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relative spatial phase
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Discrimination studies suggest that two, and only two, channels encode relative spatial phase
shifts in compound gratings (Bennett & Banks, 1991; Field & Nachmias, 1984), The more sensi
tive channel consists of even-symmetric filters and responds best to cosine phase shifts (e.g.,
0° -180°); the other consists of odd-symmetric filters and responds best to sine phase shifts (e.g.,
90°-270°). The present experiments investigated whether the two-channel model generalizes to
suprathreshold perceptual tasks. Experiment 1 examined classification learning of compound grat
ings, consisting of a fundamental ( f) and second harmonic (2f), that differed in 2f contrast and
relative phase. Experiments 2 and 3 measured the perceived similarity of f+2f gratings. The
results of Experiment 1 were broadly consistent with the predictions of the two-channel model.
Specifically, the classification data were best explained by assuming that classification was based
on the responses of differentially sensitive even- and odd-symmetric filters. In Experiments 2
and 3, two-dimensional multidimensional scaling solutions provided a good account for the simi
larity judgments. In Experiment 2, Dimension 1 was strongly correlated with cosine phase, and
Dimension 2 was moderately correlated with sine phase. In Experiment 3, cosine phase was again
strongly related to Dimension 1, whereas the absolute value of sine phase was strongly related
to Dimension 2. Overall, these results suggest that the two-channel model of phase discrimina
tion provides a useful framework for interpreting classification and similarity judgments of com
pound gratings.

A basic problem in understanding human vision is to
determine the information necessary to discriminate, iden
tify, and categorize naturalistic images. There is consid
erable evidence that the visual system initially encodes
pattern information by performing spatial frequency anal
yses on local patches of the retinal image (Wilson, Levi,
Maffei, Rovamo, & DeValois, 1990). Such frequency
analyses must represent in some manner the contrast and
phase (defined in the following paragraph) of the local
frequency components because both are important for pat
tern discrimination and recognition. For example, the
demonstrations of Oppenheim and Lim (1981) and Pi
otrowski and Campbell (1982) suggest that much of the
information for discrimination and identification ofcom-
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plex patterns is contained in their global phase spectra:"
Image identification is severely disrupted by scrambling
the phase spectrum, but remains virtually unchanged after
scrambling the amplitude spectrum. Morgan, Ross, and
Hayes (1991) performed similar analyses at different spa
tial scales within an image and showed that phase also
carries a significant amount of recognition information
about medium-sized image patches, although the ampli
tude spectrum carries most of the information at the
smallest scales. Consistent with the results of these com
putational studies, psychophysical evidence also suggests
that the representation of spatial phase is crucial for pat
tern discrimination and recognition. For example, it is
well known that observers often fail to discriminate easily
detectable patterns presented in the peripheral visual field,
and these discrimination failures are thought to becaused
by phase-encoding deficits that are also found in the pe
riphery (e.g., Bennett & Banks, 1991). Phase-encoding
anomalies may also underlie discrimination deficits com
monly observed in the amblyopic fovea (Bennett, 1989)
and in young human infants (Bennett, 1989; Braddick,
Atkinson, & Wattam-Bell, 1986).

Figure 1 illustrates the construction of compound grat
ings that differ in spatial phase. The bottom lines in each
panel represent the luminance profiles of two sine-wave
gratings with frequencies that differ by a factor of 2, and
the top line depicts the profile of the sum of the two sine
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Figure 1. An iUustration of the effects of relative phase shifts. In each panel, position and luminance are plotted in arbitrary units
on the horizontal and vertical axes, respectively. The origin in each panel is indicated by the vertical line. The bottom curves in each
panel show the luminance profiles of two sine-wave gratings with frequencies that differ by a factor of two. The phase of the higher
frequency varies across panels and is indicated in the legends. The top line depicts the sum of the two sine waves and has been shifted
vertically for clarity.

waves. Absolute spatial phase refers to the position of a
grating relative to some fixed origin. Relative spatial
phase refers to the positions of grating components rela
tive to each other rather than to some fixed position in
space. In the case of compound gratings composed of a
fundamental (f) and second harmonic (2f), relative spa
tial phase refers to the position of 21 relative to the peak
of f By convention, a sinusoidal grating whose peak is
lined up with the peak of I is said to be in 0° phase (Fig
ure l A); a grating whose trough is lined up with the peak
of I is said to be in 180° phase (Figure lC). Gratings
whose zero-crossings are lined up with the peak of I are
said to be in either 90° or 270° phase (Figures IB and
ID). Note that a 180° phase shift of an individual fre
quency component corresponds to a contrast reversal of
that component.

Figure 1 also illustrates that relative phase shifts pro
duce significant changes in the luminance proftles of com
pound waveforms even when they are composed of iden
tical frequency components. For the waveforms shown
in the figure, a cosine phase shift (Le., 0° -180°) results
in a change in the polarity of the most prominent bars in
the grating. A sine phase shift (i.e., 90°-270°) alters the
direction of the steepest luminance gradient. It is impor
tant to note, however, that both cosine and sine phase (or
their correlates) must be represented in order to discrim-

inate and recognize most natural patterns, not just two
component gratings (see Oppenheim & Lim, 1981, for
details).

One experimental approach that has yielded some in
sight into the way phase is encoded is to measure discrim
ination thresholds for 180° relative phase shifts in com
pound gratings composed of a fundamental (f) and second
harmonic (2f) (Bennett & Banks, 1987, 1991; Field &
Nachmias, 1984). In this procedure, thresholds are mea
sured by fixing the contrast ofI at some suprathreshold
value and adjusting the contrast of 21until the 180° shift
is discriminable. The advantage of using 1+21 gratings
is that the overall contrast of these waveforms is not al
tered by a 180° relative phase shift and therefore cannot
be used as a discrimination cue.

Thresholds for various 180° shifts (e.g., 0°-180°,
45°-225°,90°-270°) of 21are typically plotted as in Fig
ure 2. Each point in Figure 2 represents the discrimina
tion threshold for a particular 180° shift. The contrast of
21 at discrimination threshold is represented by the dis
tance from the point to the origin. The phase shift (e.g.,
0°-180°,45°-225°, etc.) is represented by the angle be
tween the point and the abscissa. Thus, threshold for a
0°-180° shift is represented by a point on the abscissa,
threshold for a 90°-270° shift is represented by a point
on the ordinate, and thresholds for other shifts lie in be-
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plitude, luminance maxima and minima, luminance gra
dients, and the widths of individual bars. Bennett (1993)
has argued that changes in these and other features do not
playa significant role in threshold tasks, but they may
greatly influence classification or perceived similarity
among highly discriminable patterns. In the present ex
periments, we examined the extent to which the two
channel model of phase discrimination can account for
perceptual classification and similarity judgments.

We examined whether three notable features of the two
channel model of phase discrimination generalize to
suprathreshold classification learning and similarity judg
ments. First, we tested whether two mechanisms-one that
encodes cosine amplitude and another that encodes sine
amplitude-could account for classification and similar
ity judgments. Second, we examined whether the greater
sensitivity of the cosine-sensitive mechanism (e.g., Ben
nett & Banks, 1987, 1991; Rentschler & Treutwein, 1985)
generalizes to the classification and similarity judgment
tasks. Third, we examined whether the independence of
these two mechanisms found in discrimination studies
generalizes to the classification and similarity judgment
tasks. In particular, does classification performance con
form to a supremum metric (i.e., whichever mechanism
gives the largest response is used by the system in mak
ing the classification or discrimination judgments; see Fig
ure 2)? Classification and perceived similarity judgments
provide complementary paradigms to test the generality
of the discrimination findings.

Classification tasks provide an elegant link between dis
crimination and identification/recognition paradigms.
While discrimination tasks generally involve stimuli that
are presented near threshold and in close temporal prox
imity, classification tasks involve suprathreshold judg
ments. Classification tasks also rely more heavily upon
cognitive processes involving memory and decision.

There have been numerous models proposed to explain
classification performance. Prominent among these are
prototype, exemplar, and decision bound models (Ashby
& Maddox, 1993). Each type of model assumes that a
stimulus is represented by a point, or distribution of
points, in a multidimensional feature space. These models
differ from one another primarily in the manner in which
the relevant information is retrieved (see Ashby & Mad
dox, 1993). Prototype models (e.g., Nosofsky, 1986;
Reed, 1972) assume that a category is represented by the
average position (in space) of its constituent stimuli. A
probe stimulus is then classified in the category whose
prototype is closest in feature space. Exemplar models
(e.g., Nosofsky, 1986) propose that categories are not rep
resented by a single point in feature space, but rather are
derived from the positions of their constituent members.
According to these models, the proximity of a target item
to all of the stored items is determined, and the item is
classified into the category whose items are most similar
to the probe. Finally, decision bound models (e.g., Ashby
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tween. The Cartesian coordinates of the figure represent
the sine and cosine components of 2/at threshold. 1 Most
experiments find that discrimination thresholds for dif
ferent 180° relative phase shifts fall along equal-cosine
and equal-sine contours (Bennett, 1993; Bennett & Banks,
1991; Burr, Morrone, & Spinelli, 1989; Field & Nach
mias, 1984), thus indicating that 180° shifts are discrim
inated when the change in either the cosine or the sine
component of the shift exceeds some criterion. This pat
tern of results holds across a wide range of fundamental
frequency and contrast (Bennett & Banks, 1991) and for
different harmonic frequencies (Bennett, 1993). One in
terpretation of this result is that relative phase is encoded
by two spatial filters: Odd symmetric filters that are op
timally sensitive to sine (i.e., 90° -270°) phase shifts, and
even symmetric filters that are most sensitive to cosine
(i.e., 0°-180°) shifts (Bennett & Banks, 1987; Burr et al.,
1989; Field & Nachmias, 1984).

Of course, discriminating very subtle differences in rel
ative phase is only one small aspect of phase perception.
It is important, therefore, to determine whether the two
channel model provides a framework for understanding
how phase is encoded in more quotidian conditions. Al
though the two-channel model provides a reasonable ac
count of phase discrimination in compound gratings, it
is by no means certain that it can be applied successfully
to suprathreshold perceptual tasks. As others have pointed
out (e.g., Badcock, 1984), relative phase shifts alter many
spatial features. A phase shift in a two-component com
pound grating, for instance, can alter peak-to-trough am-

Figure 2. Examples of 180° relative phase discrimination
thresholds measured with f +2fgratings. Each point represents the
2f contrast needed to discriminate a 180° shift of 2f phase (e.g.,
0° -180°, 45° -225°, 90° -270°, etc.), The 2fcontrast is represented
as the length of a vector joining each point to the origin, and the
phase is represented as the vector's angle to the horizontal axis. The
rectangular coordinates of each point are the cosine and sine com
ponents of 2fat discrimination threshold. In this plot, all points on
a vertical contour have equal cosine values and all points on a hori
zontal contour have equal sine values. Notice that the thresholds fall
along equal-eosine (vertical) and equal-sine (horizontal) contours.
The solid lines are the predictions of the two-channel model. Data
are from Bennett and Banks (1987).
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& Perrin, 1988) assume that each stimulus is represented
by a distribution of points in feature space. These distri
butions, usually assumed to be multivariate normal, reflect
perceptual noise in the system. A region in feature space
is associated with a particular categorical response. De
cision bounds dividing response regions are determined
so as to maximize classification performance.

When the similarity exponent (p) equals 1, Equation 3
is Shepard's (1987) exponential decay model of general
ization.

Probabilistic prototype model (pPM). The PPM
(Nosofsky, 1987; Reed, 1972) is essentially a distance
based model of classification. Unlike exemplar models,
prototype models assume that a category is represented
by a single point in feature space representing the aver
age value of all of the category exemplars on each of the
dimensions (e.g., Reed, 1972). As such, prototype models

where each dimension (k) is weighted by a factor Wk such
that 0 ::s; Wk ::s; 1 and EkWk = 1. A scaling parameter,
C, adjusts the overall distance scale. Summation between
dimensions is governed by the exponent of the Minkowski
metric, r. For example, if r = 2, and the dimensions are
equally weighted, then the distance corresponds to a sim
ple Euclidean metric. Other popular metrics are the city
block metric (r = 1) and the supremum metric (r = 00).
The similarity between two exemplars, 'Y/ijo is often re
lated to distance, dij , by the power function (see Nosofsky,
1992)

estimate response probabilities using the distance between
each stimulus and the prototype of the response category.
The PPM, like the GCM, uses Equation 1 to predict cat
egory judgments, but the summation over exemplars is
replaced by the similarity of the probe stimulus (i) to the
category prototype (J). The probability of a stimulus i
being assigned to a category J is then given by

P(RJ IS.) = ~J'Y/iJ ,

E~K'Y/iK
K

where 0 -s ~J ::s; 1 and EJ~J = 1. As with the exem
plar model, ~J represents the bias toward category J and
'Y/iJ represents the similarity of exemplar i to the proto
type of category J. Similarity is defined exactly as in the
GeM (see Equations 2 and 3). Although this model is sim
ilar to the GCM, it is still possible to distinguish between
them. Nosofsky (1992), in a detailed comparison of ex
emplar and prototype models, concluded that across a
wide range of tasks, the exemplar-based GCM provided
a better fit to the data than did the PPM.

Generalized recognition theory (GRT). GRT is the
multidimensional extension of signal detection theory de
veloped by Ashby and his colleagues (e.g., Ashby & Gott,
1988; Ashby & Perrin, 1988). In GRT, stimuli are rep
resented by distributions of points in feature space and
categories are associated with regions within feature
space. Decision bounds separating these regions deter
mine the probability with which a stimulus is classified
in a given category. Although GRT is an extremely gen
eral model that can be shown to subsume some distance
based models as special cases, we will be working with
a simple version of GRT that contains a relatively small
number of free parameters.

In GRT, a physical stimulus may give rise to different
representations on different trials due to encoding vari
ability. This variability is typically assumed to be mul
tivariate normal. A probe stimulus is assigned to a given
category if it falls within a region in feature space as
sociated with that category. Classification errors may re
sult from the representational variability of the stimuli.

In contrast to the exemplar and prototype models, GRT
assumes a deterministic process of response selection. De
cision bounds-estimated from the data-separate the
regions of perceptual space associated with each response,
and a stimulus is always classified according to the region
in feature space in which it falls. In this paper, we adopt
two simplifying assumptions that typically are used when
working with GRT-namely, that the decision bounds are
linear and stable across trials.

Classification of Compound Gratings
That DitTer in Relative Phase

The two-channel model predicts that a classification
model utilizing a two-dimensional space corresponding
to the cosine and sine components of the phase-shifted
harmonic should provide a reasonably good account of
the data. Also, discrimination studies show that observers
are generally less sensitive at discriminating 90°-270° rel-

(1)

(2)

(3).,.. = e-d~
'/ 1) •

Models of Classification
Three models will be compared: Nosofsky's (1986,

1992) exemplar-based generalized context model, a
probabilistic prototype model (Nosofsky, 1987; Reed,
1972), and Ashby and Perrin's (1988) generalized rec
ognition theory-a decision bound model.

Generalized context model (GCM). The exemplar
based GCM (Nosofsky, 1986) is an extension of Medin
and Schaffer's (1978) context model of classification. Fol
lowing Luce's (1963) similarity choice rule, the GeM as
sumes that the probability of a stimulus i being assigned
to a category J is given by

~J E 'Y/ij

I
jECJ

P(RJ Si) = 't"' R 't"' '
i.J IJK i.J 'Y/ik
K kECK

where 0 ::s; ~J -s 1 and EJ~J = 1. Here, ~J represents
the bias toward category J, and 'Y/i} represents the simi
larity of exemplars i andj (see Nosofsky, 1986). Simi
larity is defined to be a monotonic transformation of dis
tance in feature space. If one allows for differential
weighting of the dimensions in feature space, the formula
for the distance between two exemplars i and j that vary
along n dimensions is given by

(
n )IIT

d., = C E wklxik - xjkl
T

,

k=!
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Figure 4. The stimuli used in Experiments 1 and 2. Each point
represents the cosine and sine components of 2fin an f +2fgrating.
The contrast and phase of 2f are represented as the length of the
vector joining each point to the origin and the angle of the vector,
respectively. The four classes of stimuli in Experiment 1 correspond
to the four quadrants in the figure. Finally, the cosine and sinevalues
of all the stimuli are listed in Table 1.
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ative phase shifts than they are at discriminating 0°-180°
relative phase shifts. Therefore, the two-channel model
predicts that subjects should make more errors along the
sine dimension than along the cosine dimension. Because
classification models can account for these differences by
differentially weighting the dimensions (in the GCM and
the PPM) or by assuming differential variability along
dimensions (in GRT), the classification models should
assign a lower weight or greater variability to the sine
dimension than to the cosine dimension. Finally, the dis
crimination data suggest that there is little summation
between the two phase-encoding channels and therefore
predict that the exponent of the Minkowski metric should
be significantly greater than 2. Contrary to these predic
tions, Caelli, Rentschler, and Scheidler (1987) proposed
a nonweighted Euclidean distance model to account for
the classification of /+3/ gratings aiffering in relative
phase. The following experiment examines whether the
two-channel model of phase discrimination generalizes to
classification of /+2/ compound gratings.

Method
Subjects. Sixteen subjects, all introductory psychology students

at the University of Toronto, participated in the experiment for op
tional course credit.

Stimuli. Stimuli consisted of a set of201+21gratings segregated
into four classes. These classes were defined by the relative phase

Figure 3. Examples of the prototypical patterns used in Experi
ments 1 and 2. The 2f phase is indicated next to each compound
grating. Gratings on top of one another (e.g., 135° and 225°, 45°
and 315°) differ only along the sine dimension, whereas gratings
that are next to one another (e.g., 135° and 45°, 225° and 315°)
differ only along the cosine dimension. In the actual experiments,
the patterns were displayed in a circular aperture that showed ap
proximately four cycles of the fundamental. The reproduction pro
cess has altered the contrast of the patterns.

and contrast of the 21component. Luminance profiles for these stim
uli are given by the following equation:

L(x,y) = Lavg {1 + A, cos{21rfx) + A, cos(27r2fx - <1»},

where 1 is spatial frequency in cycles per degree, A, and A, are
Michelson contrasts, and <1> is relative phase. Fundamental frequency
(f) and contrast (A,) were 1.75 cycles per degree (cpd) and 0.2,
respectively. The mean contrast (A,) for the 21component was 0.1.
Average luminance (Lavg) was 14 cd/rrr'. The four classes of stim
uli were centered around phases (<1» of 45°, 135°,225°, and 315°.
Figure 3 illustrates the prototype of each category. The five exem
plars within each class were generated by adding Gaussian noise
to the prototypical phase angle and contrast. The sine and cosine
amplitudes of the 2/component of the stimuli are shown in Figure 4.

Stimuli were presented on an Apple color monitor. Display size
was 640 X 480 pixels (72 pixels per inch). The frame rate was
67 Hz, noninterlaced. Luminance was linearized with lookup ta
bles, and the entire 8-bit range produced a maximum Michelson
contrast of 0.5. Stimuli were presented individually within a circu
lar aperture that was centered within the display and subtended 6.8°.
Both the stimulus and the uniform background surrounding it had
the same average luminance and chromaticity.

Procedure. Each subject was given 10 study-test blocks to learn
the classification scheme for the stimuli in Figure 4. In both the
study and the test phase within a block, the subjects were shown
each of the 20 gratings for I sec. During the study phase, a num
ber indicating class membership was shown prior to each grating.
To facilitate learning, the subjects were instructed to type the number
after viewing each stimulus. During the test phase, the gratings were
shown without their class numbers, and the subjects pressed a key
indicating the stimulus class. After each response, a high-frequency
tone indicated a correct classification, whereas a low-frequency tone
indicated an incorrect classification. Feedback was also provided
during the study trials to ensure that the subjects were pressing the
right buttons.
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Table 1
Classification Data From Experiment 1

Stimulus
Stimulus Stimulus Probability of Classifying Stimulus in Category Coordinates

Category Code Category 1 Category 2 Category 3 Category 4 x y
1 A 0.556 0.106 0.144 0.194 0.065 0.079
1 B 0.600 0.131 0.113 0.156 0.037 0.049
1 C 0.556 0.144 0.038 0.263 0.094 0.035
1 D 0.575 0.050 0.113 0.263 0.104 0.065
1 E 0.594 0.113 0.056 0.238 0.097 0.057
2 F 0.088 0.675 0.169 0.069 -0.053 0.080
2 G 0.088 0.706 0.175 0.031 -0.073 0.067
2 H 0.169 0.619 0.150 0.063 -0.059 0.052
2 I 0.113 0.656 0.169 0.063 -0.055 0.092
2 J 0.150 0.613 0.163 0.075 -0.088 0.069
3 K 0.119 0.156 0.563 0.163 -0.021 -0.096
3 L 0.088 0.306 0.556 0.050 -0.039 -0.063
3 M 0.119 0.213 0.569 0.100 -0.041 -0.121
3 N 0.063 0.313 0.569 0.056 -0.094 -0.071
3 0 0.088 0.238 0.575 0.100 -0.055 -0.061
4 P 0.238 0.069 0.106 0.588 0.089 -0.076
4 Q 0.244 0.038 0.150 0.569 0.121 -0.093
4 R 0.213 0.094 0.069 0.625 0.094 -0.080
4 S 0.181 0.081 0.188 0.550 0.056 -0.093
4 T 0.181 0.113 0.225 0.481 0.024 -0.062

Note-Each value represents the proportion of trials that a given stimulus was assigned to a given class.
The data were averaged across all trials and subjects.

All testing was done with the room lights off. Viewing was binocu
lar through natural pupils. Viewing distance was 1 m. Head posi
tion was stabilized with a chin/forehead rest.

Results and Discussion
Table 1 lists the probability of a given stimulus being

classified in each of the four classes. Because stimuli
within a class are clustered close to each other and are
very far from the exemplars of other categories (see Fig
ure 4), most of the variance in classification performance
is between-class variance. Therefore, a correlation be
tween distance and classification accuracy will be driven
by the mean difference between correct and incorrect clas
sifications. In other words, the correlation just tells us
that subjects are capable of doing the task. To properly
evaluate various classification models, it is necessary to
measure the goodness of fit, rather than the correlation,
between the model's predictions and the classification
probabilities for each stimulus. We have done this in two
ways: For data pooled across subjects, we minimized the
chi-square statistic, whereas in fitting the models to data
from individual subjects, we minimized the root-mean
square (RMS) difference scores. Chi-square tests allow
for the comparison of two models when one model is a
generalization of the other. In contrast, by obtaining RMS
scores for each subject, one can make direct statistical
comparisons between completely different models. In ad
dition, fitting the models to data from individual subjects
takes into account the possibility that subjects differ on
the model parameters.

Classification Models
Three different classification models are compared: the

exemplar-based GCM, the PPM, and GRT.

Generalized context model (GCM). The GCM pro
vides a reasonably good fit to the data from Experiment 1.
Figure SA shows the predicted and observed classifica
tion probabilities for all response types to each of the stim
uli. The predicted values here are based on the data aver
aged across subjects. A chi-square test showed that the
deviations from the predictions were just statistically sig
nificant (:f = 92.20, df = 72, p = .05), suggesting that
GCM does not account for all of the observed variance.
In fitting GCM separately to the data from individual sub
jects, the average RMS value was 0.11. Considering the
high levels of variability in individual subject data (each
response probability represents only 10 responses), the
RMS values obtained were quite good.

Best-fitting parameter values for the averaged data are
shown in Table 2, and mean parameter values for the
model fits to individual subject data are shown in Table 3.
Some constraints were placed on the parameter values in
fitting the data: The sine and cosine weights could range
from 0.01 to 0.99, the value of the Minkowski metric

Table 2
Parameter Estimates for the Generalized Context Model (GCM)

and the Probabilistic Prototype Model (PPM) Applied to
Averaged Classification Data From Experiment 1

Parameters GCM PPM

Minkowski exponent (r) 2.0 1.9
Similarity exponent (p) 1.0 1.0
Scaling parameter (c) 13.2 12.4
Bias fl. 0.25 0.26
Bias fl2 0.27 0.26
Bias fl. 0.25 0.24
Bias fl. 0.23 0.24
Cos/Sin Ratio 3.3 2.7
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Table 3
Means and Standard Errors of Parameter Estimates for the

Generalized Context Model (GeM) and the Probabilistic
Prototype Model (PPM) Applied to Individual Subject

Classification Data From Experiment 1

could range from 1 to 20, and the similarity exponent
could range from 1 to 4. These constraints were employed
to keep the model within bounds so that a solution could
be obtained. Function minimization was accomplished
using a downhill simplex method (Nelder & Mead, 1965).
A tolerance of 0.01 on RMS values and 0.1 on chi-square
values was used to terminate the simplex routine.

The cosine dimension was consistently weighted more
heavily than the sine dimension. For the averaged data,
the ratio of the cosine to sine weights was 3.3. For the
individual subject data, the ratio of the mean cosine to
sine weights was 2.6, with all but 2 of the 16 subjects
weighting the cosine dimension more heavily than the sine
dimension. These results indicate that the subjects were
more sensitive to changes in cosine amplitude. They also
show that this aspect of the discrimination data general
izes to classification tasks. The best-fitting Minkowski
metric was nearly Euclidean (r = 2.0, for averaged data;
r = 2.52, for fits to individual subjects), suggesting that,
unlike the discrimination data, summation of sine and co
sine information was taking place. In all of the fits, the
response bias parameters were nearly equal, indicating
that they were not critical in fitting the data.

Probabilistic prototype model (pPM). The PPM also
provides a reasonably good fit to the data. Figure 5B
shows the correspondence between the observed and pre
dicted classification probabilities for the PPM. Parame
ter values for the averaged data are shown in Table 2,
and the mean parameter values for the fits to individual
subjects data are shown in Table 3. Overall, these results
are quite similar to those obtained by the GCM. The co
sine dimension was weighted between two and three times
as heavily as the sine dimension, the best-fitting metric
was nearly Euclidean, and the bias parameters were nearly
equal. On the basis of the chi-square tests, the PPM fit
the data marginally better than did the GCM; however,
the mean RMS values were identical for the two models.
Again, the deviations from the model predictions were
quite small, though nearly significant (Xl = 88.6, df =
72, p = .09). Overall, both the PPM and the GCM pro
vided reasonably good fits to the classification data.
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ance matrices for each exemplar and linear decision
bounds with no criterial noise were assumed. This ver
sion of GRT has the same number of free parameters
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Predicted Classification Rate

Figure 5. Relationship between observed and predicted classifi
cation rates. Fits are shown for the GeM (panel A), PPM (panel B),
and GRT (panel C). Each point represents the proportion of trials
in which a stimulus was classified into a given category. The model
accounts for the data to the extent that the points fall along the di
agonal line.

SE
0.57
0.26
1.92
0.02
0.02
0.02
0.02
0.06
0.06

0.02

PPM

M

2.39
1.57

13.44
0.26
0.26
0.24
0.24
0.68
0.32

0.11

SE
0.74
0.25
2.41
0.02
0.02
0.03
0.02
0.06
0.06

0.01

M

GCM

2.52
1.44

15.06
0.24
0.27
0.27
0.23
0.72
0.28

0.11

Parameters

Minkowski exponent (r)
Similarity exponent (p)
Scaling parameter (c)
Bias (3.
Bias (3.
Bias (33
Bias (3.
Cosine weight (0-1)
Sine weight (0-1)

RMS
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Parameters GRT

Table 4
Parameter Estimates for Generalized Recognition Theory (GRT)

Applied to Classification Data From Experiment 1

Table 5
Means and Standard Errors of Parameter Estimates for

Generalized Recognition Theory (GRT) Applied to
Individual Subject Classification Data

From Experiment 1

Evaluation
In order to statistically compare the relative predictions

of these different models, an analysis of variance
(ANOVA) was conducted on the RMS values for each
subject. The ANOVA revealed a reliable difference in the

model fits [F(2,15) = 28.8, p < .001]. Fisher's least sig
nificant difference test was used to test the significance
of the individual comparisons. This test is appropriate for
comparisons among three variables (Howell, 1992). Re
sults indicated that both the GCM and the PPM model
provided a better fit to the classification data than did th.e
version of GRT that assumes linear bounds, equal covan
ance matrices for all stimuli, and no criterial noise (p <
.(01). No significant difference in the fits of the PPM and
GCM models was detected. Because GRT is a very power
ful model, it is possible that a more general version of
GRT would at least match, if not improve on, the predic
tions of the GCM and PPM models. Nonetheless, the
GCM and PPM models capture some essential charac
teristics of the classification data. Under more special
ized experimental conditions, it may be possible to dis
sociate these different models more clearly.

To demonstrate that the quality of the fit of each of the
models is largely due to the differential noise or weight
ing of the cosine and sine dimensions, we tested a ver
sion of each model in which the dimensions were treated
identically while allowing all other parameters to vary.
With this constraint, none of the models adequately fit
the classification data (X2

GCM = 221.1; X2
p P M = 201.2;

~GRT = 293.5). For all of the models, weighting the sine
and cosine dimensions equally resulted in a significantly
worse fit to the data (p < .(01). These results are in
qualitative agreement with previous phase discrimination
studies that found that highly practiced observers are two
to three times more sensitive to cosine (00-180°) than to
sine (90°-270°) phase shifts (Bennett & Banks, 1991).

MDC Model and the Principle of
"Virtual Prototypes"

Caelli et al. (1987) studied classification performance
of subjects using/+3/gratings. They suggestedthat a sim
ple prototype model (called the minimum distance classi
fier, or MDC) provides a good fit to their classification
data. In this section, we examine Caelli et al. 's MDC
model and a recent extension that employs •'virtual proto
types" (Rentschler & Caelli, 1990). Unlike the more gen
eral classification models reviewed here, the MDC model
does not allow for differential weighting of stimulus di
mensions (an important aspect of the data) and assumes
a reciprocal relationship between similarity and Euclid
ean distance. According to the MDC, the probability of
a stimulus i being assigned to a category J is given by

00.071
00.135
00.006
86.3°

-0.01
7.4°

-0.02
1.9

UCos

<TSin

Correlation Q
Vertical bound orientation
Vertical bound x intercept
Horizontal bound orientation
Horizontal bound y intercept
aSinlacos

(seven) as the GCM and the PPM, thus providing a basis
for comparisons among these models. Under these con
straints, GRT did not fare as well as the distance-based
models (see Figure 5C). For the best-fitting parameter fits
to the averaged data (see Table 4), the model deviated
substantially from the data (X2 = 154, df = 72, p =
.(01). In contrast, for the individual subject fits, tI:te ~odel
did not do as poorly (mean RMS = 0.12). As m signal
detection theory, GRT may be particularly sensitive to
changes in the decision contour from subject to subject.
For this reason, it is particularly important to fit the data
separately for each subject. Parameter values for these
fits are shown in Table 5.

In GRT, differences in observers' sensitivity to each
dimension are modeled by the variability parameter as
sociated with each dimension. In fitting the model to the
averaged classification data, the variabili~ of tI:te sin~ di
mension was nearly twice that of the cosine dimension,
and there was essentially no covariance between the two
dimensions. Similar results were obtained in fitting the
GCM to individual subject data.

Parameters

UCos

aSin

Correlation Q

Vertical bound orientation
Vertical bound x intercept
Horizontal bound orientation
Horizontal bound y intercept
USin/UCos

RMS

M

0.08
0.11
0.04

83.1 °
0.01

12.10

-0.02
1.92

0.12

SE
0.01
0.01
0.01
2.6
0.00
3.7
0.01
0.28

0.01

TfIJ
p(RJIS,) = ~'

i.J "11K
K

where TfiJ represents the similarity of exemplar i to the
prototype of category J, and "11K represents the s~~a~ty

of exemplar i to the prototype of category K. Similarity
is defined as the reciprocal of distance in an unweighted
Euclidean space (e.g., Equation 2, with c = 1, r = 2,
and no weighting parameters). When applied to our clas-
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The Effects of Learning
In their paper on virtual prototypes, Rentschler and

Caelli (1990) attributed the differential scaling of the sine
and cosine dimensions to the effects of perceptualleam
ing. Specifically, they argued that learning improves sen
sitivity to changes along the sine dimension more than

Figure 6. The cosine and sine amplitudes of the physical (filled
circles) and virtual (open squares) prototypes of the stimuli shown
in Figure 4.

sification data, the MDC model did not provide an ade
quate fit (X2 = 277, df = 80, p < .001).2

Rentschler and Caelli (1990) proposed an extension of
their MDC model in which virtual prototypes rather than
physical prototypes are used to determine class member
ship. In this version of their model, distance is computed
between the exemplar and the category's virtual proto
type. Virtual prototypes are computed by manipulating
the coordinates of the physical prototype so as to mini
mize the error of the model. The MDC virtual prototype
model was still unable to provide an adequate account for
our data (X2 = 217, df = 72, p < .001). Nonetheless,
the difference in goodness of fit between the virtual pro
totype MDC model and the regular MDC model was sta
tistically significant (.:lX2 = 60, .:ldf = 8, P < .001).

There are several possible reasons why both the MDC
and the virtual prototype MDC models fare poorly when
compared with the PPM. First, it may be that the differ
ential weighting of the dimensions is critical. This would
account for the failure of the MDC model, but not for
the failure of the virtual prototype MDC model. With vir
tual prototypes, the dimensions can be stretched to reflect
the differential sensitivity of the sine- and cosine-sensitive
mechanisms. Another factor that may account for the dif
ference between the models is the variable Minkowski
metric in the PPM and GCM. This, however, cannot ex
plain the difference because the best-fitting versions of
PPM and GCM result in a Euclidean metric (r = 2).
Finally, it could be that the transformation from distance
to similarity is what distinguishes these models. In the
MDC, the function is simply the reciprocal of distance,
whereas in the PPM it is an exponential function (Equa
tion 3). To test this hypothesis, we evaluated the virtual
prototype MDC model with an exponential decay func
tion relating similarity and distance (Equation 3, with
p = 1). This version of the virtual prototype model pro
vided an excellent fit to the data (X2 = 76, df = 71, p >
.50), suggesting that the transformation between distance
and similarity is a particularly important part of a clas
sification model.

Consider how the virtual prototype model with an expo
nential function relating similarity to distance might ac
count for our data. The solid squares in Figure 6 depict
the prototypes-defined as the average of the five exem
plars-for the four categories in our study. The virtual
prototype model shifts the cosine and sine coordinates of
each prototype to account for the classification perfor
mance. The virtual prototypes that provide the best fit to
the data are indicated by the open symbols in Figure 6.
Note that the major difference between the physical and
virtual prototypes is the contraction along the sine dimen
sion: The sine dimension is contracted 2.06 times rela
tive to the cosine dimension. Thus, the virtual prototype
model ends up being very similar to the general classifi
cation models (GCM, PPM, GRT) in so far as it weights
the cosine dimension more than the sine dimension.



CLASSIFICATION AND PERCEIVED SIMILARITY OF COMPOUND GRATINGS 651

along the cosine dimension (see also Rentschler, 1990,
cited in Shapley, Caelli, Grossberg, Morgan, & Rentschler,
1990). We examined the hypothesis that the differential
weighting of the cosine and sine dimensions obtained in
the present experiment was due to the inability of the sub
jects to attend to the sine dimension during early stages
of learning. The average proportions of three different
types of errors within each study-test block are shown
in Figure 7. A sine error is a confusion between classes
that differ only in sine amplitude (e.g., Classes I and IV
in Figure 4). A cosine error is a confusion between classes
that differ only in cosine amplitude (e.g., Classes III and
IV in Figure 4). Finally, a compound error was defmed as
a confusion between classes that differ in both cosine and
sine amplitude (e.g., Classes I and III in Figure 4). Fig
ure 7 shows that sine errors were more prevalent than co
sine errors in all study-test blocks. In fact, the difference
between cosine and sine sensitivity appears to increase
slightly during the course of the experiment. These re
sults are inconsistent with the learning hypothesis. Of
course, one could argue that the differential weighting of
cosine and sine would disappear with sufficient learning.
However, the results of discrimination studies suggest that
this hypothesis is probably incorrect: Differential sensitiv
ity to cosine and sine phase shifts persists even after many
thousands of practice trials (Bennett & Banks, 1991).

The best-fitting Minkowski exponent for both the GCM
and the PPM model was approximately 2 (see Tables 2
and 3). Furthermore, the subjects were able to combine
sine and cosine information throughout the experiment,
as indicated by the low classification error rates when the
stimuli differed along both dimensions simultaneously (see
Figure 7). Both of these results indicate that the subjects
were able to integrate sine and cosine information in our
classification task. In contrast, discrimination studies show
that there is little summation between sine and cosine di
mensions: At least when averaged across subjects, the
Minkowski exponent is significantly greater than 2 (Ben
nett, 1993). The present findings suggest that summation
between cosine and sine channels increases at supra
threshold levels of 2/ contrast.

EXPERIMENT 2

Although subjects are differentially sensitive to sine and
cosine information, Experiment 1 demonstrated that they
are capable of utilizing both types of information to clas
sify stimuli. Nevertheless, subjects often report that the
sine dimension is much less salient than the cosine dimen
sion. Indeed, informal examination of the stimuli used in
Experiment 1 reveals that stimuli that differ only along
the sine dimension (45 0 vs. 315 0 in Figure 3) look simi
lar, despite the fact that they are clearly discriminable.
Such informal and introspective reports suggest that al
though the magnitude of the sine component can be used,
when necessary, to make discriminations, it does not
greatly influence perceived similarity (see Rentschler &
Caelli, 1990, for a similar proposal). It is quite possible,
for example, that similarity between/+2/gratings is based

on features or dimensions that are only indirectly related
to the sine and cosine dimensions. One might expect,
therefore, that similarity judgments measured in a con
text devoid of external reinforcement for attending to spe
cific sine and cosine dimensions would not be strongly
related to those dimensions. In Experiment 2, we exam
ined the judged similarity of compound sinusoidal
gratings.

Method
Stimuli. The stimuli consisted of the same 20f+2fgratings used

in the classification experiment. The sine and cosine components
of these stimuli are depicted in Figure 4. The patterns were pre
sented on a high-resolution SuperMac 21-in. Monochrome Display
(Model MM2136ASM). Display size was 1,000 X 1,000 pixels
(77 pixels per inch). The frame rate was 77 Hz, noninterlaced. Three
stimuli were presented in a triangular configuration on each trial.
Each stimulus was presented within a circular aperture that sub
tended 4.4", The entire display subtended 170

• The average lu
minance (14 cd/rrr') and chromaticity of the stimulus patches and
surrounding uniform field were identical.

Procedure. The subjects made similarity judgments on all pos
sible combinations of three stimuli chosen from the total stimulus
sample. The order in which the stimuli within a triad were exam
ined and the duration of looking devoted to individual stimuli were
not controlled. Therefore, we obtained similarity judgments for only
one spatial configuration of each triad, rather than obtaining judg
ments for all six spatial configurations. For each triad, the subjects
were asked to select the "odd one out." This procedure, known
as the triangular method oftriads (Ennis, Mullen, Frijters, & Tin
dall, 1989), requires only a single judgment per triad-namely, sub
jects are told to select the stimulus that they perceive to be most
different from the other two (e.g., Romney, Brewer, & Batchelder,
1993; Weller & Romney, 1990; Wexler & Romney, 1972). Each
possible stimulus pair (A,B) is presented with every other stimulus
(C). A similarity matrix is then constructed by counting the num
ber of times the stimulus C is selected as the "odd one out" in
the triad (A, B, C). If stimulus C is always selected as the "odd
one out, ., then stimuli A and B are deemed highly similar. On the
other hand, if stimulus C is never selected, then A and B are highly
dissimilar.

All testing was done with the room lights off. Viewing was binocu
lar through natural pupils. Viewing distance was 1 m. Head posi
tion was stabilized with a chin/forehead rest. The subjects made
their selections by clicking on the chosen item with a mouse and
indicated that they were satisfied with their selection by clicking
on a button drawn in the center of the display. No time limit was
placed on the responses, but a typical trial lasted only several
seconds.

Subjects. Five subjects made similarity judgments on the 1,140
stimulus triads.! The subjects, who were researchers working in
the lab, were naive to the specifics of this experiment. A single
session took approximately 3 h.

Results and Discussion
The proximity matrix derived from the triadic judg

ments is shown in Table 6. Summary statistics for the
multidimensional scaling (MDS) solutions are shown in
Table 7. To determine the appropriate number of dimen
sions to accept in the MDS solution, we adopted
Schwarz's (1978) Bayesian information criterion (BIC).4
Using the BIC statistic addresses the problem of overesti
mation that occurs when using a maximum likelihood cri
terion: Maximum likelihood estimation will always prefer
the largest number of dimensions that the data will per-
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Table 6
Proximity Matrix for Experiment 2

A B C D E F G H I J K L M N 0 P Q R S T

A
B 0.64
C 0.66 0.69
D 0.88 0.56 0.86
E 0.88 0.66 0.93 0.87
F 0.13 0.17 0.09 0.10 0.12
G 0.12 0.12 0.11 0.08 0.11 0.89
H 0.12 0.22 0.17 0.10 0.12 0.73 0.86
I 0.19 0.18 0.07 0.09 0.10 0.89 0.81 0.63
J 0.12 0.09 0.11 0.09 0.13 0.84 0.88 0.79 0.82
K 0.08 0.11 0.06 0.00 0.01 0.51 0.38 0.40 0.59 0.37
L 0.00 0.11 0.06 0.01 0.04 0.52 0.50 0.56 0.38 0.51 0.84
M 0.04 0.03 0.03 0.02 0.01 0.51 0.44 0.37 0.53 0.49 0.90 0.57
N 0.00 0.04 0.09 0.04 0.06 0.47 0.53 0.53 0.43 0.67 0.62 0.79 0.69
0 0.01 0.06 0.08 0.02 0.04 0.42 0.52 0.63 0.43 0.57 0.64 0.94 0.62 0.90
P 0.59 0.40 0.46 0.62 0.56 0.03 0.01 0.00 0.07 0.00 0.14 0.10 0.13 0.10 0.08
Q 0.46 0.18 0.37 0.54 0.49 0.02 0.00 0.00 0.07 0.01 0.13 0.11 0.12 0.10 0.11 0.84
R 0.58 0.37 0.46 0.67 0.52 0.03 0.00 0.00 0.07 0.00 0.14 0.08 0.13 0.09 0.10 0.90 0.88
S 0.53 0.40 0.34 0.47 0.37 0.01 0.00 0.00 0.03 0.00 0.33 0.12 0.32 0.10 0.11 0.89 0.83 0.91
T 0.37 0.68 0.24 0.26 0.24 0.09 0.02 0.03 0.09 0.03 0.51 0.34 0.30 0.11 0.18 0.63 0.41 0.64 0.84

EXPERIMENT 3

Table 7
MDS Results for Similarity Judgments Collected

in Experiment 2

(which is related to sine amplitude). These data provide
evidence that the cosine dimension is more salient than
the sine dimension in judging the similarity of compound
gratings.

Although the results of Experiment 2 seem to conform
to the predictions of the two-ehannel model, the stimuli
used here were segregated into distinct categories. One
might argue that the categorical structure of the stimuli
suggestedthe dimensions to be used in making similarity
judgments. To test the generality of these results, we con
ducted a third experiment using stimuli that varied con
tinuously along the sine and cosine dimensions.

32
50
67

Number of
Parameters

2,057
1,855
1,904

BIC
Statistic

-925
-767
-737

Log
Likelihood

Method
Stimuli. Stimuli were 16 compoundf+2fgratings. The frequency

and contrast of f were the same as in Experiments I and 2. The
phase of 2fwas generated by randomly selecting a phase angle from
a uniform distribution ranging from 0° to 360°. The contrasts of
2fwere selected from a Gaussian distribution with a mean of 0.05
and a standard deviation of 0.016. The sine and cosine components
of these stimuli are depicted in Figure 10. Note that the stimuli were
more evenly distributed in phase space than were those used in Ex
periment 2.

Procedure. The procedure in this experiment was identical with
that of Experiment 2. Each subject viewed all 560 unique combi-

Analysis

One dimensional
Two dimensional
Three dimensional

mit, whereas the BIC statistic penalizes models that em
ploy an excessive number of free parameters. Formally,
the BIC is given by

BIC = 10gL _ kl~gn,

where k is the number of dimensions of the model, n is
the number of observations, and L is the log likelihood
for the total sample (see Ramsay, 1991, for details).

The two-dimensional solution minimized the BIC sta
tistic and accounted for significantly greater variance than
the one-dimensional solution. Although adding a third di
mension significantly improved the fit (..1X2 = 60, df =
17,P < .(01), the BIC statistic increased, suggesting that
the improvement in fit was due to an excessive number
of free parameters. The two-dimensional MDS solution
with a Euclidean metric (r = 2 in Equation 1) is shown
in Figure 8.

Linear multiple-regression analyses were conducted to
determine to what extent the MDS dimensions mapped
onto the physical dimensions of sine and cosine compo
nents of 2f For the two-dimensional solution, MDS Di
mension 1 was significantly related to cosine amplitude
(adjusted R2 = 0.88, t = -11.83, p < .(01)5 and MDS
Dimension 2 was significantly related to sine amplitude
(adjusted R2 = 0.38, t = 3.69, p < .01). There was no
hint of a relationship between Dimension 1 and sine am
plitude (t = -0.62) or Dimension 2 and cosine ampli
tude (t = 0.01). The relation between Dimension 1 and
cosine amplitude and the relation between Dimension 2
and sine amplitude are shown in Figure 9.

The cosine advantage typically observed in discrimi
nation studies, and also exhibited in our classificationdata,
seems to generalize to the present similarity study. As is
shown in the MDS solution in Figure 8, the stimuli are
stretched out along Dimension 1 (which is highly corre
lated with cosine amplitude) but not along Dimension 2
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ings at 0° phase. The relation between Dimension 1 and
cosine amplitude and the relation between Dimension 2
and the absolute value of the sine amplitude are shown
in Figure 12.

This experiment extended the results of Experiment 2
by demonstrating that even when stimuli vary continu
ously along the sine and cosine dimensions, a two
dimensional solution provides a reasonable account for
perceived similarity judgments. Nonetheless, the results
were not entirely consistent across these experiments. In
Experiment 2, similarity judgments were linearly corre-
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Figure 9. The relation between cosine amplitude and MDS Dimen
sion 1 (panel A) and the relation between sine amplitude and MDS
Dimension 2 (panel B). The dimensions are the results of the two
dimensional MDS solution for Experiment 2.

Dimension 1

Figure 8. The MDS solution for the similarity judgments of Ex
periment 2. The letters are the stimulus labels (see Figure 4).

Results and Discussion
The proximity matrix derived from the triadic judg

ments is shown in Table 8. Summary statistics for the fit
of one- through three-dimensional solutions are shown in
Table 9. As in Experiment 2, the two-dimensional solu
tion minimized the BIC statistic and accounted for sig
nificantly greater variance than did the one-dimensional
solution. Again, the three-dimensional solution signifi
cantly improved the fit (ilX 2 = 70, df = 13, p < .001);
however, the BIC statistic favored the two-dimensional
solution (shown in Figure 11).

Linear multiple-regression analyses were conducted to
determine to what extent the MDS dimensions mapped
onto the sine and cosine components of 2f. For the two
dimensional solution, MDS Dimension 1 was significantly
correlated only with cosine amplitude (adjusted R2 =
0.94, t = 15.68,p < .001); however,MDS Dimension 2
was not correlated with either sine or cosine amplitude
(adjusted R2 = 0.00). Although sine amplitude was not
linearly correlated with Dimension 2, inspection of the
data suggested that the subjects perceived stimuli with
positive and negative sine amplitude as being similar to
one another but different from stimuli with sine ampli
tudes near zero. To test for this possibility, we correlated
the absolute value of the sine amplitude with Dimension 2
and founda substantialcorrelation (R2 = 0.68, F = 30.25,
p < .001). This suggests that subjects are sensitive to the
presence of sine contrast, but not to its sign. For exam
ple, gratings in 45° and 315° phase (see Figure 3) are
judged as similar to one another but different from grat-

nations of three stimuli. As in the previous experiment, we obtained
similarity judgments for one spatial configuration of each triad,
rather than obtaining judgments for all six spatial configurations,

Subjects. The subjects were 7 psychology graduate students. Each
subject was paid $15 (Canadian) for participating in the experiment.
Each session lasted approximately 1.5 h.
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Table 8
Proximity Matrix for Experiment 3

A B C D E F G H I J K L M N 0 P

A
B 0.66
C 0.65 0.31
D 0.64 0.47 0.53
E 0.42 0.18 0.59 0.56
F 0.21 0.61 0.13 0.21 0.04
G 0.78 0.41 0.56 0.72 0.52 0.15
H 0.22 0.10 0.43 0.27 0.72 0.02 0.30
I 0.70 0.64 0.80 0.62 0.38 0.36 0.54 0.12
J 0.12 0.33 0.04 0.14 0.Q2 0.74 0.12 0.08 0.15
K 0.24 0.51 0.07 0.22 0.02 0.83 0.15 0.07 0.23 0.80
L 0.29 0.08 0.44 0.31 0.69 0.01 0.34 0.84 0.20 0.06 0.01
M 0.26 0.04 0.36 0.14 0.57 0.01 0.19 0.90 0.14 0.06 0.06 0.83
N 0.47 0.12 0.61 0.36 0.69 0.04 0.62 0.65 0.35 0.05 0.05 0.71 0.64
0 0.04 0.35 0.04 0.09 0.01 0.69 0.10 0.10 0.11 0.87 0.78 0.06 0.08 0.02
P 0.Q2 0.30 0.03 0.Q7 om 0.71 0.06 0.09 0.Q7 0.83 0.69 0.05 0.09 0.Q2 0.89

lated with sine amplitude, whereas in the present experi
ment, the subjects seemed to judge similarity according
to the absolute value of the sine amplitude and not its sign.
There are two possible explanations for this discrepancy.
In order to make differences in sine and cosine ampli
tude more subtle in this experiment, the average contrast
of2fwas only half that of Experiment 2. Consequently,
one might reason that the subjects were simply unable to
discriminate the sign of the sine component. This expla
nation is unlikely, because Bennett and Banks (1991) have
shown that when patterns are viewed in the fovea (as in
our experiments), one can discriminate phase shifts as
soon as 2fis detected. An alternative explanation seems
more plausible. In Experiment 2, stimuli were clustered
around prototypes in phase space. In order to judge the
four categories as distinct, the subjects had to attend to
the sign of the sine and cosine amplitudes. For example,
stimuli in Categories I and IV (see Figure 4) differed
primarily in the directionality rather than the absolute
value of their sine amplitude. In contrast, stimuli in Ex
periment 3 (see Figure 10) varied continuously and did
not conform to any obvious categorical structure. In this
case, the subjects could ignore the directionality of the
sine amplitude if its absolute value were more salient.
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Dimension 1

Figure 11. The MDS solution for the similarity judgments of Ex
periment 3. The letters are the stimulus labels (see Figure 10).
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These experiments investigated whether models of
phase discrimination would generalize to suprathreshold
phase perception in classification and similarity-judgment
tasks. In Experiment 1, classification performance was
consistent with the predictions of the two-channel model
of phase discrimination (Bennett & Banks, 1991; Field
& Nachmias, 1984). The subjects were more sensitive to
the cosine than to the sine information, and classification
models that base judgments on interstimulus similarities
along independent sine and cosine dimensions provided
a good fit to the data. Prototype and exemplar models pro
vided nearly identical fits to the data, whereas a some
what impoverished version of generalized recognition the
ory (matched to the other models in the number of free
parameters) provided a slightly worse fit to the data.
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NOTES

I. Any combination of amplitude (A) and phase (</» can be expressed
as a sum of cosine and sine components using the trigonometric identity

A cos (x - </» = A{cos(</»cos(x) + sin(</»sin(x)}.

If A represents the threshold amplitude needed to discriminate a 1800

phase shift, then the x and y coordinates in Figure 2 correspond to A
cos(</» and A sin(</», respectively.

2. Despite the model's poor fit to the data, the correlation between
predicted and observed values was 0.96. This is consistent with Caelli
et al.'s finding of a high correlation between the MDe model and their
classification data.

3. The number of unique combinations of r stimuli chosen from a
set of n is given by n!/r!(n-r)!. Since the total sample has 20 stimuli
and each triad consists of 3, the number of combinations is 1,140.

4. The Bayesian information criterion is somewhat more conserva
tive than Akaike's information criterion (Akaike, 1974) in that it prefers
models of lower dimensionality.

5. Adjusted R" = R2 - (p-l/n-p)(I-R2), where n is the number
of cases and p is the number of predictors, including the constant (see
Sysuu: Statistics, p. 176, for details).

(Manuscript received September 8, 1992;
revision accepted for publication November 16, 1993.)




