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The vision of having a computer communicate with
humans in natural language was entertained shortly after
the computer was invented. Weizenbaum’s (1966) ELIZA
program was the first conversation system that was rea-
sonably successful, popular, and widely used. ELIZA
simulated a Rogerian client-centered psychotherapist, as
illustrated in the conversation below.

Patient: You are like my father in some ways.
ELIZA: How am I like your father?
Patient: You are very aggressive but I think you don’t want
me to notice that.
ELIZA: What makes you think I am aggressive?
Patient: You always argue with me.
ELIZA: Why do you think I argue with you?

Like a typical Rogerian therapist, ELIZA tried to get the
patient to do the talking by asking the patient questions
about the patient’s verbal contributions to the exchange.
Conversation partners are expected to answer questions,

so a therapist’s question readily turns the spotlight onto
the patient. ELIZA turned the patient’s assertions into a
therapist’s questions by simple syntactic transforma-
tional rules. That is, ELIZA detected keywords and word
combinations that triggered rules, which in turn gener-
ated ELIZA’s responses. The only intelligence in ELIZA
was the stimulus–response knowledge captured in pro-
duction rules that operate on keywords and that perform
syntactic transformations. What was so remarkable about
ELIZA is that 100–200 simple production rules could
very often create an illusion of comprehension, even
though ELIZA had no depth. Computer scientists enter-
tained themselves by adding a progressively larger set of
rules to handle all sorts of contingencies. One could
imagine that an ELIZA with 20,000 well-selected rules
might very well simulate a responsive, intelligent, com-
passionate therapist. However, no one ever tried.

Efforts to build conversational systems continued in the
1970s and early 1980s. PARRY attempted to simulate a
paranoid agent (Colby, Weber, & Hilf, 1971). SCHOLAR
tutored students on South American geography by asking
and answering questions (Collins, Warnock, & Passafiume,
1975). Moonrocks (Woods, 1977) and Elinor (Norman
& Rumelhart, 1975) syntactically parsed questions and
answered users’ queries. Schank and his colleagues built
computer models of natural language understanding and
rudimentary dialogue about scripted activities (Lehnert
& Ringle, 1982; Schank & Riesbeck, 1982). SHRDLU
manipulated simple objects in a blocks world in response
to a user’s command (Winograd, 1972).

Unfortunately, by the mid-1980s most researchers in
cognitive science and artificial intelligence were con-
vinced that the prospect of building a good conversation
system was well beyond the horizon. The chief chal-
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lenges were (1) the inherent complexities of natural lan-
guage processing, (2) the unconstrained, open-ended na-
ture of world knowledge, and (3) the lack of research on
lengthy threads of connected discourse. In retrospect,
this extreme pessimism about discourse and natural lan-
guage technologies was arguably premature. A sufficient
number of technical advances has been made in the last
decade for researchers to revisit the vision of building
dialogue systems.

The primary technical breakthroughs came from the
fields of computational linguistics, information retrieval,
cognitive science, artificial intelligence, and discourse
processes. For example, the field of computational lin-
guistics has produced an impressive array of lexicons,
syntactic parsers, semantic interpretation modules, and
dialogue analyzers that are capable of rapidly extracting
information from naturalistic text for information retrieval,
machine translation, and speech recognition (Allen, 1995;
DARPA, 1995; Harabagiu, Maiorano, & Pasca, 2002;
Jurafsky & Martin, 2000; Manning & Schütze, 1999;
Voorhees, 2001). These advancements in computational
linguistics represent world knowledge symbolically, sta-
tistically, or through a hybrid of these two foundations.
For instance, Lenat’s (1995) CYC system represents a
large volume of mundane world knowledge in symbolic
forms that can be integrated with a diverse set of pro-
cessing architectures. The world knowledge contained in
an encyclopedia can be represented statistically in high-
dimensional spaces, such as latent semantic analysis
(LSA; Foltz, Gilliam, & Kendall, 2000; Landauer, Foltz,
& Laham, 1998) and Hyperspace Analogue to Language
(HAL; Burgess, Livesay, & Lund, 1998). An LSA space
provides the backbone for statistical metrics on whether
two text excerpts are conceptually similar; the reliability
of these similarity metrics has been found to be equiva-
lent to that of human judgments. The representation and
processing of connected discourse is much less mysteri-
ous after two decades of research in discourse process-
ing (Graesser, Gernsbacher, & Goldman, 2003) and rel-
evant interdisciplinary research (Louwerse & van Peer,
2002). There are now generic computational modules for
building dialogue facilities that track and manage the be-
liefs, knowledge, intentions, goals, and attention states
of agents in two-party dialogues (Graesser, VanLehn,
Rosé, Jordan, & Harter, 2001; Gratch et al., 2002; Moore
& Wiemer-Hastings, 2003; Rich & Sidner, 1998; Rickel,
Lesh, Rich, Sidner, & Gertner, 2002).

WHEN ARE NATURAL LANGUAGE
DIALOGUE FACILITIES FEASIBLE?

Natural language dialogue (NLD) facilities are ex-
pected to do a reasonable job in some conversational con-
texts but not in others. Success depends on the subject
matter, the knowledge of the learner, the expected depth
of comprehension, and the expected sophistication of the
dialogue strategies. We do not believe that current NLD
facilities will be impressive when the subject matter re-

quires mathematical or analytical precision, when the
knowledge level of the learner is high, and when the user
would like to converse with a humorous, witty, or illu-
minating partner. For example, an NLD facility would
not be well suited to an eCommerce application that man-
ages precise budgets that a user carefully tracks. An
NLD facility would not be good for an application in
which the dialogue system must simulate a good spouse,
parent, comedian, or confidant. An NLD facility is more
feasible in applications that involve imprecise verbal
content, a low to medium level of user knowledge about
a topic, and earnest literal replies.

We are convinced that tutoring environments are feasi-
ble NLD applications when the subject matter is verbal and
qualitative. NLD tutors have been attempted for mathe-
matics, with limited success (Heffernan & Koedinger,
1998), whereas those in qualitative domains have shown
more promise (Graesser, VanLehn, et al., 2001; Rickel
et al., 2002; VanLehn, Jordan, et al., 2002). Tutorial
NLD is feasible when the shared knowledge (i.e., com-
mon ground) between the tutor and the learner is low or
moderate rather than high. If the common ground is
high, then both dialogue participants (i.e., the computer
tutor and the learner) will be expecting a more precise
degree of mutual understanding and, therefore, will run
a higher risk of failing to meet the other’s expectations.

It is noteworthy that human tutors are not able to mon-
itor the knowledge of students at a fine-grained level, be-
cause much of what students express is vague, under-
specified, ambiguous, fragmentary, and error ridden (Fox,
1993; Graesser & Person, 1994; Graesser, Person, &
Magliano, 1995; Shah, Evens, Michael, & Rovick, 2002).
There are potential costs if a tutor attempts to do so. For
example, it is often more worthwhile for the tutor to help
build new correct knowledge than to become bogged
down in dissecting and correcting each of the learner’s
knowledge deficits. Tutors do have an approximate sense
of what a student knows, and this appears to be sufficient
to provide productive dialogue moves that lead to signif-
icant learning gains in the student (Chi, Siler, Jeong, Ya-
mauchi, & Hausmann, 2001; Cohen, Kulik, & Kulik,
1982; Graesser et al., 1995). These considerations moti-
vated the design of AutoTutor (Graesser, Person, Harter,
& the Tutoring Research Group (TRG), 2001; Graesser,
VanLehn, et al., 2001; Graesser, K. Wiemer-Hastings,
P. Wiemer-Hastings, Kreuz, & the TRG, 1999), which
will be described in the next section. The central as-
sumption, in a nutshell, is that dialogue can be useful
when it advances the dialogue and learning agenda, even
when the tutor does not fully understand a student.

Tutorial NLD appears to be a more feasible technology
to the extent that the tutoring strategies, unlike strategies
that are highly sophisticated, follow what most human
tutors do. Most human tutors anticipate particular correct
answers (called expectations) and particular misunder-
standings (misconceptions) when they ask the learner
questions and trace the learner’s reasoning. As the learner
articulates the answer or solves the problem, this content
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is constantly being compared with the expectations and
anticipated misconceptions. The tutor responds adap-
tively and appropriately when particular expectations or
misconceptions are expressed. This tutoring mechanism is
expectation- and misconception-tailored (EMT) dialogue
(Graesser, Hu, & McNamara, in press). The EMT dialogue
moves of most human tutors are not particularly sophis-
ticated from the standpoint of ideal tutoring strategies
that have been proposed in the fields of education and
artificial intelligence (Graesser et al., 1995). Graesser
and colleagues (Graesser & Person, 1994; Graesser et al.,
1995) videotaped over 100 h of naturalistic tutoring, tran-
scribed the data, classified the speech act utterances into
discourse categories, and analyzed the rate of particular
discourse patterns. These analyses revealed that human
tutors rarely implement intelligent pedagogical tech-
niques such as bona fide Socratic tutoring strategies,
modeling–scaffolding–fading, reciprocal teaching, fron-
tier learning, building on prerequisites, cascade learning,
and diagnosis/remediation of deep misconceptions
(Collins, Brown, & Newman, 1989; Palincsar & Brown,
1984; Sleeman & Brown, 1982). Instead, tutors tend to
coach students in constructing explanations according to
the EMT dialogue patterns. Fortunately, the EMT dia-
logue strategy is substantially easier to implement com-
putationally than are sophisticated tutoring strategies.

Researchers have developed approximately half a dozen
intelligent tutoring systems with dialogue in natural lan-
guage. AutoTutor and Why/AutoTutor (Graesser et al., in
press; Graesser, Person, et al., 2001; Graesser et al., 1999)
were developed for introductory computer literacy and
Newtonian physics. These systems help college students
generate cognitive explanations and patterns of knowl-
edge-based reasoning when solving particular problems.
Why/Atlas (VanLehn, Jordan, et al., 2002) also has stu-
dents learn about conceptual physics with a coach that
helps build explanations of conceptual physics problems.
CIRCSIM Tutor (Hume, Michael, Rovick, & Evens, 1996;
Shah et al., 2002) helps medical students learn about the
circulatory system by using strategies of an accomplished
tutor with a medical degree. PACO (Rickel et al., 2002)
assists learners in interacting with mechanical equipment
and completing tasks by interacting in natural language.

Two generalizations can be made from the tutorial
NLD systems that have been created to date. The first
generalization addresses dialogue management. Finite-
state machines for dialogue management (which will be
described later) have served as an architecture that can
produce working systems (such as AutoTutor, Why/
AutoTutor, and Why/Atlas). However, no full-fledged di-
alogue planners have been included in working systems
that perform well enough to be satisfactorily evaluated
(as in CIRCSIM Tutor and PACO). The Mission Rehearsal
System (Gratch et al., 2002) comes closest to being a full-
fledged dialogue planner, but the depth and sophistica-
tion of such planning are extremely limited. Dialogue
planning is very difficult because it requires the precise
recognition of knowledge states (goals, intentions, beliefs,

knowledge) and a closed system of formal reasoning.
Unfortunately, the dialogue contributions of most learners
are too vague and underspecified to afford precise recog-
nition of knowledge states. The second generalization
addresses the representation of world knowledge. An
LSA-based statistical representation of world knowledge
allows the researcher to have some world knowledge com-
ponent up and running very quickly (measured in hours
or days), whereas a symbolic representation of world
knowledge takes years or decades to develop. AutoTutor
(and Why/AutoTutor) routinely incorporates LSA in its
knowledge representation, so a new subject matter can
be quickly developed.

AUTOTUTOR

AutoTutor is an NLD tutor developed by Graesser and
colleagues at the University of Memphis (Graesser, Person,
et al., 2001; Graesser, VanLehn, et al., 2001; Graesser
et al., 1999; Song, Hu, Olney, Graesser, & the TRG, in
press). AutoTutor poses questions or problems that require
approximately a paragraph of information to answer. An
example question in conceptual physics is “Suppose a boy
is in a free-falling elevator and he holds his keys motion-
less right in front of his face and then lets go. What will
happen to the keys? Explain why.” Another example ques-
tion is “When a car without headrests on the seats is struck
from behind, the passengers often suffer neck injuries.
Why do passengers get neck injuries in this situation?” It
is possible to accommodate questions with answers that
are longer or shorter; the paragraph span is simply the
length of the answers that have been implemented in
AutoTutor thus far, in an attempt to handle open-ended
questions that invite answers based on qualitative reason-
ing. Although an ideal answer is approximately three to
seven sentences in length, the initial answers to these ques-
tions by learners are typically only one word to two sen-
tences in length. This is where tutorial dialogue is partic-
ularly helpful. AutoTutor engages the learner in a dialogue
that assists the learner in the evolution of an improved an-
swer that draws out more of the learner’s knowledge that
is relevant to the answer. The dialogue between AutoTutor
and the learner typically lasts 30–100 turns (i.e., the
learner expresses something, then the tutor does, then the
learner, and so on). There is a mixed-initiative dialogue to
the extent that each dialogue partner can ask questions and
start new topics of discussion.

Figure 1 shows the interface of AutoTutor. The major
question (involving, in this example, a boy dropping
keys in a falling elevator) is selected and presented in the
top right window. This major question remains at the top
of the Web page until it is finished being answered during
a multiturn dialogue between the student and AutoTutor.
The student uses the bottom right window to type in his or
her contribution for each turn, and the content of both tutor
and student turns is reflected in the bottom left window.
The animated conversational agent resides in the upper
left area. The agent uses either an AT&T, SpeechWorks,
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or Microsoft Agent speech engine (dependent on licensing
agreements) to say the content of AutoTutor’s turns during
the process of answering the presented question. Figure 2
shows a somewhat different interface that is used when
tutoring computer literacy. This interface has a display
area for diagrams, but no dialogue history window.

The design of AutoTutor was inspired by three bodies
of research: theoretical, empirical, and applied. These in-
clude explanation-based constructivist theories of learn-
ing (Aleven & Koedinger, 2002; Chi, de Leeuw, Chiu, &
LaVancher, 1994; VanLehn, Jones, & Chi, 1992), intel-
ligent tutoring systems that adaptively respond to student
knowledge (Anderson, Corbett, Koedinger, & Pelletier,
1995; VanLehn, Lynch, et al., 2002), and empirical re-
search that has documented the collaborative construc-
tive activities that routinely occur during human tutoring
(Chi et al., 2001; Fox, 1993; Graesser et al., 1995; Moore,
1995; Shah et al., 2002). According to the explanation-
based constructivist theories of learning, learning is
more effective and deeper when the learner must actively
generate explanations, justifications, and functional pro-
cedures than when he or she is merely given information
to read. Regarding adaptive intelligent tutoring systems,
the tutors give immediate feedback on the learner’s actions
and guide the learner on what to do next in a fashion that
is sensitive to what the system believes the learner knows.
Regarding the empirical research on tutorial dialogue,
the patterns of discourse uncovered in naturalistic tutoring
are imported into the dialogue management facilities of
AutoTutor.

Covering Expectations, Correcting
Misconceptions, and Answering Questions 
with Dialogue Moves

AutoTutor produces several categories of dialogue
moves that facilitate covering the information that is an-
ticipated by AutoTutor’s curriculum script. The curricu-
lum script includes the questions, problems, expecta-
tions, misconceptions, and most relevant subject matter
content. AutoTutor delivers its dialogue moves by an an-
imated conversational agent (synthesized speech, facial
expressions, gestures), whereas learners enter their an-
swers by keyboard. AutoTutor provides positive, neutral,
and negative feedback to the learner, pumps the learner
for more information (e.g., with the question “What
else?”), prompts the learner to fill in missing words, gives
hints, fills in missing information with assertions, iden-
tifies and corrects bad answers, answers learners’ ques-
tions, and summarizes answers. As the learner expresses
information over many turns, the information in the three
to seven sentences of an answer is eventually covered, and
the question is answered. During the process of supply-
ing the ideal answer, the learner periodically articulates
misconceptions and false assertions. If these miscon-
ceptions have been anticipated and incorporated into the
program, AutoTutor provides the learner with informa-
tion to correct the misconceptions. Therefore, as the
learner expresses information over the turns, this infor-
mation is compared with expectations and misconcep-
tions, and AutoTutor formulates its dialogue moves in a
fashion that is sensitive to the learner’s input. That is,

Figure 1. A computer screen of AutoTutor for the subject matter of conceptual physics.
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AutoTutor implements the EMT dialogue, which is
known to be common in human tutoring.

The conversation below illustrates some of the fea-
tures of AutoTutor’s dialogue. This was an actual conversa-
tion with a student taken from one of the AutoTutor log
files. Discourse tags have been added in capitals, whereas
other descriptive information is added in italics.

AutoTutor: When a car without headrests on the seats is
struck from behind, the passengers often suffer neck in-
juries. Why do passengers get neck injuries in this situa-
tion? (MAIN QUESTION)
Student: The passenger experiences a backward accelera-
tion, while the car moves forward.
AutoTutor: And can you add to that? (PUMP)
Student: This is because the passenger experiences a force
opposite in direction to the force on the car.
AutoTutor: Um, yes, correct! (POSITIVE FEEDBACK)
When the neck provides a large force, what within the
neck would get damaged? (HINT)
Student: The spine.
AutoTutor: Umm (NEUTRAL NEGATIVE FEEDBACK),
I think you can get this. Damage within the neck will occur
in the ligaments and the . . .? [spoken with rising intona-
tion and accompanied with a prompting hand gesture]
(PROMPT):
Student: Muscles.
AutoTutor: Brilliant! (POSITIVE FEEDBACK) Ligaments
and the muscles. (PROMPT RESPONSE) Let’s keep going.
(DIALOGUE ADVANCER) Additionally, when there is
no headrest present in the car, what accelerates the head of
the passenger? (HINT)
Student: The impact from behind.

AutoTutor: I am sure you can get this. The head of the pas-
senger will be accelerated by the passenger’s . . . ? [spoken
with rising intonation and accompanied with a prompting
hand gesture] (PROMPT)
Student: Car.
AutoTutor: Wrong! (NEGATIVE FEEDBACK) By the
passenger’s neck. (PROMPT RESPONSE):
[moving ahead 22 turns in the dialogue]
AutoTutor: Do you perhaps have any general conceptual
physics questions? (QUESTION PROMPT)
Student: No.
AutoTutor: How would you answer my first question, hav-
ing gone over what we’ve just talked about? (FINAL AN-
SWER PROMPT)
Student: The passengers get neck injuries because … [81
additional words].
AutoTutor: Great! (POSITIVE FEEDBACK) To recap,
when a car is struck from behind, the force of impact will
cause the car to experience a large forward acceleration.
The car seat is attached to the car and will also have the
same large acceleration. When the car is hit from behind,
the seat will exert the same acceleration to the torso of the
body. In order for the head to go along with the torso, it
will need to be accelerated at the same rate as the torso.
Since the head has no acceleration being applied to it by a
headrest, the neck gets stretched, damaging its muscles
and ligaments in an attempt to produce the required large
acceleration. (SUMMARY)

In addition to asking questions, AutoTutor attempts to
handle questions posed by the learner. However, some-
what surprisingly, students rarely ask questions in class-
rooms, human tutoring sessions, and AutoTutor sessions
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Figure 2. A computer screen of AutoTutor for the subject matter of introductory computer literacy.
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(Graesser & Olde, 2003; Graesser & Person, 1994). The
rate of learner questions is one question per 6–7 h in a
classroom environment and one question per 2 min in tu-
toring. Although it is pedagogically disappointing that
learners ask so few questions, the good news is that this
aspect of human tutor interaction makes it easier to build
a dialogue-based intelligent tutoring system such as
AutoTutor. It is not computationally feasible to interpret
any arbitrary learner input from scratch and to construct
a mental space that adequately captures what the learner
has in mind. Instead, the best that AutoTutor can do is to
compare learner input with expectations through pattern-
matching operations. Therefore, what human tutors and
learners do is compatible with what currently can be
handled computationally within AutoTutor.

Latent Semantic Analysis
AutoTutor uses LSA for its conceptual pattern-matching

algorithm when evaluating whether student input matches
the expectations and anticipated misconceptions. LSA is a
high-dimensional statistical technique that, among other
things, measures the conceptual similarity of any two
pieces of text, such as words, sentences, paragraphs, or
lengthier documents (Foltz et al., 2000; E. Kintsch, Stein-
hart, Stahl, & the LSA Research Group, 2000; W. Kintsch,
1998; Landauer & Dumais, 1997; Landauer et al., 1998).
A cosine is calculated between the LSA vector associated
with expectation E (or misconception M ) and the vector
associated with learner input I. E (or M ) is scored as cov-
ered if the match between E or M and the learner’s text
input I meets some threshold, which has varied between
.40 and .85 in previous instantiations of AutoTutor. As
the threshold parameter increases, the learner needs to
be more precise in articulating information and thereby
cover the expectations.

Suppose that there are four key expectations embed-
ded within an ideal answer. AutoTutor expects all four to
be covered in a complete answer and will direct the dia-
logue in a fashion that finesses the students to articulate
these expectations (through prompts and hints). AutoTutor
stays on topic by completing the subdialogue that covers
E before starting a subdialogue on another expectation.
For example, suppose an answer requires the expecta-
tion: The force of impact will cause the car to experience
a large forward acceleration. The following family of
prompts is available to encourage the student to articu-
late particular content words in the expectation:

1. The impact will cause the car to experience a forward
_____?
2. The impact will cause the car to experience a large ac-
celeration in what direction? _____
3. The impact will cause the car to experience a forward
acceleration with a magnitude that is very _____?
4. The car will experience a large forward acceleration
after the force of ______?
5. The car will experience a large forward acceleration
from the impact’s ______?
6. What experiences a large forward acceleration? ______

The particular prompts that are selected are those that
f ill in missing information if answered successfully.
Thus, the dialogue management component adaptively
selects hints and prompts in an attempt to achieve pattern
completion. The expectation is covered when enough of
the ideas underlying the content words in the expectation
are expressed by the student so that the LSA threshold is
met or exceeded.

AutoTutor considers everything the student expresses
during Conversation Turns 1–n to evaluate whether ex-
pectation E is covered. If the student has failed to articulate
one of the six content words (force, impact, car, large,
forward, acceleration), AutoTutor selects the correspond-
ing prompts 5, 4, 6, 3, 2, and 1, respectively. Therefore,
if the student has made assertions X, Y, and Z at a par-
ticular point in the dialogue, then all possible combina-
tions of X, Y, and Z would be considered in the matches:
X, Y, Z, XY, XZ, YZ, and XYZ. The degree of match for
each comparison between E and I is computed as cosine
(vector E, vector I ). The maximum cosine match score
among all seven combinations of sentences is one method
used to assess whether E is covered. If the match meets
or exceeds threshold T, then E is covered. If the match is
less than T, then AutoTutor selects the prompt (or hint)
that has the best chance of improving the match if the
learner provides the correct answer to the prompt. Only
explicit statements by the learner (not by AutoTutor) are
considered when determining whether expectations are
covered. As such, this approach is compatible with con-
structivist learning theories that emphasize the importance
of the learner’s generating the answer. We are currently
fine-tuning the LSA-based pattern matches between
learner input and AutoTutor’s expected input (Hu et al.,
2003; Olde, Franceschetti, Karnavat, Graesser, & the
TRG, 2002).

LSA does a moderately impressive job of determining
whether the information in learner essays matches par-
ticular expectations associated with an ideal answer. For
example, we have instructed experts in physics or com-
puter literacy to make judgments concerning whether
particular expectations were covered within learner es-
says on conceptual physics problems. Using either strin-
gent or lenient criteria, these experts computed a cover-
age score based on the proportion of expectations that
were believed to be present in the learner essays. LSA was
used to compute the proportion of expectations covered,
using varying thresholds of cosine values on whether in-
formation in the learner essay matched each expectation.
Correlations between the LSA scores and the judges’
coverage scores have been found to be approximately .50
for both conceptual physics (Olde et al., 2002) and com-
puter literacy (Graesser, P. Wiemer-Hastings, et al., 2000).
Correlations generally increase as the length of the text
increases, reaching as high as .73 in research conducted
at other labs (see Foltz et al., 2000). LSA metrics have
also done a reasonable job tracking the coverage of ex-
pectations and the identification of misconceptions dur-
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ing the dynamic, turn-by-turn dialogue of AutoTutor
(Graesser et al., 2000).

The conversation is finished for the main question or
problem when all expectations are covered. In the mean-
time, if the student articulates information that matches
any misconception, the misconception is corrected as a
subdialogue and then the conversation returns to finish
coverage of the expectations. Again, the process of cov-
ering all expectations and correcting misconceptions
that arise normally requires a dialogue of 30–100 turns
(i.e., 15–50 student turns).

A Sketch of AutoTutor’s Computational
Architecture

The computational architectures of AutoTutor have
been discussed extensively in previous publications
(Graesser, Person et al., 2001; Graesser, VanLehn, et al.,
2001; Graesser, K. Wiemer-Hastings, et al., 1999; Song
et al., in press), so this article will provide only a brief
sketch of the components. The original AutoTutor was
written in Java and resided on a Pentium-based server
platform to be delivered over the Internet. The most re-
cent version has a more modular architecture that will
not be discussed in this article. The software residing on
the server has a set of permanent databases that are not
updated throughout the course of tutoring. These per-
manent components include the five below.

Curriculum script repository. Each script contains
the content associated with a question or problem. For
each, there is (1) the ideal answer; (2) a set of expectations;
(3) families of potential hints, correct hint responses,
prompts, correct prompt responses, and assertions associ-
ated with each expectation; (4) a set of misconceptions and
corrections for each misconception; (5) a set of key words
and functional synonyms; (6) a summary; and (7) markup
language for the speech generator and gesture generator
for components in (1) through (6) that require actions by
the animated agents. Subject-matter experts can easily
create the content of the curriculum script with an au-
thoring tool called the AutoTutor Script Authoring Tool
(ASAT; Susarla et al., 2003).

Computational linguistics modules. There are lexi-
cons, syntactic parsers, and other computational linguis-
tics modules that are used to extract and classify infor-
mation from learner input. It is beyond the scope of this
article to describe these modules further.

Corpus of documents. This is a textbook, articles on
the subject matter, or other content that the question-
answering facility accesses for paragraphs that answer
questions.

Glossary. There is a glossary of technical terms and
their definitions. Whenever a learner asks a definitional
question (“What does X mean?”), the glossary is con-
sulted and the definition is produced for the entry in the
glossary.

LSA space. LSA vectors are stored for words, cur-
riculum script content, and the documents in the corpus.

In addition to the five static data modules enumerated
above, AutoTutor has a set of processing modules and dy-
namic storage units that maintain qualitative content and
quantitative parameters. Storage registers are frequently
updated as the tutoring process proceeds. For example,
AutoTutor keeps track of student ability (as evaluated by
LSA from student assertions), student initiative (such as
the incidence of student questions), student verbosity
(number of words per student turn), and the incremental
progress in having a question answered as the dialogue
history grows, turn by turn. The dialogue management
module of AutoTutor flexibly adapts to the student by
virtue of these parameters, so it is extremely unlikely that
two conversations with AutoTutor are ever the same.

Dialogue Management. The dialogue management
module is an augmented finite state transition network
(for details, see Allen, 1995; Jurafsky & Martin, 2000).
The nodes in the network refer to knowledge goal states
(e.g., expectation E is under focus and AutoTutor wants
to get the student to articulate it) or dialogue states (e.g.,
the student just expressed an assertion as his or her first
turn in answering the question). The arcs refer to cate-
gories of tutor dialogue moves (e.g., feedback, pumps,
prompts, hints, summaries) or discourse markers that link
dialogue moves (e.g., “okay,” “moving on,” “furthermore”;
Louwerse & Mitchell, 2003). A particular arc is tra-
versed when particular conditions are met. For example,
a pump arc is traversed when it is the student’s first turn
and the student’s assertion has a low LSA match value.

Arc traversal is normally contingent on outputs of
computational algorithms and procedures that are sensi-
tive to the dynamic evolution of the dialogue. These al-
gorithms and procedures operate on the snapshot of pa-
rameters, curriculum content, knowledge goal states,
student knowledge, dialogue states, LSA measures, and
so on, which reflect the current conversation constraints
and achievements. For example, there are algorithms that
select dialogue move categories intended to get the stu-
dent to fill in missing information in E (the expectation
under focus). There are several alternative algorithms for
achieving this goal. Consider one of the early algorithms
that we adopted, which relied on fuzzy production rules.
If the student had almost f inished articulating E but
lacked a critical noun or verb, then a prompt category
would be selected because the function of prompts is to
extract single words from students. The particular prompt
selected from the curriculum script would be tailored to
extract the particular missing word through another mod-
ule that fills posted dialogue move categories with par-
ticular content. If the student is classified as having high
ability and has failed to articulate most of the words in
E, then a hint category might be selected. Fuzzy produc-
tion rules made these selections.

An alternative algorithm to fleshing out E uses two cy-
cles of hint–prompt–assertion. That is, AutoTutor’s se-
lection of dialogue moves over successive turns follows
a particular order: first hint, then prompt, then assert,
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then hint, then prompt, then assert. AutoTutor exits the
two cycles as soon as the student articulates E to satis-
faction (i.e., the LSA threshold is met).

Other processing modules in AutoTutor execute various
important functions: linguistic information extraction,
speech act classification, question answering, evaluation
of student assertions, selection of the next expectation to
be covered, and speech production with the animated
conversational agent. It is beyond the scope of this paper
to describe all of these modules, but two will be described
briefly.

Speech act classifier. AutoTutor needs to determine
the intent or conversational function of a learner’s con-
tribution in order to respond to the student flexibly.
AutoTutor obviously should respond very differently
when the learner makes an assertion than when the learner
asks a question. A learner who asks “Could you repeat
that?” would probably not like to have “yes” or “no” as
a response, but would like to have the previous utterance
repeated. The classifier system has 20 categories. These
categories include assertions, metacommunicative ex-
pressions (“Could you repeat that?” “I can’t hear you”),
metacognitive expressions (“I don’t know,” “I’m lost”),
short responses (“Oh,” “Yes”), and the 16 question cate-
gories identified by Graesser and Person (1994). The
classifier uses a combination of syntactic templates and
key words. Syntactic tagging is provided by the Apple
Pie parser (Sekine & Grishman, 1995) together with cas-
caded finite state transducers (see Jurafsky & Martin,
2000). The finite state transducers consist of a trans-
ducer of key words (e.g., “difference” and “comparison”
in the comparison question category) and syntactic tem-
plates. Extensive testing of the classifier showed that the
accuracy of the classifier ranged from 65% to 97%, de-
pending on the corpus, and was indistinguishable from
the reliability of human judges (Louwerse, Graesser,
Olney, & the TRG, 2002; Olney et al., 2003).

Selecting the expectation to cover next. After one
expectation is finished being covered, AutoTutor moves
on to cover another expectation that has a subthreshold
LSA score. There are different pedagogical principles
that guide this selection of which expectation to post
next on the goal stack. One principle is called the zone
of proximal development or frontier learning. AutoTutor
selects the particular E that is the smallest increment
above what the student has articulated. That is, it mod-
estly extends what the student has already articulated.
Algorithmically, this is simply the expectation with the
highest LSA coverage score among those expectations
that have not yet been covered. A second principle is
called the coherence principle. In an attempt to provide
a coherent thread of conversation, AutoTutor selects the
(uncovered) expectation that has the highest LSA simi-
larity to the expectation that was most recently covered.
A third pedagogical principle is to select a central piv-
otal expectation that has the highest likelihood of pulling
in the content of the other expectations. The most central
expectation is the one with the highest mean LSA simi-

larity to the remaining uncovered expectations. We nor-
mally weight these three principles in tests of AutoTutor,
but it is possible to alter these weights by simply chang-
ing three parameters. Changes in these parameters, as
well as in others (e.g., the LSA threshold T ), end up gen-
erating very different conversations.

EVALUATIONS OF AUTOTUTOR

Different types of performance evaluation can be made
in an assessment of the success of AutoTutor. One type is
technical and will not be addressed in depth in this article.
This type evaluates whether particular computational
modules of AutoTutor are producing output that is valid
and satisfies the intended specifications. For example,
we previously reported data on the accuracy of LSA and
the speech act classifier in comparison with the accuracy
of human judges. A second type of evaluation assesses
the quality of the dialogue moves produced by AutoTutor.
That is, it addresses the extent to which AutoTutor’s di-
alogue moves are coherent, relevant, and smooth. A third
type of evaluation assesses whether AutoTutor is success-
ful in producing learning gains. A fourth assesses the ex-
tent to which learners like interacting with AutoTutor. In
this section, we present what we know so far about the
second and third types of evaluation.

Expert judges have evaluated AutoTutor with respect
to conversational smoothness and the pedagogical quality
of its dialogue moves (Person, Graesser, Kreuz, Pomeroy,
& the TRG, 2001). The experts’ mean ratings were pos-
itive (i.e., smooth rather than awkward conversation, good
rather than bad pedagogical quality), but there is room
for improvement in the naturalness and pedagogical ef-
fectiveness of the dialogue. In more recent studies, a by-
stander Turing test has been performed on the natural-
ness of AutoTutor’s dialogue moves (Person, Graesser,
& the TRG, 2002). In these studies, we randomly selected
144 tutor moves in the tutorial dialogues between students
and AutoTutor. Six human tutors (from the computer liter-
acy tutor pool at the University of Memphis) were asked
to fill in what they would say at these 144 points. Thus,
at each of these 144 tutor turns, the corpus contained
what the human tutors generated and what AutoTutor
generated. A group of computer literacy students was
asked to discriminate between dialogue moves generated
by a human versus those generated by a computer; half,
in fact, were by humans and half were by computer. It
was found that the bystander students were unable to dis-
criminate whether particular dialogue moves had been
generated by a computer or by a human; the d′ discrim-
ination scores were near zero.

The results of the bystander Turing test presented above
are a rather impressive outcome that is compatible with
the claim that AutoTutor is a good simulation of human
tutors. AutoTutor manages to have productive and rea-
sonably smooth conversations without achieving a com-
plete and deep understanding of what the student ex-
presses. There is an alternative interpretation, however,
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which is just as interesting. Perhaps tutorial dialogue is
not highly constrained, so the tutor has great latitude in
what can be said without disrupting the conversation. In
essence, there is a large landscape of options regarding
what the tutor can say at most points in the dialogue. If
this is the case, then it truly is feasible to develop tutor-
ing technologies around NLD. These conversations are
flexible and resilient, not fragile.

AutoTutor has been evaluated on learning gains in
several experiments on the topics of computer literacy
(Graesser, Moreno, et al., 2003; Person, Graesser, Bautista,
Mathews, & the TRG, 2001) and conceptual physics
(Graesser, Jackson, et al., 2003; VanLehn & Graesser,
2002). In most of the studies, a pretest is administered,
followed by a tutoring treatment, followed by a posttest.
In some experiments, there is a posttest-only design and
no pretest. In the tutoring treatments, AutoTutor’s scores
are compared with scores of different types of compari-
son conditions. The comparison conditions vary from
experiment to experiment because colleagues have had
different views on what a suitable control condition would
be. AutoTutor posttest scores have been compared with
(1) pretest scores ( pretest); (2) read-nothing scores (read
nothing); (3) scores after relevant chapters from the course
textbook are read (textbook); (4) same as (3) except that
content is included only if it is directly relevant to the
content during training by AutoTutor (textbook reduced);
and (5) scores after the student reads text prepared by the
experimenters that succinctly describes the content cov-
ered in the curriculum script of AutoTutor (script content).
The dependent measures were different for computer lit-

eracy and physics, so the two sets of studies will be dis-
cussed separately.

Table 1 presents data on three experiments on computer
literacy. The data in Table 1 constitute a reanalysis of
studies reported in two published conference proceed-
ings (Graesser, Moreno, et al., 2003; Person, Graesser,
Bautista, et al., 2001). The numbers of students run in
Experiments 1, 2, and 3 were 36, 24, and 81, respectively.
The students learned about hardware, operating systems,
and the Internet by collaboratively answering 12 questions
with AutoTutor or being assigned to the read-nothing or
the textbook condition. Person, Graesser, Bautista, et al.
used a repeated measures design, counterbalancing train-
ing condition (AutoTutor, textbook, and read nothing)
against the three topic areas (hardware, operating sys-
tems, and Internet). The students were given three types
of tests. The shallow test consisted of multiple-choice
questions that were randomly selected from a test bank
associated with the textbook chapters in the computer lit-
eracy course. All of these questions were classified as
shallow questions according to Bloom’s (1956) taxon-
omy. Experts on computer literacy constructed the deep
questions associated with the textbook chapters; these
were multiple-choice questions that tapped causal men-
tal models and deep reasoning. It should be noted that
these shallow and deep multiple-choice questions were
prepared by individuals who were not aware of the con-
tent of AutoTutor. They were written to cover content in
the textbook on computer literacy. In contrast, the cloze
task was tailored to AutoTutor training. The ideal an-
swers to the questions during training were presented on

Table 1
Results of AutoTutor Experiments on Computer Literacy

Test

Shallow Deep Cloze

Pretest Posttest Pretest Posttest Posttest

Experiments M SD M SD M SD M SD M SD

Experiment 1a

AutoTutor – .597 .22 – .547 .27 .383 .15
Textbook – .606 .21 – .515 .22 .331 .15
Read nothing – .565 .26 – .476 .25 .295 .14
Effect sizet �0.04 0.15 0.35
Effect sizen 0.12 0.28 0.63

Experiment 2a

AutoTutor – .577 .18 – .580 .26 .358 .19
Textbook – .553 .23 – .452 .28 .305 .17
Read nothing – .541 .23 – .425 .32 .256 .14
Effect sizet 0.10 0.46 0.31
Effect sizen 0.16 0.48 0.73

Experiment 3b

AutoTutor .541 .26 .520 .26 .383 .15 .496 .16 .322 .19
Textbook reduced .561 .23 .539 .24 .388 .16 .443 .17 .254 .15
Read nothing .523 .21 .515 .25 .379 .16 .360 .14 .241 .16
Effect sizet �0.08 0.31 0.45
Effect sizen 0.02 0.97 0.51
Effect sizep �0.08 0.75 –

Note—Effect sizet � effect size using the textbook comparison group; effect sizen � effect size using the read-nothing com-
parison group; effect sizep � effect size using the pretest. aReanalysis of data reported in Person, Graesser, Bautista, Math-
ews, and the Tutoring Research Group (2001). bReanalysis of data reported in Graesser, Moreno, et al. (2003).
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the cloze test, with four content words deleted for each
answer. The student’s task was to fill in the missing con-
tent words. The proportion of questions answered cor-
rectly served as the metric for the shallow, deep, and
cloze tasks. The Graesser, Moreno, et al. study had the
same design except that a pretest was administered, there
was an expanded set of deep multiple-choice questions,
and a textbook-reduced comparison condition was used
instead of the textbook condition.

In Table 1, the means, standard deviations, and effect
sizes in standard deviation units are reported. The effect
sizes revealed that AutoTutor did not facilitate learning
on the shallow multiple-choice test questions that had
been prepared by the writers of the test bank for the text-
book. All of these effect sizes were low or negative (mean
effect size was .05 for the seven values in Table 1). Shal-
low knowledge is not the sort of knowledge that AutoTutor
was designed to deal with, so this result is not surprising.
AutoTutor was built to facilitate deep reasoning, and this
was apparent in the effect sizes for the deep multiple-
choice questions. All seven of these effect sizes in Table 1
were positive, with a mean of .49. Similarly, all six of the
effect sizes for the cloze tests were positive, with a mean
of .50. These effect sizes were generally larger when the
comparison condition was read nothing (M � .43 for
nine effect sizes in Table 1) than when the comparison
condition was the textbook or textbook-reduced condition
(M � .22). These means are in the same ball park as human
tutoring, which has shown an effect size of .42 in com-
parison with classroom controls in the meta-analysis of
Cohen et al. (1982). The control conditions in Cohen
et al.’s meta-analyses are analogous to the read-nothing
condition in the present experiments, since the partici-
pants in the present study all had classroom experience
with computer literacy.

Table 2 shows results of an experiment on conceptual
physics that was reported in a published conference pro-
ceeding (Graesser, Jackson, et al., 2003). The partici-
pants were given a pretest, completed training, and were
given a posttest. The conditions were AutoTutor, text-
book, and read nothing. The two tests tapped deeper
comprehension and consisted of either multiple-choice
questions or conceptual physics problems that required

essay answers (which were graded by PhDs in physics).
All six of the effect sizes in Table 2 were positive (M �
.71). Additional experiments are described by VanLehn
and Graesser (2002), who administered the same tests
with a variety of control conditions. When all of the con-
ceptual physics studies to date as well as the multiple-
choice and essay tests are taken into account, the mean
effect sizes of AutoTutor have varied when contrasted
with particular comparison conditions: read nothing
(.67), pretest (.82), textbook (.82), script content (.07),
and human tutoring in computer-mediated conversation
(.08).

There are a number of noteworthy outcomes of the
analyses presented above. First, AutoTutor is effective in
promoting learning gains at deep levels of comprehen-
sion in comparison with the typical ecologically valid
situation in which students (all too often) read nothing,
start out at pretest, or read the textbook for an amount of
time equivalent to that involved in using AutoTutor. We
estimate the effect size as .70 when considering these
comparison conditions, the deeper tests of comprehen-
sion, and both computer literacy and physics. Second, it
is surprising that reading the textbook is not much dif-
ferent than reading nothing. It appears that a tutor is
needed to encourage the learner to focus on deeper lev-
els of comprehension. Third, AutoTutor is as effective as
a human tutor who communicates with the student over
terminals in computer-mediated conversation. The human
tutors had doctoral degrees in physics and extensive ex-
perience within a learning setting, yet they did not out-
perform AutoTutor. Such a result clearly must be repli-
cated before we can consider it to be a well-established
finding. However, the early news is quite provocative.
Fourth, the impact of AutoTutor on learning gains is con-
siderably reduced when a comparison is made with read-
ing of text that is carefully tailored to exactly match the
content covered by AutoTutor. That is, textbook-reduced
and script-content controls yielded an AutoTutor effect
size of only .22 when the subject matters of computer lit-
eracy and physics were combined. Of course, in the real
world texts are rarely crafted to copy tutoring content, so
the status of this control is uncertain in the arena of prac-
tice. But it does suggest that the impact of AutoTutor is

Table 2
Results of AutoTutor Experimenta on Conceptual Physics

Multiple Choice Physics Essays

Pretest Posttest Pretest Posttest

M SD M SD M SD M SD

AutoTutor .597 .17 .725 .15 .423 .30 .575 .26
Textbook .566 .13 .586 .11 .478 .25 .483 .25
Read nothing .633 .17 .632 .15 .445 .28 .396 .25
Effect sizet 1.26 .37
Effect sizen .62 .72
Effect sizep .75 .51

Note—Effect sizet � effect size using the textbook comparison group; effect sizen � effect size using the
read-nothing comparison group; effect sizep � effect size using the pretest. aReanalysis of data reported in
Graesser, Jackson, et al. (2003).
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dramatically reduced or disappears when there are com-
parison conditions that present content with information
equivalent to that of AutoTutor.

What it is about AutoTutor that facilitates learning re-
mains an open question. Is it the dialogue content or the
animated agent that accounts for the learning gains?
What role do motivation and emotions play, over and
above the cognitive components? We suspect that the an-
imated conversational agent will fascinate some students
and possibly enhance motivation. Learning environments
have only recently had animated conversational agents
with facial features synchronized with speech and, in
some cases, appropriate gestures (Cassell & Thorisson,
1999; Johnson, Rickel, & Lester, 2000; Massaro & Cohen,
1995). Many students will be fascinated with an agent
that controls the eyes, eyebrows, mouth, lips, teeth, tongue,
cheekbones, and other parts of the face in a fashion that
is meshed appropriately with the language and emotions
of the speaker (Picard, 1997). The agents provide an an-
thropomorphic human–computer interface that simu-
lates a conversation with a human. This will be exciting
to some, frightening to a few, annoying to others, and so
on. There is some evidence that these agents tend to have
a positive impact on learning or on the learner’s percep-
tions of the learning experience in comparison with speech
alone or text controls (Atkinson, 2002; Moreno, Mayer,
Spires, & Lester, 2001; Whittaker, 2003). However, addi-
tional research is needed to determine the precise condi-
tions, agent features, and levels of representation that are
associated with learning gains. According to Graesser,
Moreno, et al. (2003), it is the dialogue content, and not
the speech or animated facial display, that influences
learning, whereas the animated agent can have an influ-
ential role (positive, neutral, or negative) in motivation.
One rather provocative result is that there is a near-zero
correlation between learning gains and how much the
students like the conversational agents (Moreno, Klettke,
Nibbaragandla, Graesser, & the TRG, 2002). Therefore,
it is important to distinguish liking from learning in this
area of research. Although the jury may still be out on
exactly what it is about AutoTutor that leads to learning
gains, the fact is that students learn from the intelligent
tutoring system and some enjoy having conversations
with AutoTutor in natural language.
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