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Abstract—We show that for the classification of fragments of a hyperspectral image, it is very
effective to first transform its spectral features into principal components and then to recognize it
using a convolutional neural network trained on a sample composed of fragments of this image. High
percentage of correct classification was obtained when working with a large-format hyperspectral
image while some of the classes of the hyperspectral image are very close to each other and,
accordingly, are difficult to distinguish by hyperspectra. We investigate the dependence of the correct
classification on the change in the size of the fragments from which the training and validation
samples are composed and on the parameters of the convolutional neural network.
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INTRODUCTION

In recent years, the problem of classification of terrain images by their hyperspectral measurements
has become more popular. This problem has been investigated in some detail in works [1–4]. Most
importantly, it was shown that a significant increase in the percentage of correct classification of
hyperspectral images (HSIs) takes into account not only the spectral characteristics, but also the spatial
structure of the HSI. Note that the overwhelming majority of works in this area use classic classification
algorithms. However, at the moment it can be considered proven that the best (if not unique) results
in the field of image recognition, including classification, were obtained by using convolutional neural
networks and deep learning. Thus, applying these approaches to HSIs is more than justified. Work in
this direction has already been carried out [5–7]. The aim of [7] is a thorough study of the dependence of
the HSI classification accuracy on various parameters of convolutional networks used for classification.
We shall use the methods proposed in this work with caution: some of them seem not entirely justified
to us.

CHARACTERISTICS OF THE CLASSIFIED OBJECT

The investigated hyperspectral image is a terrain area obtained within the AVIRIS (Airborne Visible
Infrared Imaging Spectrometer) program at the Indian Pine test site (Indiana, USA). Image size is
614 × 1408 pixels, the definition is 20 m/pixel, and the number of channels is 220 in the range of 0.4–
2.5 μm. The RGB representation of the HSI is shown in Fig. 1.

Figure 2 presents the splitting of this HSI into classes in pseudocolors. There are 57 classes in total.
However, the specific nature of the spatial processing method we have chosen is such that in some areas
classification objects cannot be formed due to the small size of the areas. Therefore, the names of the
classes will be given after training the network (when selecting the existing classes).
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Fig. 1.

STRUCTURE OF THE CONVOLUTIONAL NETWORK

We are not going to describe the principles of operation of convolutional networks, since they are
well enough discussed in literature. Let us present the scheme of a convolutional network (Fig. 3) and
consider its features.

Let us use a three-dimensional convolutional neural network. The input layer is a three-dimensional
cube of size M ×N × F ; M ×N is the fragment size of a region belonging to the same class describing
the spatial characteristics of the region and F is the number of features representing the spectral
characteristics of the area. The fragment size M ×N is of utmost importance. Too small size of a
fragment would not reveal its spatial features. In the case of large fragments, their number in the
class decreases, since the areas belonging to the classes have an arbitrary shape, and the fragments
are rectangular, so some classes might end up not containing any fragments. Let us now discuss
the third dimension F . The work [7] states that in this dimension it is most efficient to use all the
spectral components without transformation, since the latter is used only to reduce the computational
procedures by reducing the layers. In reality, this is not entirely true. The spectral components of
the third layer are highly correlated. And we know from recognition theory that the use of correlated
features reduces the correctness of recognition, therefore, for effective recognition features are usually
decorrelated. Therefore, the spectral information was pre-processed by transforming it into principal
components. The number of principal components and, accordingly, the number of layers in the input
plane are determined, for example, by calculating the scree plot, i.e., the graph of decreasing eigenvalues.
Figure 4 presents the scree plot for the considered HSI.

The x axis is the numbers of the principal components and the y axis is their normalized eigenvalues.
Since the eigenvalues decrease very quickly, the graph depicts the first 10 numerical eigenvalues. The
graph shows that the fifth eigenvalue is already 1/500 of the first value, which means that it accounts
for 0.2% of the variance of the spectral components, therefore, most of the experiments are carried out
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Fig. 2.
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with the number of principal components equal to 5. The presented convolutional neural network has
five layers in total, the kernel size is 3× 3. Subsampling is not used in our network, because the images
to be classified are already small enough. The dimension of the output layer is equal to the number of
classes identified on the HSI, taking into account the size of the fragments.

The most important step when using convolutional neural networks and deep learning for classifica-
tion is to create a training set. In our case, the objects of this set are HSI fragments.
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RESULTS OF EXPERIMENTS ON HSI CLASSIFICATION

Let us list all the stages of the HSI classification (note that the classification was carried out in
MATLAB except for finding the principal components, which were calculated using ENVI):

1. The principal components of the HSI are calculated .
2. Class directories from 1 to 57 are formed.
3. Fragments all elements of which belong to the same class are selected from the file containing the

HSI markup into classes (see. Fig. 2) using a floating window of size M ×N and shifts shift_M and
shift_N .

4. A window all elements of which belong to the same class is identified as an object belonging
to this class, and its coordinates are determined on the image. Using these coordinates, a fragment
of size M ×N × F is taken from the file containing the selected principal components and written to
the corresponding class directory. Files are registered in each directory according to the number of
found fragments of this class. Based on the results of forming the directories, the number of classes is
determined and the training function is corrected.

5. The network parameters are adjusted: the number of layers, the kernel size, and the number of
feature maps.

6. The parameters of the training procedure are adjusted: the number of classes and the number of
training epochs; objects of each nonempty class are divided into training and validation sets.

7. The training procedure starts.
Let us proceed to the experimental results. Note that we consider the classification accuracy as

the only criterion for the effectiveness of a particular procedure—generation of fragments, training,
classification—defined as the ratio of the number of correctly classified objects to the total number of
objects (the term “accuracy” is used along with the term “probability of correct classification”).

We use cross-validation (hold-out validation) to assess the classification accuracy in the formation
of training and validation (test) sets [8].

The set is randomly divided into training and validation ones in a 7 : 3 ratio and they do not overlap.
The hold-out method is used for large datasets, which fits our case (the total number of objects is 34 596
and there are at least 50 objects in each class).

Let us consider how the classification accuracy will change with a change in some parameters of
the convolutional network (the size of the fragment that determines the dimension of the input layer,
the number of layers of the neural network, the number of training epochs, and the number of principal
components). Fragments are square and, to ensure the maximum number of fragments, the shifts are
shift_M = shift_N = 1. Figure 5 presents the classification accuracy depending on the fragment size
for five network layers and 50 training epochs and for five and ten principal components.

Interestingly, at ten principal components the classification accuracy is much less dependent on the
fragment size. An important parameter of any neural networks, including convolutional networks, is the
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initial learning rate. In our case it is 0.01. The rate was kept constant, because fast learning was not
an objective. Another important learning parameter is the number of training epochs, which determines
not only the rate, but also the final classification accuracy. Figure 6 shows the dependence of the final
classification accuracy on the number of training epochs at 12× 12 fragment size and five principal
components. It can be seen that the classification accuracy monotonically increases with the number
of epochs, and there is a sharp increase from 20 to 30 epochs. However, this dependence is largely
determined by the fragment size. Figure 7 (top) shows changing classification accuracy during training
for fragments of 12× 12 elements in size, and Fig. 8 shows that for a 5× 5 fragment. For 12× 12
fragments at 30 epochs, the classification accuracy virtually saturates while for 5× 5 fragments the
accuracy continues to grow at 50 epochs.

Figure 9 shows the dependence of the classification accuracy on the number of layers of a neural
network. The optimal number of layers is five.

The parameter of the most successful classification experiment is the fragment size M ×N =
12× 12. At the same time, it should be noted that the larger the fragments, the fewer of them are
in the class and the lesser the number of classes themselves. Table 1 shows class names, number of
fragments in a class, and classification accuracy for two fragments of sizes 5× 5 and 12× 12 with shifts
shift_M = shift_N = 1, five layers and, 50 epochs. The results are: 45 classes were obtained for a 5× 5
fragment, and 33 classes were obtained for a 12× 12 fragment. Names of the classes suggest that we
did not combine closely related classes (for example, crops of corn or crops of soybeans) into one, as
in [4]. It is clear that it is much easier to distinguish corn crops from forest than to distinguish between
different crops of the same corn or soybeans. The differences between close classes are shown in [9],
so we compare the results of this work with them. Note that for 12× 12 fragments almost all objects
hard to distinguish (crops of corn and soybeans) are classified with a very high (often 100%) probability.
It should also be noted that the results obtained in this work significantly surpass the results of [9]
with a restriction: the latter does not have the problem of covering an area belonging to the class with
rectangular windows; therefore, it can classify areas with a complex configuration. As for comparison
with [5–7], the presented work has significantly more classes, including those difficult to distinguish.
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Table 1

Class
number

Class name
Fragment size 5× 5 Fragment size 12× 12

Number of
fragments

Classification
accuracy

Number of
fragments

Classification
accuracy

1 Bare soil 168 0.7200 0 –

2 Buildings 5541 0.8454 2621 0.9987

3 Corn 6005 0.8440 2269 0.9927

4 Corn, west-east 60 1.0000 0 –

5 Corn, north-south 648 0.8247 169 1.0000

6 Corn, conventional tillage 2541 0.7507 368 1.0000

7 Corn, conventional tillage, west-east 8571 0.7841 2481 0.9970

8 Corn, conventional tillage, north-south 12803 0.8578 4241 0.9914

9 Corn, conventional tillage, north-south, irrigated 116 0.8286 0 –

10 Corn, conventional tillage — ? 307 0.4783 45 1.0000

11 Corn, low-destructive tillage 96 0.7586 0 –

12 Corn, low-destructive tillage, west-east 2006 0.8605 896 0.9963

13 Corn, low-destructive tillage, north-south 3255 0.9037 1099 0.9970

14 Corn without tillage 879 0.8598 93 1.0000

15 Grain without tillage, west-east 200 0.7833 30 1.0000

16 Corn without tillage, north-south 2705 0.8633 1304 1.000

17 Grass 32 0.8000 0 –

18 Grass/Trees 561 0.9881 91 0.9630

19 Hay 48 0.7857 0 –

20 Hay? 964 0.9343 443 0.9925

21 Hay-alfalfa 628 0.9894 191 1.0000

22 Not cropped 180 0.9630 0 –

23 Oats 324 1.0000 70 1.0000

24 Pasture 3377 0.9704 1996 1.0000

25 Soybeans 1324 0.8363 326 1.0000

26 Soybeans? 152 0.9130 0 –

27 Soybeans, north-south 72 0.9091 0 –

28 Soybeans, conventional tillage 957 0.7526 227 1.0000

29 Soybeans, conventional tillage? 792 0.6933 239 0.9722

30 Soybeans, conventional tillage, west-east 4715 0.8112 2000 0.9900

31 Soybeans, conventional tillage, north-south 3830 0.6762 1057 0.9905

32 Soybeans, conventional tillage, furrows 384 0.8174 40 0.6667

33 Soybeans, conventional tillage, weeds 116 0.8000 0 –

34 Soybeans planted in rows 4680 0.8832 1046 0.9777
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Table 1. Continuation

Class
number

Class name
Fragment size 5× 5 Fragment size 12× 12

Number of
fragments

Classification
accuracy

Number of
fragments

Classification
accuracy

35 Soybeans, low-destructive tillage 424 0.9449 50 1.0000

36 Soybeans, low-destructive tillage, west-east 512 0.9221 65 1.0000

37 Soybeans, low-destructive tillage, ridge 2507 0.9109 689 1.0000

38 Soybeans, low-destructive tillage, north-south 2212 0.6717 721 1.0000

39 Soybeans, west-east 673 0.9356 185 1.0000

40 Soybeans without tillage, west-east 1054 0.9747 356 1.0000

41 Soybeans without tillage, north-south 180 0.7222 0 –

42 Soybeans without tillage planted in rows 2324 0.9813 436 1.0000

43 Trees? 48 1.0000 0 –

44 Wheat 1664 0.9880 636 1.0000

45 Forest 20324 0.9405 8115 0.9988

High classification accuracy raises doubts that the neural network is being overtrained. According
to [10], overtraining or overfitting is an undesirable phenomenon that occurs in problems of instance-
based learning, when the probability of an error of the trained algorithm on the objects of the test set
turns out to be significantly higher than the average error on the training set. From Fig. 7 (bottom) that
describes the behavior of an error during training, it follows that the error on the test set exceeds the error
on the training set insignificantly (by fraction of a percent); therefore, there is no overtraining in this case
and no measures should be taken to eliminate it.

CONCLUSIONS

Thus, the proposed work experimentally shows that in the classification of hyperspectral images,
the transformation to the spectral principal components and further spatial transformation by dividing
the principal components into small fragments, training the convolutional neural network on parts of
these fragments and classification of HSI using that network provides a very high percentage of correct
classification (99.43%). Additionally, the number of classes is quite large (33) and among them there
are very close classes (8 classes of corn crops and 13 classes of soybeans crops). As the fragment
size decreases, the classification accuracy decreases somewhat, but the number of recognized classes
increases. For a 5× 5 fragment the classification accuracy for the number of principal components of 5
is about 88%, and for 10 principal components, 97%; the number of recognized classes in this case is
45. The influence of changing the parameters of the convolutional network and the number of principal
components on the classification accuracy has been investigated.

It should be noted that such a high classification accuracy is largely due to the way the training and
validation sets are formed, characterized by their very close mixing. At the same time, it is clear that this
classification method can also be applied in some cases. In particular, this method of formation (random
division into training and validation sets) works well when classes occupy both large and small areas.
Our research, not included in this publication, shows that in the case of small areas, a high classification
accuracy is also obtained with a spatial separation of the training and validation sets.
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