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Abstract—A new method for testing the hypothesis of the independence of two-dimensional ran-
dom variables is proposed. The method under consideration is based on the use of a nonparametric
algorithm for pattern recognition that meets the maximum likelihood criterion. In contrast to
the traditional problem statement, there is no training sample a priori. The initial information is
represented by statistical data that make up the values of two-dimensional random variables. The
laws of distribution of random variables in classes are estimated from the initial statistical data for
the conditions of their dependence and independence. When choosing the optimal blur coefficients
for nonparametric estimates of probability densities, the maximum of the likelihood functions is used
as a criterion. Under these conditions, estimates of the probability of pattern recognition errors in
classes are calculated. Based on the minimum value of the estimate of the probability of an error
in pattern recognition, a decision is made on the independence or dependence of random variables.
The effectiveness of the developed method is confirmed by the results of computational experiments
when testing the hypothesis of the independence or linear dependence of two-dimensional random
variables.
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INTRODUCTION

Information about the dependence or independence of random variables is a necessary condition for
the synthesis of effective algorithms for information processing and decision-making. In [1–3], the prop-
erties of a nonparametric Rosenblatt–Parzen-type probability density estimation of independent random
variables are investigated. It is found that the presence of a priori information about the independence of
random variables allows us to improve the approximation properties of the nonparametric estimation
of their probability density in comparison with the kernel statistics for dependent random variables.
This advantage increases with the increase in the dimension of random variables. The obtained results
are confirmed by studying the asymptotic properties of the nonparametric estimation of the separating
surface equation in the two-alternative problem of pattern recognition [4].

The traditional method of testing the hypothesis of the independence of random variables is based on
the use of the universal χ2-Pearson criterion. However, its formation contains a difficult-to-formalize
stage of dividing the range of values of random variables into multidimensional intervals [5]. Therefore,
the problem arises of developing a new method of testing the hypothesis providing a bypass for the
problem of decomposing the domain of values of random variables. A similar problem is solved when
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testing the hypothesis of the identity of the distribution laws of random variables based on the use of a
nonparametric pattern recognition algorithm [6–8]. It is shown that it can be replaced by the task of
testing the hypothesis that the image recognition error is equal to a certain threshold value. The training
sample in the synthesis of a nonparametric pattern recognition algorithm is formed based on statistical
data that characterize the distribution laws of the compared random variables.

The purpose of this paper is to develop the proposed approach to the problem of testing the hypothesis
of the independence of random variables using a nonparametric pattern recognition algorithm.

METHOD FOR TESTING THE HYPOTHESIS OF THE INDEPENDENCE
OF RANDOM VARIABLES

Let there be a sample V = (xi, i = 1, n) of volume n made up of independent observations of a
two-dimensional random variable x = (x1, x2). The sample V is extracted from general populations
characterized by probability densities p(x1)p(x2) or p(x1, x2). It is necessary to check the hypothesis

H0: p(x1, x2) ≡ p(x1)p(x2) (1)

about the independence of random variables x1, x2 using the statistical data V .
To test the hypothesis H0 (1), we will solve a two-alternative pattern recognition problem. The

classes Ω1, Ω2 are defined as the areas for determining probability densities p(x1)p(x2), p(x1, x2). Under
these conditions, the Bayesian decision rule corresponding to the maximum likelihood criterion has the
form

m(x):

{
x ∈ Ω1, of p(x1, x2) < p(x1)p(x2);

x ∈ Ω2, of p(x1, x2) > p(x1)p(x2).
(2)

In contrast to the traditional formulation of the pattern recognition problem, the synthesis of the
decision rule (2) a priori lacks a training sample containing information about the membership of
elements of the sample V to a particular class. This information should be detected during the
implementation of the H0 hypothesis testing technique, which is based on performing the following
actions.

From the sample V , we reconstruct the probability densities p(x1, x2), p(x1)p(x2) using their
nonparametric Rosenblatt–Parzen-type estimates [9, 10]:

p̄(x1, x2) =
1

nc1c2

n∑
i=1

Φ
(x1 − xi1

c1

)
Φ
(x2 − xi2

c2

)
, (3)

p̄(x1)p̄(x2) =
1

n2c1c2

n∑
i=1

n∑
j=1

Φ
(x1 − xi1

c1

)
Φ
(x2 − xj2

c2

)
. (4)

In statistics (3) and (4), the kernel functions Φ(uv) satisfy the following conditions:

Φ(uv) = Φ(−uv), 0 � Φ(uv) < ∞,

+∞∫
−∞

Φ(uv)duv = 1,

+∞∫
−∞

umΦ(uv)duv < ∞, 0 � m < ∞, v = 1, 2.

The values of the blur coefficients cv of the kernel functions decrease with the growth of the
volume n of the statistical data sample V . Taking into account expressions (2)–(4), we can write the
nonparametric decision rule for the classification of random variables x = (x1, x2) as

m̄(x):

{
x ∈ Ω1, of p̄(x1, x2) < p̄(x1)p̄(x2);

x ∈ Ω2, of p̄(x1, x2) > p̄(x1)p̄(x2).
(5)
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Under conditions of such uncertainty, we will choose the optimal blur coefficients of the kermel
functions of the decision rule (5) based on the approximation properties for the nonparametric estimates
p̄(x1, x2), p̄(x1)p̄(x2) of probability densities p(x1, x2), p(x1)p(x2). To select the optimal blur coefficients
of the nonparametric estimate of the probability density p(x1, x2), as a criterion, for example, the
maximum of the likelihood function is used [11, 12]

L(c1, c2) =

n∏
j=1

p̄(xj1, x
j
2), p̄(xj1, x

j
2) =

1

(n− 1)c1c2

n∑
i=1, i �=j

Φ
(xj1 − xi1

c1

)
Φ
(xj2 − xi2

c2

)
. (6)

By analogy with expression (6), it is easy to determine the criterion for choosing the optimal blur
coefficients for the statistics p̄(x1)p̄(x2) (4).

Note that the choice of the optimal blur coefficients of nonparametric estimates of the probability
densities p̄(x1, x2), p̄(x1)p̄(x2) can be carried out from the condition of the minimum statistical estimates
of the standard deviations p̄(x1, x2), p̄(x1)p̄(x2) from p(x1, x2), p(x1)p(x2), respectively [13–19].

Optimization of the nonparametric decision rule (5) with respect to the diffusion coefficients of the
kernel functions c1, c2 can be simplified by setting in statistics (3) and (4) the values cv = cσ̄v, v = 1, 2.
Here, σ̄v is the estimate of the standard deviation of the random variable xv in the sample V . This
statement is obvious, since a larger length of the interval of values xv corresponds to a greater blur
coefficient cv of the kernel function Φ(uv), v = 1, 2. A similar approach was used in the construction
of fast procedures for the optimization of nonparametric estimates of the kernel-type probability density
[20–23].

The values of the estimates of the standard deviations σ̄v are determined from the statistical data of
the sample V :

σ̄v =
( 1

n− 1

n∑
i=1

(xiv − x̄v)
2
)1/2

, v = 1, 2.

Here, x̄v is the average value of the random variable xv, which is calculated from the sample V .
Therefore, it becomes possible to optimize the nonparametric pattern recognition algorithm (5) using

only one parameter c of the blur coefficients of the kernel functions.
Let us determine the estimates of the probabilities of pattern recognition errors ρ̄1(c̄1, c̄2), ρ̄2(c̄1, c̄2)

by the decision rule (5) based on the initial statistical data V for the optimal blur coefficients c̄(1) =
(c̄1(1), c̄2(1)), c̄(2) = (c̄1(2), c̄2(2)) of the kernel functions of statistics p̄(x1)p̄(x2), p̄(x1, x2), respec-
tively.

The values ρ̄t(c̄(1), c̄(2)) are calculated in the sliding exam mode for the sample V , assuming that its
elements belong to the class Ωt:

ρ̄t(c̄(1), c̄(2)) =
1

n

n∑
j=1

1(δ(j), δ̄(j)), t = 1, 2,

where δ(j) = t are indications of type xj = (xj1, x
j
2) ∈ Ωt;

δ̄(j) =

{
t if xj ∈ Ωt;

0 if xj /∈ Ωt,

is the decision of algorithm (5) about the situation xj belonging to one of the classes Ωt, t = 1, 2.
When calculating ρ̄t(c̄(1), c̄(2)) according to the method of the sliding exam method, the situation

xj = (xj1, x
j
2) from the sample V , which is submitted for control to algorithm (5), is excluded from the

process of generating statistics (3) and (4).
The indicator function is determined by the expression

1(δ(j), δ̄(j)) =

{
0 if δ(j) = δ̄(j);

1 if δ(j) �= δ̄(j).
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Fig. 1. Dependence of the averaged estimates of the probabilities of errors in belonging of elements of V to independent
random variables x1, x2 on the sample size n (curves 1–5 correspond to the values of the correlation coefficients r =
0.9, 0.7, 0.45, 0.33, and 0).

Let us denote by ¯̄ρt the minimum value of the estimate of the probability of a pattern recognition error
under the assumption that the elements of the sample V belong to the class Ωt, t = 1, 2. Compare the
values ¯̄ρ1, ¯̄ρ2.

The hypothesis H0 is valid if ¯̄ρ1 < ¯̄ρ2. Otherwise, for ¯̄ρ2 < ¯̄ρ1 the random variables x1 and x2 are
dependent.

It is natural that with limited volumes n of the V sample, the problem of confidence estimation of
the probabilities of image recognition errors arises. To solve it, we can use the traditional method of
confidence estimation of probabilities [5] or the Kolmogorov–Smirnov criterion [24].

For example, when using the Kolmogorov–Smirnov criterion, the deviation D̄12 =
= | ¯̄ρ1 − ¯̄ρ2| is compared with the threshold value

Dβ =
√

− ln(β/2)/n.

Here, β is the probability (risk) to reject the hypothesis H̄0: ρ1(c1, c2) = ρ2(c1, c2). If the relation
D̄12 < Dβ is satisfied, then the hypothesis H̄0 is valid and the risk of rejecting it does not exceed the
value β. If D̄12 > Dβ , the hypothesis H̄0 is rejected.

ANALYSIS OF THE RESULTS OF A COMPUTATIONAL EXPERIMENT

Let us investigate the dependence of the effectiveness of the proposed method for testing the
hypothesis of the independence of two-dimensional random variables on the volume of the initial
statistical data. We will assume that the random variables x1 and x2 have Gaussian distribution laws.
When generating the values x1, x2 in the V sample, we use the random variable generators

xi1 = M(x1) + σ1

( 12∑
j=1

εj1 − 6
)
, xi2 = xi1 + σ2

( 12∑
j=1

εj2 − 6
)
, i = 1, n,

where M(x1) is the mathematical expectation of the random variable x1, σ1, and σ2 are standard
deviations of x1 and x2, and ε1 and ε2 are random variables with uniform distribution laws over the
interval [0; 1].

When selecting the values σ1, σ2, the dependence index (correlation coefficient) between the random
variables x1, x2 changes, which is calculated from the obtained statistical data V . The values of ¯̄ρt1, ¯̄ρt2 for
a specific volume n(t) = n of the sample V are determined 50 times. The obtained data ¯̄ρt1, ¯̄ρt2, t = 1, 50
are averaged, and their results are denoted by ρ̃1, ρ̃2 and shown in Fig. 1.

The results of computational experiments confirm the effectiveness of the proposed method. With the
correlation coefficient r � 0.35, the application of the method under consideration makes it possible to
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exclude errors in assigning the initial statistical data V to independent random variables in 50 compu-
tational experiments. Let us denote this estimate of the probability of confirming the hypothesis H0 by
P̄1 = 0. If r = 0, the values are P̄1 = 0.6, 0.62, and 0.8 with the volume of statistical data n = 100, 200,
and 500 respectively.

Let us analyze the values ρ̃1, ρ̃2, which determine the criterion for testing the hypothesis H0 in
computational experiments. With an increase in the correlation coefficient r, a decrease in the average
estimate of the error probability ρ̃2 of belonging of elements of the sample V to the class Ω2 of values
of dependent random variables is observed. For example, when increasing r in the interval [0.45; 0.9]
the estimate of the probability of a pattern recognition error ρ̃2 decreases from 0.37 to 0.055. This fact
is explained by a decrease in the area of intersection of the classes Ω1, Ω2 and, as a consequence, an
increase in the values of the kernel estimate of the probability density p̄(x1, x2) in comparison with
p̄(x1)p̄(x2) in the nonparametric decision rule (5), which leads to a decrease in ρ̃2. With a decrease
in r in the range [0.33; 0], estimates of the probabilities of the pattern recognition error ρ̃2 increase from
0.45 to 0.53. Under these conditions, there is a tendency for the region of intersection of the classes
Ω1, Ω2 and the values ρ̃2, ρ̃1 to converge as a criterion for the identity of the distribution laws p(x1, x2),
p(x1)p(x2) of the compared random variables.

The stability of the proposed method to the volume of initial statistical data was found at specific
values of the correlation coefficient, which manifests itself in close values of ρ̃2 at n ∈ [100; 500]. For
example, for r = 0.9, the values are ρ̃2 ∈ [0.044; 0.06], and under the conditions r = 0.45 the values are
ρ̃2 ∈ [0.35; 0.39] (see Fig. 1). The noted pattern weakens with decreasing values of r. This conclusion is
confirmed by the values of ρ̃2 in the interval [0.423; 0.496] for r = 0.33.

The above statements are reliable, which is verified using the Kolmogorov–Smirnov criterion with the
risk β = 0.05 to reject the hypothesis being tested. Doubtful decisions appear at values of r close to zero.
Under these conditions, the proposed method provides a reliable solution for n � 300. For example, for
n = 300, 400, 500 the values are D̄12 = 0.23, 0.141, and 0.189, that exceed the thresholds Dβ = 0.111,
0.096, and 0.086. The results confirm the hypothesis of the independence of random variables.

The results of computational experiments were compared with the confidence limits of the correlation
coefficient

tanh
(1
2
ln

1 + r̄

1− r̄
− εα√

n− 3

)
< r < tanh

(1
2
ln

1 + r̄

1− r̄
+

εα√
n− 3

)
,

where εα is defined by the relation 2F (εα) = α and r̄ is the estimate of the correlation coefficient. Here,
F (εα) is the Laplace function, α is confidence factor, and tanh(·) is the hyperbolic tangent. For these
conditions at r̄ = 0, α = 0.95, and εα = 1.96, the confidence limits for the correlation coefficient are
determined by the intervals r ∈ (±0.196), (±0.139), (±0.113), (±0.098), (±0.088), which correspond
to the volumes of statistical data n = 100, 200, 300, 400, 500.

Let us compare the effectiveness of the proposed method with the approach that uses the correlation
coefficient as a criterion for the linear dependence between random variables. To do this, we determine
the estimates of the probabilities of decisions with respect to the hypothesis H0, taken in accordance with
the proposed method, under the conditions of the value of the correlation coefficient r = 0.196. Note that
this value of r corresponds to its confidence boundary at n = 100 and α = 0.95. Under these conditions,
the estimate of the probability of confirming the hypothesis H0 corresponds to the value of P̄1 = 0.4, and
its refutation is P̄2 = 0.6 in 50 computational experiments. By the values of P̄1, P̄2, the proposed method
is more sensitive to changes in the indicator r of the linear dependence between the random variables x1,
x2. The results are consistent with the traditional approach of testing the hypothesis of linear dependence
of random variables. However, the presented method applies to the conditions of nonlinear dependence
between random variables.

CONCLUSIONS

The method proposed in this paper for testing the hypothesis of the independence of random variables
bypasses the problem of decomposing the range of values of random variables into multidimensional
intervals, which is characteristic of the Pearson criterion. To solve this problem, we use a nonparametric
pattern recognition algorithm that meets the maximum likelihood criterion. Optimization of the kernel
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probability density estimations of the blur coefficients is carried out from the condition of the maximum
likelihood function. Under the assumption of independence or dependence of random variables in the
initial statistical data, estimates of the probabilities of pattern recognition errors are determined. Based
on their minimum value, a decision is made about the independence or dependence of random variables.

The effectiveness of the proposed method is confirmed by the results of computational experiments
when testing the hypothesis of the independence of a two-dimensional random variable the components
of which are characterized by normal distribution laws. It was found that with a correlation coefficient
r � 0.35 between random variables, the proposed method accurately rejects the initial hypothesis with
the volume of initial statistical data from 100 to 500. With independent random variables in conditions
when the correlation coefficient is zero, the initial hypothesis is confirmed by probability estimates of 0.6,
0.62, and 0.8 with the volume of statistical data n = 100, 200, and 500, respectively. The stability of the
values of the used criterion for testing the hypothesis under consideration to changes in the volume of
statistical data under specific experimental conditions is observed.

Promising research in this direction is the application of the proposed technique to test the hypothesis
of a nonlinear relationship between random variables and the formation of a set of independent random
variables, which will simplify the task of synthesizing effective information processing algorithms.

FUNDING

The research was carried out with the financial support of the Russian Foundation for Basic Research,
the Government of the Krasnoyarsk krai, and the Krasnoyarsk Regional Science Foundation (project
no. 20-41-240001).

REFERENCES
1. A. V. Lapko and V. A. Lapko, “Properties of nonparametric estimates of multidimensional probability density

of independent random variables,” Inf. Sci. Control Syst. 31 (1), 166–174 (2012).
2. A. V. Lapko and V. A. Lapko, “Nonparametric estimation of probability density of independent random

variables,” Inf. Sci. Control Syst. 29 (3), 118–124 (2011).
3. A. V. Lapko and V. A. Lapko, “Effect of a priori information about independence multidimensional random

variables on the properties of their nonparametric density probability estimates,” Sist. Upr. Inf. Tekhnol. 48
(2.1), 164–167 (2012).

4. A. V. Lapko and V. A. Lapko, “Properties of the nonparametric decision function with a priori information on
independence of attributes of classified objects,” Optoelectron., Instrum. Data Process. 48, 416–422 (2012).
https://doi.org/10.3103/S8756699012040139

5. V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002).
6. A. V. Lapko and V. A. Lapko, “Nonparametric algorithms of pattern recognition in the problem of testing a

statistical hypothesis on identity of two distribution laws of random variables,” Optoelectron., Instrum. Data
Process. 46, 545–550 (2010). https://doi.org/10.3103/S8756699011060069

7. A. V. Lapko and V. A. Lapko, “Comparison of empirical and theoretical distribution functions of a random
variable on the basis of a nonparametric classifier,” Optoelectron., Instrum. Data Process. 48, 37–41 (2012).
https://doi.org/10.3103/S8756699012010050

8. A. V. Lapko and V. A. Lapko, “A technique for testing hypotheses for distributions of multidimensional
spectral data using a nonparametric pattern recognition algorithm,” Comput. Optics 43, 238–244 (2019).
https://doi.org/10.18287/2412-6179-2019-43-2-238-244

9. E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Stat. 33, 1065–1076
(1962). https://doi.org/10.1214/aoms/1177704472

10. V. A. Epanechnikov, “Non-parametric estimation fo a multivariate probability density,” Theory Probab. Its
Appl. 14, 153–158 (1969). https://doi.org/10.1137/1114019

11. R. P. W. Duin, “On the choice of smoothing parameters for parzen estimators of probability density functions,”
IEEE Trans. Comput. C-25, 1175–1179 (1976). https://doi.org/10.1109/TC.1976.1674577

12. Z. I. Botev and D. P. Kroese, “Non-asymptotic bandwidth selection for density estimation of discrete data,”
Methodol. Comput. Appl. Probab. 10, 435 (2008). https://doi.org/10.1007/s11009-007-9057-z

13. M. Rudemo, “Empirical choice of histogram and kernel density estimators,” Scand. J. Stat. 9, 65–78 (1982).
14. A. W. Bowman, “A comparative study of some kernel-based non-parametric density estimators,” J. Stat.

Comput. Simul. 21, 313–327 (1982). https://doi.org/10.1080/00949658508810822

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 57 No. 2 2021



TESTING THE HYPOTHESIS OF THE INDEPENDENCE 155

15. P. Hall, “Large-sample optimality of least squares cross-validation in density estimation,” Ann. Statist. 11,
1156–1174 (1983).

16. M. Jiang and S. B. Provost, “A hybrid bandwidth selection methodology for kernel density estimation,” J.
Stat. Comput. Simul. 84, 614–627 (2014). https://doi.org/10.1080/00949655.2012.721366

17. S. Dutta, “Cross-validation revisited,” Commun. Stat. Simul. Comput. 45, 472–490 (2016).
https://doi.org/10.1080/03610918.2013.862275

18. N.-B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection for kernel density estimation: a
review of fully automatic selectors,” AStA Adv. Stat. Anal. 97, 403–433 (2013).
https://doi.org/10.1007/s10182-013-0216-y

19. Q. Li and J. S. Racine, Nonparametric Econometrics: Theory and Practice (Princeton Univ. Press,
Princeton, 2007).

20. A. V. Lapko and V. A. Lapko, “Method of fast bandwidth selection in a nonparametric classifier corresponding
to the a posteriori probability maximum criterion,” Optoelectron., Instrum. Data Process. 55, 597–605
(2019). https://doi.org/10.3103/S8756699019060104

21. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New Jersey,
2015). https://doi.org/10.1002/9780470316849

22. S. J. Sheather, “Density estimation,” Stat. Sci. 19, 588–597 (2004).
https://doi.org/10.1214/088342304000000297

23. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London,
1986).

24. A. S. Sharakshane, I. G. Zheleznov, and V. A. Ivnitskii, Complex Systems (Vysshaya Shkola, Moscow,
1977).

Translated by T. N. Sokolova

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 57 No. 2 2021


		2021-08-19T15:09:10+0300
	Preflight Ticket Signature




