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Abstract—The paper develops a method for describing and estimating the state of a multidimen-
sional dynamical object including the numerical-analytical representation of the general solution
to the differential equation for the dynamical object and its measurable output, accounting for the
domain of admissibility of time values and initial condition and of the uncertainty parameters in the
right-hand side of the equation. The required quality of representation is achieved by using the
family of previously constructed high-precision reference integral curves (of the needed size) and
the principle of smooth dependence of solution and measured cooordinates in the given domain of
admissibility for a wide class of dynamical objects. The estimate of method errors is given and the
recommendations for the choice of its main parameters are provided.
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1. INTRODUCTION

Based on the methods of reference integral curves (RICs) [2] and the generalized optimal invariant-
unbiased estimation [3], a method is developed in [1] that allows constructing the approximate general
solution to the equation describing a dynamical object (DO) in the given domain of admissibility
(considered in the current work) and computing the values of different continuous linear functionals
(CLFs) (in the following, called numerical characteristics) of integral curves of DO based on incorrect
data (this question will be considered in the subsequent works). These data are represented by the
additive observations of readings of integral curve, fluctuation error, and singular interference. The
traditional Gaussian noise model was used to describe the error, and the corresponding finite linear
combinations with the given basis functions and unknown spectral coefficients were applied to form the
models of the curve and interference.

A family of RICs and the principle of smooth dependence of the sought solution on the time, on the
initial condition, and on the uncertainty parameters in the right-hand side of the differential equation
were used to construct the approximate solution in [1] for a wide class of DOs. The CLF values
were determined based on the idea of autocompensating optimal estimation invariant to the singular
interference, not requiring the traditional extension of the state space, and admitting separate estimation
of any linear numerical characteristic of the integral curve of this equation. Experience shows [4–7] that
it is exactly this approach that is particularly fruitful in creating prospective information-measurement
complexes intended to processing data in real time.
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270 BULYCHEV et al.

The following facts belong to the disadvantages of the method considered in [1]: only the scalar DO is
considered and directly the integral curve of the DO plays a role of the measured parameter, which, as a
rule, not fully corresponds to the practice needs. In addition, only the estimation of the CLF of this curve
is concerned, although for most applied problems it is more topical to estimate numerical characteristics
(for instance, the derivatives of different orders) of the measured output of the DO [5–7].

The method of [1] must be significantly updated in order to orient its main concepts and results to
the real information-measurement complexes in the construction of which the basic criterion is the
accuracy/speed criterion with account for strict constraints on the computational resources. In the
current work we propose the modified numerical-analytic method for describing and estimating the
input and output parameters of the multidimensional DO intended to analyzing the general solution
to the differential equation and the measured output of this DO approximately for a given domain of
admissibility.

2. PROBLEM FORMULATION

Suppose that the multidimensional DO is described by the ordinary differential equation (in the
Cauchy form)

dx

dt
= f(t, x), t ∈ Gt = [t0, t0 + T ], x ∈ Gx, (1)

where t is the time, x = x(t, x0) = [xi(t, x0), i = 1, I]� is the vector solution to the equation with
the initial condition x0 = x(t0, x0) = [xi0, i = 1, I ]� ∈ Gx0 ⊆ Gx, Gx is the closed convex domain
corresponding to all possible states of DO starting with any initial condition belonging to the hyper-
parallelepiped Gx0 = {x0 ∈ Gx0: ci ≤ xi0 ≤ di, i = 1, I}, Gt = [t0, t0 + T ] is the time interval at which
the DO state is considered, f(t, x) is the function satisfying the known conditions of existence and
uniqueness of the solution to Eq. (1) with the Lipshitz constant L0 on the set Gxt = {Gx, Gt} and, in
addition, ensuring the necessary smoothness of this solution on Gxt typical for the considered class
of DOs.

Equation (1) may be put into correspondence with the approximate analytic solution x̃ = x̃(t, x0),
where x̃0 = x̃(t0, x0); here, in the general case

||x̃0 − x0|| = max
i

|x̃i0 − xi0| �= 0, i = 1, I.

We think that x̃ = x̃(t, x0) = [x̃i(t, x0), i = 1, I ]� is the solution ε0-approximate by the residual [8],
that is,

||x̃0 − x0|| ≤ ε0,
dx̃i
dt

= fi(t, x̃) + χi(t),

where the residuals χi(t) satisfy the inequality

||χ(t)|| = max
i,t

|χi(t)| ≤ ε0, t ∈ Gt.

Here, the constant ε0 > 0 determines the accuracy of the generated approximate analytic solution in the
domain Gxt = {Gx, Gt} with account for the fact that x0, x̃0 ∈ Gx0.

We characterize proximity of the exact xi = xi(t, x0) and approximate x̃i = x̃i(t, x0) phase coordi-
nates of DO in Gxt by the residual

εxi(x0) = ||x̃i − xi|| = max
t

|x̃i(t, x0)− xi(t, x0)|, t ∈ Gt,

respectively, for estimating proximity of their rth-order derivatives, we introduce the residual

ε
(r)
xi (x0) = max

t
||x̃(r)i − x

(r)
i ||.

To estimate proximity of solutions x = x(t, x0), x̃ = x̃(t, x0) and their derivatives, we use the

residuals εx(x0) = max
i

εxi(x0) and ε
(r)
x (x0) = max

i
ε
(r)
xi (x0), respectively.
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A NUMERICAL-ANALYTIC METHOD 271

We also prescribe the vector equation of the measured output of DO [9, 10]:

y = ϕ(t, x), y ∈ Gyt, (2)

where y = [yj(t, x0), j = 1, J ]� is the vector of variable parameters (in the general case it is a nonlinear
function of the output), and ϕ(t, x) is a smooth function of its arguments.

As applied to the domains Gx0 and Gt, we need to generate the algorithm for constructing the
numerical-analytic general solution x̃(t, x0) for a multidimensional DO (1), discuss the issues of
accuracy and optimization of the choice of parameters of this algorithm, and develop the algorithm for
constructing the numerical-analytic expression for the vector measured output of the DO (2).

3. NUMERICAL-ANALYTIC SOLUTION TO DIFFERENTIAL EQUATION
FOR A MULTIDIMENSIONAL DYNAMICAL OBJECT

In the domain Gx0 we consider the grid consisting of nodes x0(r) ∈ Gx0, r ∈ 1,M . We put these
nodes into correspondence with the family of RICs

xi(r) = xi(t, x0(r)), i = 1, I, r = 1,Mx, (3)

where t is the time and x0(r) is the initial condition x0 corresponding to the rth node.

In the following, we will ignore the errors of RIC construction (similar to works [1, 2]). In practice
these RICs are specified in the tabular form.

Next, in the domain Gt we generate the small-sized grid {t(k)}Mt
k=1 in time t (sufficient for represen-

tation of phase coordinates xi(t, x0(r)) in the domain Gxt = {Gx, Gt} with the required accuracy) and
generate the sample of numbers on this grid

xi(rk) = xi(t(k), x0(r)), i = 1, I, r = 1,Mx, k = 1,Mt. (4)

By interpolating this sample corresponding to the fixed i and r, we associate the RIC xi(t, x0(r)) with
the function of the known class

x̃i(r)(t) = Ji(t, air), (5)

where air = [airk, k = 1,Mt]
� is the vector of coefficients which is selected so that the values x̃i(r)(t)

coincide with the values xi(t, x0(r)) in the Mt in the interpolation nodes,

x̃i(r)(t(k)) = Ji(t(k), air) = x̃i(rk) = xi(rk), k = 1,Mt. (6)

The coefficients {airk}Mt
k=1 are found with account for satisfaction of these equalities and can be tabulated

or stored in the computer memory.
Now, we proceed to the grid in the initial condition x0 with the nodes x0(r) ∈ Gx0. For fixed

i ∈ 1, I and k ∈ 1,Mt we put the nodes x0(1), . . . , x0(Mx) into correspondence with the set of values
ai1k, . . . , aiMxk and perform their interpolation by associating them with the function of the known class

aik(x0) = wi(x0, bik), (7)

where bik = [birk, r = 1,Mx]
� is the vector of coefficients chosen by the condition

aik(x0(r)) = wi(x0(r), bik) = airk, r = 1,Mx. (8)

The coefficients {birk}Mx
r=1 may also be tabulated or stored in the computer memory. Similarly to the

above discussed technique, we carry out interpolation for all i = 1, I , r ∈ 1,Mx, and k ∈ 1,Mt.
We may present the numerical-analytic solution to Eq. (1) in the following vector form

x̃ = x̃(t, x0) = J(t, A(x0)), (9)

where J(t, A(x0)) = [Ji(t, Ai(x0)), i = 1, I ]� and Ai(x0) = [aik(x0), k = 1,Mt]
�.
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If we use the procedures of linear interpolation or approximation (similarly to works [1, 2]) for
describing the DO in the domain Gxt = {Gx, Gt}, then we write the approximate solution as

x̃i = A�
i (x0)Ψx(t), i = 1, I, x0 ∈ Gx0, t ∈ Gt, (10)

where Ai(x0) = [aik(x0), k = 1,Mt]
� is the functional vector of unknown coefficients aik(x0) that

possess the necessary smoothness with respect to the argument x0 and Ψx(t) = [ψxk(t), k = 1,Mt]
� is

the vector of prescribed smooth basis functions of the argument t, which is in general dependent on the
index i ∈ 1, I .

To characterize the elements of the vector Ai(x0), we use the notation

aik(x0) = B�
ikΛxi(x0), (11)

where Bik = [birk, r = 1,Mx]
� is the vector of unknown coefficients, Λxi(x0) = [λxir(x0), r = 1,Mx]

�

is the vector of prescribed smooth basis functions of the argument x0.
As a result, we obtain the solution

x̃i(t, x0) =

Mt∑

k=1

aik(x0)ψxk(t) =

Mt∑

k=1

Mx∑

r=1

birkλxir(x0)ψxk(t) = Ψ�
x (t)BiΛxi(x0), i = 1, I, (12)

where Bi = [birk, k = 1,Mt, r = 1,Mx] is the matrix of unknown coefficients corresponding to the ith
phase coordinate of the DO state vector.

In order to determine the coefficients birk, we use the family of RICs. We perform interpolation or
approximation of the given array (for a fixed i ∈ 1, I ) with account for (12) and find the estimate B∗

i of
the matrix Bi. Here, the conditions are fulfilled for the interpolation

x̃i(t(k), x0(r)) = Ψ�
x (t(k))BiΛxi(x0(r)) = xi(rk), r = 1,Mx, k = 1,Mt. (13)

They form the system of linear equations. After its solution we obtain the sought estimate B∗
i of the

matrix Bi. In the case of approximation the solution B∗
i (for a fixed i) is determined in the form

B∗
i = argmax

Bi

Mt∑

k=1

Mx∑

r=1

[Ψ�
x (t(k))BiΛxi(x0(r))− xi(rk)]

2. (14)

After determining the matrices B∗
i for all i, we construct the sought numerical-analytic solution

x̃(t, x0) = [x̃i(t, x0), i = 1, I ]� to differential Eq. (1),

x̃i(t, x0) =

Mt∑

k=1

Mx∑

r=1

b∗irkλxir(x0)ψxk(t) = Ψ�
x (t)B

∗
i Λxi(x0), i = 1, I. (15)

We must keep in mind that, in the construction of the family of RICs, we apply the temporal
computational grid of a large size which is many times the size Mt of the interpolation (approximation)
grid {t(k)}Mt

k=1 in t. In addition, for many DOs the dependence of the solution x(t, x0) on x0 is
weakly pronounced, which considerably reduces the size Mx of the computational grid in the initial
condition x0 and simplifies the interpolation (approximation) procedure for constructing the numerical-
analytic solution x̃(t, x0) to Eq. (1) describing the DO.

Using the rational choice of the main parameters in expressions (3)–(15) of the developed method,
we may construct the solution x̃(t, x0) to Eq. (1) that provides the accuracy of DO analysis in the domain
of admissibility Gxt required in practice. We may designate the sizes of the used grids (Mt and Mx) as
the parameters which allow achieving such accuracy.

Let us specify the procedure for constructing x̃(t, x0) in the case when the fundamental interpola-
tion polynomials (as a tensor product of one-dimensional fundamental polynomials [11]) are used in
expression (12). For this purpose, in the domain Gx0 of possible initial conditions we prescribe the
small-sized multidimensional calculation grid {x0(m)} = {x0(m1,...,mI)} (where m = (m1, . . . ,mI) is

the multidimensional node, mi = 1,Mxi, i = 1, I , and
I∏

i=1
Mxi = Mx is the grid size). For all its nodes
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we construct the family of RICs using any of the known high-precision numerical methods [11–13]
on some large-sized temporal grid covering the domain Gt (for convenience’s sake we use continuous
time):

xi(m) = xi(m1,...,mI) = xi(t, x0(m)) = xi(t, x0(m1 ,...,mI)), i = 1, I. (16)

In the segment ci ≤ xi0 ≤ di, we specify the nodes xi0(1), . . . , xi0(Mxi) and set

ψxk(t) = L(k)(t) =

Mt∏

j=1, j �=k

t− t(j)

t(k) − t(j)
.

In this case solution (12) may be represented as

x̃i(t, x0) =

Mt∑

k=1

∑

m

xi(mk)L(k)(t)L(m)(x0), i = 1, I, (17)

where
∑

m

is the multidimensional sum,

L(m)(x0) = L(m1,...,mI)(x01, . . . , x0I) =

I∏

i=1

L(mi)(xi0),

L(mi)(xi0) =

Mxi∑

q=1, q �=mi

xi0 − xi0(q)

xi0(mi) − xi0(q)
.

In addition to that, it is sometimes purposeful to use irregular spased grids, for instance, such that
has the interpolation nodes xi0(mi) and t(k) coinciding with the roots of Chebyshev polynomials [1]. In
this case the following estimate is valid for the residual εxi between the phase coordinates xi(t, x0) and
x̃i(t, x0) (similarly to [8])

εxi(x0) = ||x̃i(t, x0)− xi(t, x0)|| ≤ ε0[(L
−1
0 + 1) exp(L0|t− t0|)− L−1

0 ]. (18)

Analogously, we have the estimate for assessing proximity of the solutions x(t, x0) and x̃(t, x0),

εx(x0) = max
i

εxi(x0) ≤ ε0{
√
I exp(L0I

2T ) + (L0I)
−1[exp(L0I

2T )− 1]}. (19)

At I = 1 estimate (18) follows from (19).
The obtained relations allow optimizing the choice of parameters of the developed method for

constructing the approximate analytic solution characterizing the DO state. We rely on works [11–
13] and may also evaluate the contribution of the inherited and roundoff errors to the total error of the
approximate solution to Eq. (1) for the domain Gxt = {Gx, Gt}.

Relations (3)–(19) reflect the essence of the numerical-analytic method for describing the state
vector of multidimensional DO for a given set of addmissibility of the temporal coordinate and initial
condition.

4. NUMERICAL-ANALYTIC DESCRIPTION OF MEASURED OUTPUT
FOR A MULTIDIMENSIONAL DYNAMICAL OBJECT

The exact measured vector output of the multidimensional DO may be represented as

y = ϕ(t, x(t, x0)) = γ(t, x0), (20)

where x0 ∈ Gx0, t ∈ Gt, y ∈ Gyt, and ϕ: Gxt → Gyt.
Therefore, for the approximate DO output we have

ỹ = ϕ(t, x̃(t, x0)) = γ̃(t, x0), x0 ∈ Gx0, t ∈ Gt, y ∈ Gyt. (21)
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For the numerical-analytic description of the measured output of DO, we may also use the family of
RICs and apply the principle of smooth dependence y = γ(t, x0) on the initial condition x0 ∈ Gx0. To
this end, we put the family of RICs x(r) = x(t, x0(r)), r = 1,Mx into correspondence with the family of
output trajectories

yj(r) = ϕj(t, x(t, x0(r))) = γj(t, x0(r)), j ∈ 1, J , (22)

which may be presented as an array of numbers

yj(rk) = ϕj(t(k), x(t(k), x0(r))) = γj(t(k), x0(r)), r = 1,Mx, k = 1,K. (23)

Then, we use the approximation

ỹj = V �
j (x0)Ψyj(t), x0 ∈ Gx0, t ∈ Gt, (24)

where Vj(x0) = [vjk(x0), k = 1,Mt]
� is the functional vector of unknown coefficients vjk(x0) which

have the necessary smoothness with respect to the argument x0; Ψyj(t) = [ψyjk(t), k = 1,Mt]
� is the

vector of prescribed smooth basis functions of the argument t (in the choice of vector Ψyj(t) we account
for possibility of accurate and sufficient description of the output trajectory yj = γj(t, x0) in the domain
Gyt and some computational aspects).

We determine the elements of vector Vj(x0) by

vjk(x0) = W�
jkΛyj(x0), (25)

where Wjk = [wjrk, r = 1,Mx]
� is the vector of unknown coefficients, Λyj(x0) = [λyjr(x0), r =

1,Mx]
� is the vector of smooth basis functions of x0, which is in general dependent on the index j ∈ 1, J .

Thus, the jth scalar measured output of DO may be characterized in the numerical-analytic form

ỹj = γ̃j(t, x0) =

Mt∑

k=1

vjk(x0)ψyjk(t) =

Mt∑

k=1

Mx∑

r=1

wjrkλyjr(x0)ψyjk(t) = Ψ�
yj(t)WjΛyj(x0), (26)

where Wj = [wjrk, k = 1,Mt, r = 1,Mx] is the matrix of unknown coefficients.
To determine the estimate W ∗

j of the matrix Wj , we may also use the interpolation or the approxima-
tion approach. In the first case we account for the corresponding characteristic interpolation conditions
(for a fixed j):

γ̃j(t(k), x0(r)) = Ψ�
yj(t(k))WjΛyj(x0(r)) = yj(rk), k = 1,Mt, r = 1,Mx. (27)

They specify the system of linear equations. We solve this system and find the desired estimate W ∗
j of

the matrix Wj . In the second case the solution W ∗
j (for a fixed j) is represented as

W ∗
j = argmax

Wj

Mt∑

k=1

Mx∑

r=1

[Ψ�
yj(t(k))WjΛyj(x0(r))− yj(rk)]

2. (28)

After determining the matrices W ∗
j for all j, we construct the sought numerical-analytic representa-

tion ỹ(t) = [γ̃j(t, x0), j = 1, J ]� for the measured output of DO,

ỹj = γ̃j(t, x0) =

Mt∑

k=1

Mx∑

r=1

w∗
jrkλyjr(x0)ψyjk(t) = Ψ�

yj(t)W
∗
j Λyj(x0), j = 1, J . (29)

In the special case, by analogy with (17) we may represent the measured output of the DO in the form

ỹj = γ̃j(t, x0) =

Mt∑

k=1

∑

m

yj(mk)Lj(k)(t)Lj(m)(x0), j = 1, J . (30)

Expression (30) is most convenient in numerical-analytic calculations.
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Thus, on the basis of (20)–(30), by choosing the main parameters of the developed method rationally,
we may construct the approximate analytic expression for the vector of measured parameters y =
ϕ(t, x(t, x0)) = γ(t, x0) which provides the practically required accuracy of analysis of the DO output
vector in the domain of admissibility Gyt. Among these parameters are constants Mt and Mx and
functions Λyj(x0) and Ψyj(t).

5. SOME GENERALIZATIONS, COMPUTATIONAL ASPECTS,
AND RECOMMENDATIONS

It is not hard to generalized the above proposed approach for constructing the approximate analytic
solution to Eq. (1) for the multidimensional DO to the DOs of the form

dz

dt
= f̄(t, z, η), z ∈ Gz, η ∈ Gη,

where z = [zi, i = 1, I1]
� is the DO state vector, η = [ηi, i = 1, I2]

� is the vector of constant parameters
for which we can only point some domain of admissibility Gη.

We suppose

t ∈ Gt = [t0, t0 + T ]; z0 = z(t0) ∈ Gz0 = {[c1, d1], [c2, d2], . . . , [cI1 , dI1 ]}; Gz0 ⊆ Gz;

η ∈ Gη = {[r1, p1], [r2, p2], . . . , [rI2 , pI2 ]}.

We introduce the extended vector x = [z�, η�]� of dimension I = I1 + I2 and take into account that
dη/dt ≡ 0, thus arriving at Eq. (1), in which

f(t, x) = [fi(t, x), i = 1, I ]� = [f̄i(t, z, η), i = 1, I1, f̄i(t, z, η), i = I1 + 1, I ]�,

where f̄i(t, z, η) ≡ 0, i = I1 + 1, I , and Gxt = {Gz , Gη , Gt}.
Thus, the class of more general DOs which are widely used in practice (for instance, in ballistics [14]

and several problems of identification and optimal control [15]) also fits the sphere of application of the
developed method.

6. ILLUSTRATIVE EXAMPLE

To estimate the efficiency of the proposed method, we restrict ourselves with the DO corresponding to
a rocket moving in the homogeneous gravity field with the linear law of mass flow rate without resistance
of surrounding medium. It was shown in [16] that the considered case is a well illustrative example
for testing various numerical-analytic methods. The curvilinear motion of a rocket is described by the
system of differential equations (here, time is measured in seconds)

dz1
dt

= −g0z
−1
2 ,

dz2
dt

= cvη(1 − ηt)−1 − g0th(z1),

where z1 = x1 is the phase (dimensionless) coordinate corresponding to the angle β (rad) of inclination
of the velocity vector to the horizon

z1 = ln[tan (π/4 + β/2)],

z2 = x2 is the rocket velocity (m/s), g0 is the gravity acceleration (m/s2), η = x3 is the rocket specific
mass flow rate (s−1), which is regarded as an uncertainty parameter, and cv is the relative velocity of
expelled particles (m/s).

Next, we suppose that g0 = 9.80665, cv = 2290, t0 = 0, T = 70, xi0 = xi(0) ∈ Gxi = [ci, di], i =
1, 3, c1 = 1.0107, d1 = 2.4362, c2 = 100, d2 = 200, c3 = r = 0.0060, and d3 = p = 0.0100.

As a measured parameter y we use the angle β, that is, J = 1, y = β (in the formulas below we omit
the index j), I1 = 2, I2 = 1, and

f1(t, x) = −g0x
−1
2 , f2(t, x) = cvx3(1− x3t)

−1 − g0þ(x1), f3(t, x) ≡ 0,

m = (m1,m2,m3), Mx1 = 4, Mx2 = 6, Mx3 = 5, Mx = Mx1Mx2Mx3 = 120,

Mt = 11, ψxk(t) = L(k)(t), t(k) = 7(k − 1); k = 1, 11,
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Fig. 1. Special residual ε̄x1 over t and x10 for fixed values x20 and x30.

L(m)(x0) = L(m1,m2,m3)(x01, x02, x03) = L(m1)(x10)L(m2)(x20)L(m3)(x30).

In the computations the accuracy of floating-point data was 2,2 · 10−16. The results of computations
are rounded up to the fourth decimal places.

To construct the family of RICs, we used the fourth-order Runge–Kutta method. For the illustrative
purposes we applied the special residual ε̄xi = |xi(t, x0)− x̃i(t, x0)|, i ∈ {1, 2} as a function of time t and
initial condition x0 to estimate the accuracy. Thus, Fig. 1 presents the dependence of the special residual
ε̄x1 on t and x10 for fixed values x20 = 104 and x30 = 0.0063. Here, in the original domain {Gx0, Gt} we
have the general residual εx1 = max

x0

εx1(x0) = 0.0020, where

εx1(x0) = max
t

|x̃1(t, x0)− x1(t, x0)|,

which counts to 0.3237%. This maximum corresponds to the node with the coordinates t = 27,
x10 = 2.1466, x20 = 104, and x30 = 0.0063. In the truncated domain {Ḡx0, Ḡt} (where Ḡx0 =
{[1.3170, 1.7454], [120, 180], [0.0070, 0.0090]} and Ḡt = [7, 63]) we obtained the total residual εx1 =
0.0004, which counts to 0.1853%. The maximum corresponds to the node (t = 36, x10 = 1.5065,
x20 = 128, x30 = 0.0070).

Figure 2 shows the dependence of the special residual ε̄x2 on t and x30 for fixed values x10 = 2.1466
and x20 = 124. Here, in the original domain {Gx0, Gt} we have the total residual εx2 = max

x0

εx2(x0) =

4.0542, where
εx2(x0) = max

t
|x̃2(t, x0)− x2(t, x0)|,

which counts to 0.17441%. This maximum corresponds to the node (t = 70, x10 = 2.14658, x20 = 124,
x30 = 0.01). In the truncated domain {Ḡx0, Ḡt} we obtain the total residual εx2 = 0.6355, which
counts to 0.036708%. The maximum corresponds to the node (t = 63, x10 = 1.506454, x20 = 180,
x30 = 0.009).

These results vividly demonstrate the capability of significant improvement in the accuracy of the
numerical-analytic solution to the differential equation when the original domain {Gx0, Gt} is truncated.

We take into account that the measured parameter may be represented as

y = β = 2{arctan [exp(z1)]− π/4}
and provide in Fig. 3 the three-dimensional graph of special residual

ε̄β = |γ(t, x0)− γ̃∗(t, x0)|
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Fig. 2. Special residual ε̄x2 over t and x30 for fixed values x10 and x20.
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Fig. 3. Special residual ε̄β over t and x10 for fixed values x20 and x30.

as a function of t and x10 for fixed values x20 = 108 and x30 = 0.00625.

Analogously, in Fig. 4 we consider the case of dependence of ε̄β on t and x30 for fixed values
x10 = 2.1466 and x20 = 108. Here, in the original domain {Gx0, Gt} we have the general residual
εβ = max

x0

εβ(x0) = 0.098842, where

εβ(x0) = max
t

|β̃(t, x0)− β(t, x0)|,

which counts to 0.3303%. The maximum is found in the node (t = 31, x10 = 2.14658, x20 = 108,
x30 = 0.00625). In the truncated domain {Ḡx0, Ḡt} we obtain the total residual εβ = 0.01993, which
means 0.2197%. The maximum is in the node (t = 38, x10 = 1.506454, x20 = 128, x30 = 0.007).

Similarly, in the original domain {Gx0, Gt} we have the total residual ε(1)β = max
x0

ε
(1)
β (x0) = 5.4919
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Fig. 4. Special residual ε̄β over t and x30 for fixed values x10 and x20.

for the derivative y(1) = β(1), where

ε
(1)
β (x0) = max

t
|β̃(1)(t, x0)− β(1)(t, x0)|,

which counts to 6.952%. The maximum corresponds to the node (t = 1, x10 = 2.436246, x20 = 100,
x30 = 0.006). In the truncated domain {Ḡx0, Ḡt} we obtain the total residual ε(1)β = 3.1612, which is
5.586%. The maximum is found in the node (t = 8, x10 = 1.735415, x20 = 120, x30 = 0.007).

The results of the numerical experiment readily illustrate the capability of qualitative description
of both input and output parameters of DOs even on the small-sized computational grids using the
developed numerical-analytic method. To reduce the negative boundary effects, we must narrow the
domains of definition of the parameters t and x0.

7. CONCLUSIONS

The developed numerical-analytic method for studying multidimensional DOs is oriented mostly to
the cases related with solution of applied problems [4–7, 9, 10, 14, 15] that require computations in
real time. This method suggests taking out the core amount of computations to the preliminary stage
directly not associated with the observation of DO. At the end of this stage, based on the family of RICs,
we must formulate the analytic solution to the differential equation and the analytic expression for the
measured output of DO which are valid for the given domain of variation in the temporal coordinate,
initial condition, and uncertainty parameters.

Using the method of [1], the obtained results may be easily extended to the problem of active
identification of the measured output of multidimensional DO. When the vector of measured parameters
has the corresponding dimension (when the necessary condition of observability is satisfied), these
results may be extended to the problem of active identification of the mathematical model of the DO
itself. Such identification is related with execution of the previously planned experiment [10].
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