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Abstract—A method for visualizing multivolume data and functionally defined surface using graph-
ics processing units is proposed. The method provides visualization of a large number of volumes, a
complex of semi-transparent and functionally defined objects, of complex semi-transparent volumes,
including intersections of volumes in constructive solid modeling. Simultaneous rendering of
different volumes is more difficult than rendering of a single volume, because both intersecting
and blending operations are required. Functionally defined surfaces are well suited for embedding
external objects into volumes.
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INTRODUCTION

The task of visualization lies in making the objects consisting of data arrays or several connected
data sets visible to observer. One of the important problems of volume rendering is the visualization of
samples of a three-dimensional scalar field obtained from such sources as x-ray computed tomography
or ultrasonic scanners. It is also of current interest to visualize structural features, in particular, the
boundaries of regions with identical scalar values different from the scalar values themselves.

The visualization process for sets of different data conceptually includes the three stages of transfor-
mation to obtain the images:

1. Classification. This stage transforms the original data set to a new set of classes of objects explicitly
containing the information which we want to see.

2. Modeling. Transformation of feature maps of sets to the objects of the visual model.
3. Rendering. Visualization of the objects in the model.

Dependent on the specific realization, the order of these transformations may be changed or their
union may be carried out.

At the classification stage the interesting features are separated that can be, for instance, boundaries
of regions with identical values. The classification may be binary or non-binary. On the one side, binary
classification gives the all-or-nothing results with regard to probabilities of existence. On the other
side, non-binary classification may give any value in the range from 0 to 1. The binary and non-binary
classifications have their advantages and disadvantages.

At the modeling stage the extracted set of attributes is put in correspondence to the set of attributes
of visual information carriers in the visual model. The visual model is the modeled 3D scene in which
information-carrying visual primitive 3D objects, the voxels, created with non-binary classifications, are
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placed. A voxel may have different attributes, including non-transparency and emmitance that can have
color components.

The third stage of transformations is the object rendering. Ray casting is the most widespread
approach to rendering volume due to its flexibility in generating a high-quality image [1, 2]. A large
volume of homogeneous data containing in the volume model can be well parallelized in computations
using the software-hardware shaders of the graphics processing unit (GPU). Today, a common graphics
processing unit is able to map a single volume of high-resolution data with a high framing rate. However,
mapping of a single homogeneous volume is not suitable for many applications. Using a combination
of different volume data sets becomes popular in medicine applications, where both anatomical and
functional structures are required. The multivolume rendering is the rendering of several volumes.
Thus, the multivolume rendering is needed at processing several data sets which usually have different
orientation and resolution. In medicine visualization such methods for obtaining anatomical images as
computed tomography, magnetic resonance imaging (MRI), and ultrasonography and such methods
for obtaining functional images as positron emission tomography, single-photon emission computed
tomography, and functional MRI are used to examine a patient [3, 4]. Moreover, models of medicine
tools and results of segmentation are required for computer assisted surgery. Modern methods have
limited capabilities for interactive study of multivolume data in combination with polygonal models.
Simultaneous rendering of several volumes in combination with surfaces is more difficult to perform
than visualization of individual volumes because of processing volume overlaps and color mixing [5, 6].
Recomputation of volumes in a unified coordinate system is disadvantageous, because it leads to loss
in quality or to increasing memory requirements. The combination of volumes with surfaces is the
necessary requirement in virtual surgery. Functional models are well suited for embedding extrinsic
objects (tools, implants, etc.) into volume data.

The current work is aimed at creating the method for visualization of multivolume data and function-
ally defined surfaces for medicine applications.

APPROACH TO DEFINING SURFACES

Visualization technologies for medicine applications apply high-resolution description of object
surfaces using the (second-order) functions of deviation from basic quadric [7]. The function is defined
by a second-order algebraic inequality with three unknowns x, y, z in the form F (x, y, z) � 0. We
consider the surfaces to be closed subsets of Euclidean spaces defined by the circumscribing function
F (x, y, z) � 0, where F is a continuous real function, x, y, z is a point in E

3 prescribed by coordinate
variables. Surfaces are constructed using quadrics and represented by composition between the basic
quadric and perturbations:

F ′(x, y, z) = F (x, y, z) +

N∑

i=1

fiRi(x, y, z), (1)

where fi is the form factor and Ri(x, y, z) is the perturbation:

Ri(x, y, z) =

{
Q3

i (x, y, z) if Qi(x, y, z) � 0;

0 if Qi(x, y, z) < 0,
(2)

where Qi(x, y, z) is the perturbation quadric.
The geometric model prepares conditions for constructing objects and their compositions of different

complexity. For this purpose, we use the set of geometric operations Φ mathematically defined as
follows [8]:

Φj: M1 +M2 + · · ·+Mn → M. (3)

To generate models of complex objects on the basis of perturbation functions, we use set-theoretic
operations. They are carried out using Boolean operations of union and intersection. A binary operation
(n = 2) (3) of objects G1 and G2 means the operation G3 = Φj(G1, G2) with definition

f3 = ψ(f1(X), f2(X)) � 0, (4)
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Fig. 1. Functionally defined implants.

where ψ is the continuous real function of two variables.
The performed experimental investigations showed that the compression coefficients of polygonal ob-

jects varied from 10 to 100 and higher in dependence on test models of different degree of refinement [9].
Thus, we may reduce the database of implants (Fig. 1).

RENDERING FUNCTIONALLY DEFINED SURFACES

This task is similar to methods of visualizing volume data which are frequently used in volume
visualization (in such approaches the density function is prescribed). Their main difference is in the
presence of discrete data. In our case there is an analytically defined density function, which allows
more efficiently searching intersection points between rays and surfaces. To make the program working
efficiently, we need to take into account peculiarities of the applied hardware. Recently, increase in the
computational capacity occurs due to parallel computations. Therefore, the method is adapted for using
computational resources of the graphics processing unit. In [10] a method was described for visualizing
functionally defined objects without recursive division of the object space over the quaternary tree in
which the cube is divided into parts in the plane XY according to the pixels in the image. Such approach
was chosen due to specificity of architecture of graphics processing units in which conditional branches
are costly operations. However, we here need to scan the entire screen space by rays even if the projection
of the object onto the screen is small. In addition to conditional branches, there exists the balancing
problem and overhead costs to its solution exceed the gain in performance due to recursive division of the
object space over the quaternary tree. Due to a large number of processing units, testing of several rays
is performed simultaneously. In most graphics processing units supporting CUDA (software-hardware
architecture of parallel computations, which makes it possible to increase the computing performance
due to use of the Nvidia graphics processing units), there exists at least 128 scalar computing cores.
Consequently, a relatively large part of the cube is removed. Nevertheless, for small and moderate objects
such method is not efficient. Moreover, it badly suits the combination rendering of surfaces and volumes,
which will be mentioned further.

Hence, another method was developed [11]. The rasterization process is divided into two stages and
is distributed between the central processing unit (CPU) and the graphics processing unit. The CPU
executes division of the object space into quaternary tree to a cell of a certain size. The advantage of
this approach consists in the possibility of removing large parts of the cube without the given object at
earlier stage. The primitives of intermediate description are fragments of intersection between geometric
objects and cells. Under fragments we understand parts of surfaces (1) and volumes belonging to a
particular cell. All remaining computations are executed on the graphics processing unit.

SEMI-TRANSPARENT VOLUMES

In the course of scanning of the scene over the z coordinate (scanning of the volume in depth), the
algorithm works until the volume is completed or a certain value of opacity larger than some threshold
value is accumulated. The difference from the ray tracing algorithm is that we do not track secondary
rays in order to increase the computation speed. In addition, in modeling the light passage through
semi-transparent volumes, we ignore refraction and decay of secondary rays. Just the reflection and
decay of light at its passage from the object to the eye of observer remain in this model.
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Fig. 2. Examples of volume images with different priorities.

Fig. 3. Three-dimensional texture bounded by a shell in the form of union of two quadrics.

The formula for computing the pixel color may be expressed as [12]

Pλ =

N∑

n=0

IλnΩn

n−1∏

m=0

(1− Ωm), (5)

where Pλ is the final color of pixel, λ is r, g, or b color (red, green, or blue color, respectively), Iλn
is the intensity in the nth voxel computed by the Phong lighting model, Ωn is the opacity of the nth
voxel, Iλ0 is the reflected light from the first point on the scanning ray, Iλn is the background color,
and Ωn = 1. Passing the threshold may be traced as follows: if at the kth step the total transparency
(1− Ω0)(1 −Ω1) . . . (1− Ωk−1) becomes less than some ε, then it means that the contribution of all
voxels following after the kth voxel is small; therefore, scanning may be terminated.

There exists a problem with intersecting transparent objects due to necessity of choice of the spatial
region belonging to both bodies. How can we choose the material of the intersection region without
solving the problem of logical construction? The solution to this problem consists in assigning priorities
to the objects of the scene (Fig. 2).

In this work we use quadrics and unions of quadrics as bounding shells for volume data (Fig. 3). How
the shell is automatically constructed is the task similar in its complexity to the segmentation task and
is outside the scope of this work.

HYBRID RENDERING OF VOLUMES AND SURFACES

The method allows visualizing several volumes in combination with functional surfaces. We apply
the visualization method of [11] as the basic method adapted to volumes. As we have described above,
the rasterization process is divided into two stages. The first stage is terminated when the considered
part corresponds to a cell of a certain size. The primitives of the intermediate description are fragments
of intersection between the geometric objects and cells (of the equation of surfaces). The second stage
of computations is in processing a list of objects and determining the visibility and color of pixels. The
ray casting of the image with complex intersections between volume data and surface is applied and the
hierarchical traversal of the space is used for computing the color in the pixel. In other words, the process
of space processing is as follows: the volume is traversed over the quaternary tree (in the screen space,
the CPU function) whose leaves are binary subtrees (it corresponds to rays directed inside the screen,
the GPU function).
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Fig. 4. Binary division of a ray.

In the course of binary traversal, we determine the priority over the z coordinate in the case of quadrics
and for accurate computation of the perturbation factor in the case of functionally defined surfaces. In
the course of division, large parts of empty space are rather efficiently sorted out at the levels of both the
quaternary division and the binary division (Fig. 4). After determining the intersection with the shell, its
internal part filled with the 3D texture is scanned.

The volume data are stored as a three-dimensional texture [13]. We use the 3D texture map for
volume data sets. The texture map is a single large 3D texture which is assigned to a single texture block.
The maximum size of the texture map depends only on available graphical memory. All computations
are executed on the graphics processing unit.

The graph of scene includes operations of constructive solid geometry and functionally defined
surfaces with volume textures and material properties. The inner vertices of the tree are related with
operations of solid geometry, and the leaves refer to the shell bounding the volume, to the volume texture,
and to the material with its properties. In Fig. 5 we show the union of an oblique object (implant) with
several semi-transparent volumes. Processing fragments is carried out in parallel-pixel mode for cells
with a size of 8× 8 pixels and traces the passage of rays through the volumes presented as 3D textures.
To increase the computation speed, we use the cache of coherency of textures. The rendering system
passes the scene once in contrast to multipass methods [14, 15]. In the course of the binary division
of a ray, we determine the object nearest to the observer and the nearest point of intersection with the
surface, thus providing the sorting of objects nearest to the observer. As a result, the color in a pixel
is accumulated from the close objects to the further ones, that is, in the direct priority order, in the
case when the objects are semi-transparent. Oblique surfaces veil objects further from the observer.
The final ray tracing and shadowing require blending of several intersecting volume objects and efficient
accumulation of individual volume contributions along the rays.

RESULTS
To estimate the performance, we compare the proposed approach with the known approaches to

multivolume visualization [14, 15] using the graphics processing unit GTX 470. In Table 1 we compare
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Fig. 5. Visualization of combined anatomical 3D model (tissues and bone structure are given by volume data
(3D texture) and the implant is given by functionally defined surfaces).

Fig. 6. Multivolume data: skull, brain, tumor (upper part of brain), and head tissues.

the framing rates (the number of frames per second) reached for medicine scenes with several volumes
which use several modes and scans for different body parts. Tests 1 and 2 show the resolution of volumes
and the time of anatomical scanning (Fig. 6). Test 3 is a combination of anatomical scanning of high-
resolution volumes and isosurfaces for methods of [14, 15]. In the proposed method we use a combination
of the volume and functional surface. Test 4 is a combination of volumes and a polygonal model with a
size of 3.87× 103 as an analog of the functional surface.

Comparing to the known approaches, the main advantages of the proposed method include the
following ones:

1. Generality: using this method, we can process not only functionally defined surfaces, but also
semi-transparent volumes.

Table 1. Table 1

Test number Volumes Polygons [14] [15] Proposed method

1 1× 5123 – 14–46 9–17 30

2 2× 2563 – 24–38 6–12 37

3 4× 2563 – 5–9 1–3 25

4 10× 643 3.87× 103 – – 16

Functionally defined objects are considered in the proposed method; there are five such objects in test 4.
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2. Complex models: the method provides visualization of a large number of volumes, a complex
of semi-transparent and functionally defined objects, and complex semi-transparent volumes,
including intersections of volumes.

3. Efficiency: using the functionally defined surfaces allows reducing the database of implants and
decreasing the time of rendering.

4. Simplicity: the method is relatively simple in realization and has no problems with reliability or
degeneration of surfaces.

5. Well approximation: preliminary application of the method for various test samples shows well
approximation with a limited error at the boundaries of intersections between volumes and
functionally defined surfaces.

CONCLUSIONS

In this work we created a new approach to visualizing several semi-transparent volumes and
functionally defined surfaces. The method, including the rasterization stage, was implemented on
CUDA, which allows completely controlling the memory hierarchy, in particular, the access to the
high bandwidth capacity and to the low latency time of distributed memory. An interactive framing
rate at simultaneous visualization of more than hundred arbitrarily overlapping volumes is provided.
Computation takes several tens of milliseconds on processing units Intel Core2 CPU E8400 3.0 GHz
and GPU GTX 470.

The method is topical for a wide spectrum of application of the volume rendering of complex scenes,
including intersecting volumes and surfaces for medicine applications. As shown in this work, the
method is simple in its implementation and allows using it to solve many problems.

REFERENCES
1. J. Kruger and R. Westermann, “Acceleration techniques for GPU-based volume rendering,” in Proc. of the

14th IEEE Conf. on Visualization, Seattle, USA, 2003, pp. 38–43.
https://doi.org/10.1109/VISUAL.2003.1250384

2. S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A simple and flexible volume rendering framework for
graphics-hardware-based ray casting,” in Proc. of the 4th Eurographics, IEEE VGTC Conf. on Volume
Graphics, New York, USA, 2005, pp. 187–195. https://doi.org/10.1109/VG.2005.194114

3. B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, “A reproducible evaluation
of ANTs similarity metric performance in brain image registration,” Neuroimage 54, 2033–2044 (2011).
https://doi.org/10.1016/j.neuroimage.2010.09.025

4. R. J. Killiany, T. Gomez-Isla, M. Moss, R. Kikinis, T. Sandor, F. Jolesz, R. Tanzi, K. Jones, B. T. Hyman, and
M. S. Albert, “Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease,”
Ann. Neurology 47, 430–439 (2000).
https://doi.org/10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I

5. A. Leu and M. Chen, “Modelling and rendering graphics scenes composed of multiple volumetric datasets,”
Comput. Graph. Forum. 18, 159–171 (1999). https://doi.org/10.1111/1467-8659.00366

6. S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Groller, “Flexible direct multi-volume rendering in interactive
scenes,” in Proc. of the Vision, Modeling, and Visualization Conference (VMV 2004), Stanford, USA,
2004, pp. 386–379.

7. S. I. Vyatkin, “Complex surface modeling using perturbation functions,” Optoelectron., Instrum. Data
Process. 43, 226–231 (2007). https://doi.org/10.3103/S875669900703003X

8. S. I. Vyatkin, “Conversion of functionally defined forms,” Software Syst. Comput. Methods, No. 4, 489–499
(2014). https://doi.org/10.7256/2305-6061.2014.4.13982

9. S. I. Vyatkin and B. S. Dolgovesov, “Compression of geometric data with the use of perturbation functions,”
Optoelectron., Instrum. Data Process. 54, 334–339 (2018). https://doi.org/10.3103/S8756699018040039

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 57 No. 2 2021



148 VYATKIN, DOLGOVESOV

10. S. I. Vyatkin, “Method of binary search for image elements of functionally defined objects using graphics
processing units,” Optoelectron., Instrum. Data Process. 50, 606–612 (2014).
https://doi.org/10.3103/S8756699014060090

11. S. I. Vyatkin, “Recursive search method for the image elements of functionally defined surfaces,” Optoelec-
tron., Instrum. Data Process. 53, 245–249 (2017). https://doi.org/10.3103/S8756699017030074

12. G. Knittel, “VERVE: voxel engine for real-time visualization and examination,” Comput. Graph. Forum 12
(3), 37–48 (1993). https://doi.org/10.1111/1467-8659.1230037

13. S. I. Vyatkin and B. S. Dolgovesov, “A 3D texture-based recursive multi-level ray casting algorithm,” in Proc.
of the 2nd IASTED Int. Multi-Conf. on Automation, Control, and Information Technology Software
Engineering (ACIT 2005), Novosibirsk, Russia, 2005, pp. 92–97.

14. F. Roessler, R. P. Botchen, and T. Ertl, “Dynamic shader generation for GPU-based multi-volume ray
casting,” IEEE Comput. Graph. Appl. 28 (5), 66–77 (2008). https://doi.org/10.1109/MCG.2008.96

15. R. Brecheisen, B. Platel, A. Vilanova, and B. T. H. Romenij, “Flexible GPU-based multi-volume ray-
casting,” in Proc. of the Vision, Modelling and Visualization Conf., Konstanz, Germany, 2008, pp. 1–6.

Translated by E. Oborin

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 57 No. 2 2021


		2021-08-19T15:08:40+0300
	Preflight Ticket Signature




