step heights, but his data reveals that small step move-
ments were in no sense completely eliminated. The max-
imal hold time across all subjects was 711 trials, nearly
one whole session. Subjects displayed step-hold behavior,

despite the underlying, continuously changing parameter.
Further, there was only a slight but significant increase in
mean hold times during stationary sections (mean 30.45
during stationary sections; mean 27.00 for non-stationary
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Fig. 4 Periodic slider settings. Trial-by-trial slider settings (red dotted lines) and hidden pg values (blue solid lines) over the last two sessions for
the four subjects in the periodic condition. The hidden pg went flat at 0.5 at the beginning of last session (Trial 9000 in this plot). Note that, in the
second and fourth panels, subjects continued to vary their estimate widely. The other two subjects largely kept their estimate constant in the final
session

sections, d = .745). The persistence of the step-hold pattern
in the behavioral read-out of the perceived pg , even when it
does not mimic the pattern of changes in the hidden param-
eter, suggests that step-hold behavior is an inherent property
of probabilistic parameter perception in humans, not a voli-
tional strategy that comes into play only when the step-hold
pattern in the Bernoulli parameter encourages it.

Accuracy There are two measures of ground truth against
which to compare our subjects’ performance across all tri-
als. The first ground truth measure is the actual hidden pg

value from the experiment. The second is the parameter esti-
mated by an ideal observer. Here, we take our ideal observer
to be the online Bayesian model of Adams and Mackay
(2007), which estimates the run-length r of a non-stationary
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Fig. 5 Joint distributions for step widths and heights. A. Across all
subjects, heights are bimodally distributed, while the widths distri-
bution is broad and unimodal. B. The joint distribution for Subject
DD, which mimics the bimodality seen in the pooled distribution.
C. Joint distribution for Subject BC; this subject’s height distribution
is unimodal

stochastic process. At time step t , the algorithm updates a
set of t conjugate priors on pg and r , one for each possi-
ble past change-point. Then, by determining the maximally
likely run-length at t , it determines the maximally likely
value for pg (details in Adams and Mackay (2007)).

Table 1 Subject accuracies. The difference between aperiodic and
periodic subjects, compared to the ideal observer, was insignificant
(bold-faced values in final column)

Aperiodic Periodic Cohen’s d

RMS + True pg .028 .042 .230

RMS + Ideal .026 .028 .025

KL + True pg .092 .193 .369

KL + Ideal .085 .095 .046

Additionally, there are two measures of error: the root
mean square error across all trials and the mean Kullback–
Leibler divergence between the subject’s estimate and
ground truth. This second error represents the additional
cost, measured in bits, of assuming the distribution has the
estimated parameter, when the ground truth is different.
We report the performance results, for both ground truth
measures and error measures, in Table 1.

Note that the only appreciable effect sizes occur when
ground truth is taken as the true pg . When compared to
an ideal observer, however, there is no substantial differ-
ence between aperiodic and periodic subjects. This is true
for both RMS and KL error measures. KL divergence is
an important error measure, since it describes the informa-
tion theoretic strain undergone by the memory substrate of
subjects. The equality of performance between groups com-
pared to the optimum is noteworthy since periodic subjects
had a qualitatively more stressful task. The true parameter
for periodic subjects was nowhere stationary, so that they
could never hold the slider still for long. Indeed, periodic
subjects moved the slider an average of 785.25 times in the
experiment, compared to only 348.60 times in the aperiodic
condition, and aperiodic subjects waited 17.377 trials longer
between slider moves, on average, than periodic subjects
(d = .745).

Additionally, we analyzed whether or not there was an
effect of the true pg on our subjects’ error. This effect, too,
depended on the combination of ground truth and error mea-
sure in a visually obvious manner (Fig. 6). There is a stark
difference in the effect of the true pg on the two groups for
RMS error. Periodic subjects tended incur more error when
pg was close to 0 or 1, resulting the V shape of Fig. 6b. This
difference largely disappears for KL error (Fig. 6c, d). Note
that the non-linearity of the KL-divergence tends to make
it large near 0 or 1 anyway, resulting in the peaks in the
last two bins. Despite this, compared to the ideal observer,
there is little appreciable difference between aperiodic and
periodic subjects in the effect of pg .1 For example, aperi-
odic subjects had an average KL error of .025 bits in the

1The weak undulation in the light blue bars of Fig. 6d arises from sub-
jects’ slight tendency to misestimate the crests and troughs of pg (as
we confirmed with some basic signal analysis and is visible in Fig. 4a).
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Fig. 6 Binned subject error. Each panel depicts one combination of
condition and error type across 20 pg bins of size .05. Compared to
aperiodic subjects, periodic subjects show a distinct V-shaped RMS

error across pg bins due to the misestimation of parameter crests and
troughs. However, this difference is largely diminished according to
the more information theoretically meaningful KL measure

pg bin centered at .95; this means that, subjects wasted 1
bit of memory every 40 trials which happened to feature a
true probability in that value range. In the same bin, peri-
odic subjects wasted 1 bit every ten trials, a small difference
in absolute terms.

In Gallistel et al. (2014), the authors reported no appre-
ciable effect of the true pg value on accuracy. At first, the
RMS results for periodic subjects in the current experiment
seem to run counter to the original finding; they appear
to recapitulate some aspects of the substantial literature
on estimation bias (Kahneman and Tversky, 1979; Hertwig
et al., 2004) demonstrating systematic distortion of proba-
bilistic estimates for rare events. However, the fact that this
effect was not borne out in the aperiodic condition sug-
gests that other phenomena might be at play in our case. For
example, we found that the average run-lengths of trials in

the aperiodic condition for which the parameter exceeded
.9 or fell below .1 were 565.3 and 215, respectively; those
values both drop to 41 trials for the periodic condition. It
seems likely that subjects in the periodic condition simply
had less time to adjust to the extreme pg values before the
parameter returned to moderate values, all the more likely
when one considers the change-point detection latencies
reported below. If subjects can detect the underlying rate-
of-change of the parameter, as we argue below, then there
might be a further effect of the pg derivative that causes
periodic subjects to incur more RMS error near crests and
troughs: Away from peaks, the derivative of the parameter
is close to constant (since a sinusoid here is approximately
linear by the small-angle approximation), so subjects can
make slider movements at regular intervals. At extreme val-
ues, however, the derivative quickly switches sign, so that
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subjects must, from stochastic samples alone, sense that the
direction of the slider movements must now change. From
the point of view of subject strategy, this is a more taxing
moment. Again, the distortion of error near extremes does
not occur for KL error (except for the boundary bins where
the KL-divergence blows up to ±∞).

Hence, by the information theoretically grounded KL
error measure, subjects in both groups showed uniform ten-
dency to incur error across all pg values. This was also
evident when we instead considered median slider estimates
compared to ground truth. Across all tested hidden param-
eters, the mapping from median subject estimate to the true
parameter is the identity, plus or minus a quartile. This is
consistent with (Robinson, 1964) experiment, the review of
the early literature by Peterson and Beach (1967), and our
own previous work. For more on the accuracy of subjects
near extreme pg values, see the Discussion of Gallistel et al.
(2014).

Finally, we examined each subject’s error across sessions
to look for an effect of experiment duration on perfor-
mance. Except for subject ‘BC’, there was no evident effect
of session on performance. ‘BC’, beginning at session 6,
began to fluctuate in performance somewhat wildly. Almost
uniformly, periodic subjects incurred greater error across
sessions than did aperiodic subjects, again, with the excep-
tion of subject ‘BC’. There was no significant effect of
experiment duration on performance, either from fatigue
or from adjustment of strategy. Additionally, we measured
time taken per trial and found neither an effect of experi-
ment duration nor a correlation with error.

Structural performance

Change-point detection In Robinson (1964) and Gallistel
et al. (2014), change-points were trials at which the hidden
parameter made discrete jumps. In the current paradigm,
changes in the hidden parameter were smooth. We define
change-points in this setting to be those trials at which
the hidden parameter reaches an extremum. Change-points
are either isolated peaks or valley bottoms in slider set-
tings or the boundaries of stationary periods. We define a
subject’s change-point detection latency as the number of
trials after a change-point that it takes for the subject to
adjust the slider in the direction of the new parameter value.
The median latency of the median subject was 29 trials.
Average latency for subjects given aperiodic hidden param-
eters was longer than that of subjects in the periodic setting
(41.2 trials for aperiodic versus 31.5 trials for periodic,
d = .499). Aperiodic Change-points sometimes occurred in
close succession or only shifted pg a small amount, mak-
ing them in principle undetectable before the next change
occurred. Nonetheless, the average percentage of change-
points detected across all subjects was high (92.36%). The

four subjects in the periodic paradigm detected each change-
point, while the five aperiodic subjects detected 86.25%
(d = .589). Further, there was no significant interaction
between change-point detection latency averaged over sub-
jects and session number. In other words, detection was as
speedy in early sessions as it was in later sessions.

Detection of underlying structure In the aperiodic con-
dition, the underlying parameter pg had no deterministic
structure across trials. Therefore, only subjects in the peri-
odic condition might have perceived the regular structure
of the underlying parameter. Earlier work by Estes (1984)
tested subjects’ sensitivity to periodicity in the generating
parameter of a Bernoulli distribution by first conditioning
them to the periodic parameter (period was 80 trials) and
then suddenly fixing the parameter for many trials at .5.
When his subjects continued to move the slider sinusoidally,
(Estes, 1984) concluded they had explicitly encoded the
periodicity of the earlier trials.

Unlike in Estes’ experiment, our subjects did not con-
tinue to move the slider periodically after the parameter
flatlined in the final session (Fig. 4). Indeed, as we postu-
late that subjects are trying to minimize the KL divergence
between their estimate and the true distribution, continuing
sinusoidal slider movement would be a bad strategy. Two
subjects (Fig. 4b, d) seemed to carry the volatility of slider
movement from the first 9 sessions to the final session,
but signal analysis revealed no periodicity. However, during
debriefing, all 4 subjects spontaneously remarked that the
probability changed periodically. We take these unprompted
declarations as a confirmation of Estes’ finding that subjects
can detect the periodic structure underlying the data.

Besides the declaration of the subjects, their ability to
detect periodicity is evident in their performance data. A
sinusoidally varying pg consists of alternating increasing
and decreasing portions. Thus, if subjects are sensitive to
the global model generating the data, they could use this
knowledge to better detect the derivative of pg . To test for
this effect, we compared the tendency of subjects to move
the slider in the correct direction between the aperiodic
and periodic conditions. For example, moving the slider up
when the true pg was increasing is considered a correct trial
by this measure. We calculated the average correct slider
movements across four regimes: for every trial, for all tri-
als on which the subject moved the slider, for those trials on
which the true pg moved, and finally when both the slider
and true pg moved (Fig. 7).

The step-hold behavior of subjects means that, over-
whelmingly, all subjects tacitly estimate the derivative of pg

as 0. Therefore, when we calculated correct slider move-
ments across all trials, we found higher performance in the
aperiodic condition (d = .612), in which subjects bene-
fited from the many trials of true stationarity. However, the
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Fig. 7 Performance on structure-dependent measures. All trials) Ape-
riodic subjects move the slider in the correct direction more often
across all trials. This is because they benefit from the frequent station-
arity of the parameter. Slider moves) If a subject decided to move the
slider, he/she moved it in the correct direction significantly more often
if he/she was in the periodic condition. True P moves) Whenever the
true pg was moving, periodic subjects moved their slider in the correct
direction more, but not significantly. Both move) On those trials during
which both the slider and the true pg moved, aperiodic and periodic
subjects were both very accurate, though periodic subjects performed
marginally better

opposite obtained when we restricted the calculation to only
those trials on which subjects moved the slider (d = .609).
That is, whenever subjects moved the slider, they tended
to move it in the correct direction more in the periodic
condition, with large effect. The other two regimes, true
pg moving and both moving, gave moderate effect sizes
(d = .297 and d = .198, respectively), though periodic sub-
jects did have higher means. We take the fact that the two
groups deviated on derivative detection measure as evidence
that subjects can detect the higher order structure generating
the data.

Discussion

Our results lend further support to the conclusion that
the step-hold pattern seen in subjects’ slider settings (or,
in Robinson’s case, lever settings) accurately reflects the
characteristics of the underlying process for forming a per-
ception of a Bernoulli probability. They imply that the com-
putational process that yields the percept does not change
the percept each trial. Step-hold behavior is seen even when
the change in pg on any trial is very small, and even when
subjects realize that the changes are gradual and predictable

Preparatory to discussing their theoretical implications,
we summarize the properties of the perceptual process so

far revealed by the small literature that tracks the percep-
tion of an unfolding non-stationary Bernoulli probability
observation by observation (Robinson, 1964; Gallistel et al.,
2014):

• The percept is not updated following each observation;
it may go unchanged for hundreds of observations, even
when the hidden parameter changes smoothly and by
very small amounts between observations (Figs. 3, 4, 5;
see also (Robinson, 1964), p. 11, and Figs. 5 and 11 of
Gallistel et al. (2014), pp. 102,105).

• The distribution of update magnitudes (step heights)
across all subjects peaks around the smallest possible
update under most circumstances (Fig. 5; see also Fig.
11 of Gallistel et al. (2014), p.105).

• However, updates spanning most of the possible range
(0 to 1) frequently occur following large changes in the
hidden parameter (Fig. 5; see also Figs. 5 and 11 of
Gallistel et al. (2014), p. 102, 105).

• To a first approximation, the function mapping from
the hidden parameter to the perceived parameter is the
identity (see also Fig. 6 of Gallistel et al. (2014), p.
102).

• The accuracy of the perceived parameter relative to the
parameter estimated by an ideal observer is generally
good. After any given observation, the median percept
is sufficiently close to the underlying truth that it would
take about 100 observations to detect the error (Figs. 17
and 18 of Gallistel et al. (2014), p. 114).

• When measured by its Kullback-Leibler divergence
from the ideal observer’s parameter, the accuracy of
the perceived parameter is approximately the same over
all but the most extreme values for the hidden param-
eter (Fig. 6; see also Fig. 18 of Gallistel et al. (2014),
p.114).

• Substantial changes in the hidden parameter are reliably
and rapidly perceived; they are events in their own right
(Gallistel et al., 2014).

• The perceptual process is appropriately sensitive to the
prior odds of a change in the parameter, that is, to
the volatility: The relative-likelihood threshold for the
detection of a change in a sequence of any given length
is lower when the volatility is high (Robinson, 1964;
Gallistel et al., 2014).

• Subjects have second thoughts about previously per-
ceived changes in the hidden parameter ((Gallistel et al.,
2014)). After more observations—sometimes many
more observations (Fig. 9 of Gallistel et al. (2014),
p.104)—they conclude that their most recent perception
of a change was erroneous.

• Smooth sinusoidal changes in the hidden parameter are
perceived as periodic (present paper; see also (Estes,
1984)).
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We divide our discussion of the theoretical implications
into two parts. In the first, we show how the model of
the perceptual process proposed in Gallistel et al. (2014)
explains the results. In the second, we discuss the challenges
that the results pose for models that assume trial-by-trial
updating of the percept, with no record of the sequence of
observations that generated the current percept.

The IIAB model

In IIAB (Fig. 8), the current percept arises from a com-
putation that constructs a compact history of the stochastic
process that is assumed to have generated the observed out-
comes. There are two motivations for constructing such a
model of the stochastic process: it minimizes long term
memory load by providing the basis for a lossless com-
pression of the sequence of generating distributions already
observed, and it best predicts the outcomes not yet observed.
The model that best achieves both of these goals is the
model that best adjudicates the trade-off between the com-
plexity of the representation and the accuracy with which
it captures the observed sequence (see (Grunwald et al.,
2005), Chapters 1 & 2). In a change-point model, the more
change-points added to it, the more complex it becomes.

However, adding change points also makes it more accu-
rate, further reducing the cost of storing the observed
sequence of outcomes using that model. A model of the pro-
cess that constructs the change-point representation must
address the problem of deciding in real time whether the
increased accuracy due to an added change-point is worth
the increased complexity of the representation. In IIAB,
this decision is mediated by Bayesian model selection,
because it takes model complexity into account in a princi-
pled way.

It is computationally much simpler to decide whether
the current estimate of the hidden parameter adequately
explains recent observations than it is to decide whether
those observations justify increasing the complexity of the
parameter history with a new change-point or reducing it by
dropping an earlier change point. Therefore, (Gallistel et al.,
2014) assume a first stage that computes a measure of how
poorly the current estimate of the hidden parameter is doing
(left half, Fig. 8). If the current estimate is doing well, there
is no further computation. This first stage explains the step-
hold pattern: much more often than not, the current estimate
is doing fine (“If it ain’t broke...”), so there is no reason to
revise it (“...don’t fix it.”). The model generates a distribu-
tion of step widths that is a reasonable approximation to the

First Stage
Is there a problem?

Second State
What's causing the problem?

Has there been a further change in pg

update pc

nD  (p ||p )>T ?KL o g 1 yes yes

yes

Post Odds > T ?2

Post Odds > T ?2

Add a new change
point to the encoding
of the sequence; estimate
post-change p ; update p g c

D
>C

D
>C-1 Re-estimate p using Dg >C

no Expunge previous change point;
re-estimate p  using D     ; update p g >C-1 c

Fig. 8 The IIAB model. In the first stage, the sequence of data since
the last change-point,D>c, is used to calculate the empirical frequency
of green rings against which is compared, in the Kullback-Leibler
sense, the current estimate. If the KL divergence times the number of
observations n in D>c exceeds a threshold T1, the model proceeds to
the second stage. Meanwhile, the estimated probability of a change-
point, p̂c is updated in a Bayesian way. The second stage adjudicates
between three options using Bayesian model selection. If the posterior
odds of a change-point having happened are greater than a threshold

T2, this change-point is added at the maximally likely spot in the
sequence D>c. If not, then it provisionally removes the last change-
point, recalculates the posterior odds to see if they now exceed T2, and
checks if the change-point can be replaced at a different location in
the sequence D>c−1 of data since the penultimate change-point. If the
posterior odds still do not exceed T2, then the provisionally removed
change-point is permanently expunged and Bayesian updates are per-
formed on the estimated parameter p̂g and the estimated probability of
a change-point p̂c. Figure taken from (Gallistel et al., 2014)



Atten Percept Psychophys (2017) 79:1480–1494 1491

distribution generated by subjects ((Gallistel et al., 2014),
Fig. 15, p. 112)

Only when the first stage decides that the estimate of the
current value of the hidden parameter is broken does a sec-
ond stage become active (right half, Fig. 8). It uses Bayesian
model selection to decide among three explanations:

1. There has been no further change, but the current esti-
mate of pg needs to be improved in the light of the
data obtained since it was first made. These changes in
the estimate are generally small, because they are cor-
rections to the small-sample errors, based on a larger
sample. These small corrections are relatively numer-
ous. That is why the distribution of step heights pro-
duced by the model generally has a single mode at
the smallest corrections, as do the distributions gen-
erated by subjects ((Gallistel et al., 2014), Fig 15, p.
112). However, depending on the thresholds governing
transitions between the two stage of IIAB, the model
can produce both bimodal and unimodal distributions
of step heights, like the subject data in Figs. 5b and c
respectively.

2. There has been a further change in pg , in which case,
a new change point is added to the evolving model
of the process history, and pg is re-estimated using
only the data since this newly added change is esti-
mated to have occurred. When this occurs, the model
makes arbitrarily large one-trial jumps in its estimate
of the current probability, because that new estimate
is based only on the portion of the sequence observed
since the estimated location of the most recent change in
the pg .

3. The change point most recently added to the represen-
tation of the process history is not justified in the light
of the data seen since it was added. In that case, it is
removed from the model of the process history, and pg

is re-estimated from the observations stretching back to
the penultimate change point in the estimated history
of the process. When this occurs, the model has second
thoughts; it retroactively revises its representation of the
history of the process.

The mapping from the current value of the hidden param-
eter to the model’s estimate approximates the identity over
the full range of p, as is the case for the subjects’. And,
the model’s estimates, like the subjects’, are approximately
equally accurate over the full range. The model’s estimates
are more accurate than the subjects’, but, the model is
implemented with a double-precision floating point repre-
sentation of all the quantities, that is, with 1/253 precision.
By contrast, the Weber fraction for adult human subjects’
representations of numerosity are on the order of ±12.5%
(Halberda and Feigenson, 2008), which implies approxi-
mately 1/24 precision.

The model detects changes with hit rates and false alarm
rates similar to those of the subjects ((Gallistel et al.,
2014), Fig. 8, p. 103) and with similar post-change latencies
((Gallistel et al., 2014), Fig. 7, p. 103). Its second thoughts
about the changes it detects occur at latencies comparable to
the latencies at which subjects report their second thoughts
((Gallistel et al., 2014), Fig. 9, p. 104).

The model estimates the probability of a change, that is,
the volatility, and it uses that estimate to compute the prior
odds. In the basic Bayesian inference formula, the prior
odds scale the Bayes Factor. Thus, in the model, increased
volatility (as reflected in the estimate of the prior odds)
increases the sensitivity to within-sequence evidence for a
change (as reflected in the Bayes Factor). This explains
qualitatively the subject’s sensitivity to the prior odds. It
explains it too well, however, in that the model converges
on an accurate estimate of the prior odds more rapidly than
subjects do.

Although the model constructs a representation of param-
eter history, it is not explicitly sensitive to higher-order
structure. Our subjects, on the other hand, revealed their sen-
sitivity to this structure in both their improved performance
on structure-dependent measures and by their explicit detec-
tion of periodicity. In fact, even the ability of subjects in
Gallistel et al. (2014) to retrospectively decide that one of
their change-points was a mistake indicates they had com-
putational access to the parameter history. Presumably, our
subjects’ ability to detect periodicity rested on just this
computational access.

It is easy to see how IIAB could be improved by
adding computational access to the parameter history. For
example, given the two points in the parameter history
{(t1, p1), (t2, p2)}, one could calculate the slope of the
secant line between t1 and t2, m = p2−p1

t2−t1
. This simple

computation indicates that, between trials t1 and t2, the
parameter seems to be changing at a ratem. If one assumes a
sufficiently smooth underlying parameter, one might allow
m to bias the future estimate of the current parameter. When
this functionality is added to IIAB,2 it can regularize slider
movement and decrease reaction time to sudden changes
(Fig. 9b) This is only possible with a memory of past
change-points.

Because the model treats changes in the hidden param-
eter as events in their own right, it is inherently recursive,
that is, it will bring to bear on these perceived events that
same probability-estimating process that generated the per-
ceptions of the changes. Recursive application of IIAB
builds a hierarchical representation of the parameter in

2To introduce sensitivity to the derivative, we adjusted the “effec-
tive” number of green rings seen by the model since the last change
point as a function of the derivative. The effective number was scaled
between 0 and the current run-length with a Gompertz function, a type
of asymmetrical sigmoid.
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Fig. 9 Derivative sensitivity improves IIAB performance on toy data.
a) When the model has no derivative sensitivity, it reacts slowly and
incompletely to sudden changes (e.g., trials 50, 100). b) When the

model is biased to think that the parameter will continue to change
at the rate indicated by a local derivative, it adjusts its estimate more
rapidly and completely

memory (a two-level structure created by IIAB is shown
in Fig. 10). At the bottom of the structure is an encod-
ing of the observed sequence. One level up is an encoding
of the parameter-history string. At a second level is an
encoding of a parameter of that history string, namely, the
frequency with which changes occur. Higher levels would
encode changes of change-points, etc. Robinson’s (1964)

results suggest that included in the second level is
an encoding of the distribution of change magnitudes
(step heights).

A hierarchical organization of events makes possible
greater data compression and more powerful prediction.
The detection of higher-order structure explains both Estes’
result and Robinson’s finding that his subjects sensed the

Trial

0 20 40 60 80 100 120

Fig. 10 Event hierarchy. At the bottom level (Low Level Events) is
the stream of Bernoulli events (draws from the urn) in which either a
green (g) or red (r) circle is drawn, as indicated by the dots on the g and
r lines. In the upper panel, the hidden parameter, pg , changed every
20 draws between two levels, .25 and .75; thus, they occur periodi-
cally. In the lower panel, there was a .05 probability of such a change
from one of these levels to the other after each draw; thus, the changes
occur aperiodically. The perceived changes are themselves perceptual
experiences. The model of change detection determines where these
changes are perceived to have occurred. These perceptions are subject

to error; sometimes a change is not perceived and sometimes one is
perceived when none occurred. And, the perceived locus of a change
often deviates somewhat from the draw on which the hidden change
in fact occurred. The loci of the perceived up and down changes con-
stitute a second level event stream, as indicated by the upward and
downward pointing triangles on the up and down lines at the 2nd
level of the event hierarchy. These triangles are more regularly spaced
when the bottom-level event stream changed periodically than when it
changed aperiodically
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difference between his unsignaled blocks of small-change
and large-change problem sets.

The hierarchical organization outlined above may allow
the detection of higher-order structure, but, unless the set
of possible higher-order structures is constrained in some
way, detection may be infeasible. Hierarchical representa-
tion gives access to local derivative information, but it does
not offer a simple way to use this local information to
deduce the global model generating the data. For example,
our subjects claimed not just that the parameter consisted
of increasing and decreasing portions, but that the parame-
ter was “periodic.” They had discovered a way to map the
hierarchical structure of the parameter history to a formal
data-generating model, a sine wave. As a global model, the
sine wave determines all pg’s across trials, past and present.
The hierarchical memory structure alone does not uniquely
determine a generating model, and therefore requires some
additional constraints. We consider the elucidation of these
constraints a key challenge for future work.

The challenges for trial-by-trial-updating models

At this point in theory development, it is not possible to
compare the performance of the numerous trial-by-trial-
updating models of probability perception, like (Yu and
Dayan, 2005; Wilson et al., 2010), or even Kalman filters,
to the performance of the IIAB model, because none of the
other extant models known to us attempts to explain many
of the above-listed properties of the process that generates
a subject’s perception of the current probability.3 All of the
trial-by-trial models known to us attempt only to explain the
tracking of the probability, and they all implicitly assume
that the subject has in memory only an estimate of the cur-
rent probability and the current volatility. None of them
posits a record in memory of the sequence on which the
currently perceived probability is based, nor a record of the
history of that hidden parameter. The IIAB model’s assump-
tion that subjects have a record of the sequence of outcomes,
which is at the foundation of the model, is also its most
controversial assumption. It is, we believe, the assumption
that most theorists are, understandably, the most reluctant to
make.

None of the extant trial-by-trial-updating models has
been applied to the data on subjects’ observation-by-
observation perception of a non-stationary hidden proba-
bility. To apply them, we would have to make additional

3IIAB does share some important similarities with these other models,
even though they addresses fundamentally different questions. Like
IIAB, (Yu & Dayan, 2005) only uses recent parameter history for esti-
mation to make inference tractable. Both (Wilson et al., 2010), Kalman
filters and IIAB estimate process volatility.

assumptions, assumptions that the authors of a given model
may not embrace. For example, it is easy to get a trial-
by-trial, delta-rule updating models to exhibit step-hold
behavior by adding a threshold between the running aver-
age produced by the delta-rule updating, which changes
after almost every observation, and the current percept. Only
when the running average deviates from the current per-
cept by a supra-threshold amount, does the current percept
change. Or, under another interpretation of what is mathe-
matically the same assumption: maybe the step-hold pattern
does not reflect a property of the underlying percept, but
only a property of the decision process leading to a change
in the setting of the slider or the lever, which is the experi-
mentally observed subject behavior. Gallistel et al., 2014 ran
simulations of a variety of assumptions of this sort and with
many different values for the output threshold. Their sim-
ulations demonstrated the reality of an intuitively obvious
problem: when the threshold is set high enough to produce
steps remotely as wide as those produced by subjects, it
eliminates or greatly reduces the steps with small heights,
but these small steps are in fact the ones that subjects most
frequently make. Thus, the assumption of a threshold on the
output is probably not one that the authors of a trial-by-trial
updating model would want to make. The question there-
fore remains: What assumption does one want to make that
will explain the fact that subjects do not update their percept
observation by observation even though each observation
has a non-trivial impact on the estimate based on either a
running average (generated by delta-rule updating) or on the
mean of the Bayesian posterior.

For a second example: None of the extant models
explains the fact that subjects perceive the changes them-
selves. The models focus only on the subjects’ ability to
track the changes. A seemingly simple way to imbue delta-
rule models with the ability to perceive the changes is to
assume a fast and a slow running average. So long as the
two averages give roughly comparable values for the esti-
mated parameter, the subject perceives the average with the
longer decay time because it will be more accurate when
there has not been a recent change. When, however, that
estimate differs from the estimate delivered by the fast aver-
age (the one with the rapid decay) by a supra-threshold
amount, a change is perceived to have occurred, and the
current percept of the parameter is then based on the fast
average, the one least influenced by the more distant past.
It remains based on the fast average until the difference
between the slow and fast average falls below the threshold.
Gallistel et al., 2014 ran simulations of delta-rule updat-
ing models when augmented by this assumption. In their
simulations, these models always produced outlying dips
in the distribution of step heights, which dips have never
been observed in any subject. Thus, this is probably not
an assumption that authors of delta-rule updating models
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would want to embrace in order to explain the fact that
the changes are themselves perceptible events. The question
therefore remains: How does one want to explain the fact
that a step change in the hidden parameter of a Bernoulli
process is itself a perceived event. Moreover, the volatil-
ity results suggest that the probability of a change event is
also perceived. In subsequent work, it would be interesting
to verify this by asking subjects to indicate observation by
observation their perception of the current probability and
the probability of a change in that probability.

A Bayesian tracking model for the ideal observer (Adams
& Mackay, 2007) can produce abrupt changes in the esti-
mates of the hidden parameter. However, the Adams and
Mackay model—which was not intended as a psycho-
logical model—has the following property: At any given
time, it has an estimate of parameter based only on the
most recent outcome, an estimate based only on the 2
most recent outcomes, an estimate based only on the 3 most
recent outcomes, and so on backwards through the observed
sequence. Moreover, it has an estimate of the likelihood
that there was a change before the most recent outcome,
and an estimate of the likelihood that there was a change
before the second most recent outcome, and so on back-
ward through the sequence for many outcomes. Thus, it
has a form of the sequence-memory assumption that is the
most objectionable feature of the IIAB model. And, like
all trial-by-trial-updating models, its estimate of the current
parameter changes after almost every observation.

The fact that subjects have second thoughts about previ-
ously perceived changes is another challenge. These second
thoughts often arise many trials after reporting those per-
ceptions. To us, these second thoughts are perhaps the
strongest evidence in favor of the seemingly implausible
assumption that subjects have some record, however rough,
of the observed sequence of outcomes. Why should the
underlying process not simply generate yet another change
perception in order to explain the discrepancy between
what was perceived back then, when the preceding change
was reported, and what observations since them suggest?
It seems that the underlying process weighs the evidence
from the observations that postdate that earlier perception
along with the observations that led to that earlier percep-
tion. But how can it do that if it has no record of those earlier
observations? Thus, we take this to be another important
challenge.

Finally, like Estes (1984) we view the evidence that sub-
jects can recognized higher order structure in the observed
sequence of outcomes as a challenge to any model that
assumes no record of the sequence of outcomes. If the brain
has no record of the sequence history, how can it decide
on a stochastic model for that history? Future work could
probe subjects’ ability to classify parameter histories purely
from noisy samples and could investigate the depth of

hierarchical organization available to humans’ probability
perception mechanism.
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