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Abstract—This paper touches upon the problem of a compact polygonal description of objects.
A method of lossless compression of geometric data based on perturbation functions is proposed. Ad-
vantages of this approach over the known algorithms of transformation of three-dimensional models for
fast transmission of information and its compact storage are demonstrated.
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INTRODUCTION

As computer technologies and Internet are developed and the sphere of their applications is extended,
there arises an urgent problem of a compact description of complicated three-dimensional (3D) computer
models. Databases for such objects can occupy a large volume of memory. Uploading of files (especially
from the Internet) can take a long time. Various algorithms of geometric data compression were developed
to reduce the memory volume necessary for storage of the polygonal description.

The geometric structure in polygonal models, which is called the geometry, consists of a set of points and
topology characterizing interactions between the neighboring points. The description is finalized by the list
of attributes (normals, colors, and textures). The majority of geometric data compression methods is based
on encoding the relationships of the polygonal presentation of objects and on the description of vertices
and faces of the encircling tree by means of vertex reordering [1, 2] or using additional information, e.g.,
the power of vertices defining the method of vertex addition to the previous sequence [3].

Thus, the list of vertices consists of relations and geometry, where differential encoding or position
prediction is used rather than the absolute coordinates of the vertices. The single-rate compression methods
of were described in [1–5]. The methods of the so-called progressive geometric compression are extended
versions of the single-rate compression methods [6–10]. Naturally, if the models remain within the framework
of the polygonal description, high degrees of compression cannot be expected. Thus, a complex VRML file
(Virtual Reality Modeling Language) can be reduced by 2.33% from the initial size for the 12-bit quantization
and only by 1.67% for the 10-bit quantization.

The description of 3D objects can be made more compact by using special functions. Function-based
surfaces are used for many problems in computer graphics, including modeling of soft or organic objects, 3D
morphing, detection of collisions, and constructive solid geometry. Though operations for functional objects
are simple, form creation is a large problem. Yngve and Turk [11] considered conversion for variational
implicit surfaces with the use of an iterative approach. However, transformation of complex models with
a resolution of 170 × 170 × 373 voxels required hours of computer operation (R10000, MIPS-processor,
195 MHz, SGI Origin). The iterative approach was also described in [12]. Ohtake et al. [13] presented a
method of transforming polygonal models to 3D models on the basis of radial functions. In that method,
the polygonal model was approximated by second-order functions, where the sought function was a sum of
patches multiplied by the container function (a patch is a quadric surface approximating the surface near the
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chosen point). The container function is a factor that guarantees that a patch does not affect other patches
outside the chosen domain. The maximum compression ratio in this approach is equal to four.

The goal of the present work is to develop a fast method with a high compression ratio without the loss
of geometric data on the basis of perturbation functions.

PERTURBATION FUNCTIONS

Complex geometric objects are usually described with the use of (second-order) functions of deviation
from the basic quadric surface [14]. Functionally defined surfaces are constructed from second-order surfaces
(quadric surfaces) with analytical perturbation functions, which ensures a high geometric compression ratio
for realistic 3D objects. The surfaces are considered as closed subsets of the Euclidean space E3 defined by
the description function F (x, y, z) ≥ 0, where F is a continuous real function, and x, y, z is a point in E3,
which is defined by the coordinate variables. The function F (x, y, z) > 0 describes the points inside the
surface, the function F (x, y, z) = 0 describes the points on the boundary, and the function F (x, y, z) < 0
describes the points that are located outside the domain and do not belong to the surface.

The algebraic inequality of the second degree (with three unknowns x, y, and z) is any inequality

F (x, y, z) = A11x
2 +A22y

2 +A33z
2 +A12xy +A13xz +A23yz +A14x+A24y +A34z +A44 ≥ 0. (1)

This inequality can be written in the matrix form as

(
x y z 1

)


A11 A12/2 A13/2 A14/2

A12/2 A22 A23/2 A24/2

A13/2 A23/2 A33 A34/2

A14/2 A24/2 A34/2 A44




x
y
z
1

 ≥ 0, (2)

or as a general inequality of the second degree with respect to the spatial variables x, y, and z:

(A11x+A12y +A13z +A14)x+ (A21x+A22y +A23z +A24)y+

+(A31x+A32y +A33z +A34)z +A41x+A42y +A43z +A44 ≥ 0 (3)

(Aik = Aki, i, k = 1, 2, 3, 4).
Free forms are constructed with the use of quadric surfaces and are presented as a composition of the

basic quadric and perturbations:

F ′(x, y, z) = F (x, y, z) +
N∑

i = 1

fiRi(x, y, z). (4)

Here fi is the form factor and R(x, y, z) is the perturbation:

Ri(x, y, z) =

{
Q3

i (x, y, z), if Qi(x, y, z) ≥ 0,

0, if Qi(x, y, z) < 0
(5)

[Q(x, y, z) is the perturbing quadric].
The geometric model generates conditions for designing objects and their compositions of different com-

plexities. For this purpose, we use the set of geometric operations mathematically defined as follows [15]:

M1 +M2 + . . .+Mn →M. (6)

Models of complex objects are formed on the basis of perturbation functions with the use of set-theoretic
combining and intersecting realized by means of Boolean operations. A binary operation of objects G1

and G2 means the operation G3 = Φj(G1, G2) of determining

f3 = ψ(f1(x, y, z), f2(x, y, z)) ≥ 0, (7)

where ψ is a continuous real function of two variables.
Operations of combining and intersecting are of primary interest for solving this problem.
The comprehensive theory of geometric transformations of implicit surfaces was described in [16].
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METHOD OF GEOMETRIC DATA COMPRESSION

To ensure a correct transformation and the maximum compact functional description, the initial polygonal
model (Fig. 1), which is a combination of several simple geometric models, should be segmented (Fig. 2).
To distinguish the basic quadric from the perturbation functions, the coefficients in the equations that
describe the model are found in advance. For this purpose, the quadric surface should be inscribed into
the simple polygonal model (Fig. 3) or, more exactly, it is necessary to find the coefficients of the basic
quadric on the basis of nine points (vertices of the polygonal mesh). The coefficients in the equations of the
perturbation functions (1), A11, A22, A33, A12, A13, A23, A14, A24, A34, and A44, are further indicated by
the letters A,B,C,D,E, F,G,H, I, and K, respectively, and the coefficients of the equations of the basic
quadric surfaces are denoted by the letter q. In the next definition of the quadric, we have

Q =


qxx qxy/2 qxz/2 qx/2

qxy/2 qyy qyz/2 qy/2

qxz/2 qyz/2 qzz qz/2

 . (8)

The value of the function defined by Eq. (8) at an arbitrary point P [x, y, z] has the form

Q(P [x, y, z]) = qxxx
2 + qyyy

2 + qzzz
2 + qxyxy + qxzxz + qyzyz + qxx+ qyy + qzz + q. (9)

Fig. 1. Initial polygonal model.

Fig. 2. Simple polygonal objects.

Fig. 3. Simple polygonal (left) and function-based objects.
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As the value of Q on the surface is equal to zero, the coefficients of the quadric surface on the basis of nine
points (P1[x1, y1, z1]– P9[x9, y9, z9]) are found from the system of linear equations

Q(P1) = 0
Q(P2) = 0

. . .

Q(Pi) = 0
. . .

Q(P9) = 0


. (10)

Substituting Eqs. (9) into Eqs. (10), we obtain

qxxx
2
1 + qyyy

2
1 + qzzz

2
1 + qxyx1y1 + qxzx1z1 + qyzy1z1 + qxx1 + qyy1 + qzz1 + q = 0

qxxx
2
2 + qyyy

2
2 + qzzz

2
2 + qxyx2y2 + qxzx2z2 + qyzy2z2 + qxx2 + qyy2 + qzz2 + q = 0

. . .

qxxx
2
i + qyyy

2
i + qzzz

2
i + qxyxiyi + qxzxizi + qyzyizi + qxxi + qyyi + qzzi + q = 0

. . .

qxxx
2
9 + qyyy

2
9 + qzzz

2
9 + qxyx9y9 + qxzx9z9 + qyzy9z9 + qxx9 + qyy9 + qzz9 + q = 0


. (11)

The coefficients of the quadric surface are calculated by the Cramer method:

x2
1 y2

1 z21 x1y1 x1z1 y1z1 x1 y1 z1

x2
2 y2

2 z22 x2y2 x2z2 y2z2 x2 y2 z2

x2
3 y2

3 z23 x3y3 x3z3 y3z3 x3 y3 z3

x2
4 y2

4 z24 x4y4 x4z4 y4z4 x4 y4 z4

x2
5 y2

5 z25 x5y5 x5z5 y5z5 x5 y5 z5

x2
6 y2

6 z26 x6y6 x6z6 y6z6 x6 y6 z6

x2
7 y2

7 z27 x7y7 x7z7 y7z7 x7 y7 z7

x2
8 y2

8 z28 x8y8 x8z8 y8z8 x8 y8 z8

x2
9 y2

9 z29 x9y9 x9z9 y9z9 x9 y9 z9





qxx

qyy

qzz

qxy

qxz

qyz

qx

qy

qz


=



K

K

K

K

K

K

K

K

K


. (12)

Solving system (12) with a free term q (which is assumed to be equal to K) for prescribed P1[x1, y1, z1] −
P9[x9, y9, z9], we find nine sought coefficients: qxx, qyy, qzz , qxy, qxz , qyz , qx, qy, and qz . In what follows,
the coefficients of this quadric will be used in the course of transformation to the functional model.

The functional model is defined during rasterization in a cube with the center at (0, 0, 0) and coordi-
nates ranging from −1 to 1 in terms of x, y, and z in the object-fitted coordinate system. Passing around
the octal tree

A′ = A/4; B′ = B/4; C ′ = C/4; D′ = D/4; E′ = E/4; F ′ = F/4;

G′ = G/2 + iA/2 + jD/4 + kE/4; H ′ = H/2 + iD/4 + jB/2 + kF/4;

I ′ = I/2 + iE/4 + jF/4 + kC/2; K ′ = K/2 + iG/4 + jH/4 + kI/4;

K ′′ = K ′/2 + iG′/2 + jH ′/2 + kI ′/2

(13)

we divide the coefficients A,B,C,D,E, and F by 4, divide the coordinates x, y, and z by 2 (i.e., reduce
the cube size), and then apply shifting by the vector (±0.5;±0.5;±0.5), i.e., to one of eight subcubes (13),
where the non-primed coefficients are taken from the previous step.

Before transforming polygonal segmented models to functional models, we have to find all points of the
polygonal surface. Then all branches and leaves of the tree where the model intersects with subcubes of
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Fig. 4. Function-based model.

various levels of the octal tree of object space division are marked. This is easy to do because all intersected
leaves of the tree are known:

Nx = A′
14/

√
A
′2
14 +A

′2
24 +A

′2
34, (14)

Ny = A′
24/

√
A
′2
14 +A

′2
24 +A

′2
34, (15)

Nz = A′
34/

√
A
′2
14 +A

′2
24 +A

′2
34. (16)

The essence of the transformation can be described as follows. If recursive division of the object space
allows one to visualize functionally defined objects (calculate surface points, normals at these points, lumi-
nance, etc.), then one can also solve the inverse problem: find the functions that describe the considered
object on the basis of the prescribed points and normals (14)–(16). For this purpose, one has to solve sys-
tem (13), i.e., calculate the coefficients of the equations of the lowest level of object space division (leaves
of the octal tree), pass around the octal tree of object space division in the opposite direction, calculate the
function coefficients, and minimize these functions. Systems of linear equations are solved at each recursion
level, identical coefficients of the equations are determined (with allowance for the prescribed threshold of
the approximation accuracy), and the number of functions at each level is minimized. It is only after all
equations of the level are considered that the transition to the next (upper) level occurs. The process is
repeated until the root of the octal tree is reached. As a result, a necessary minimum number of functions is
obtained, which represent this object in the format of the description of functionally defined objects on the
basis of quadric surfaces with analytical perturbation functions. After that, one only has to combine simple
objects into a complex object with the use of the set-theoretic operation [15] (Fig. 4).

ANALYSIS OF THE METHOD AND RESULTS

The initial model (see Fig. 1) consisted of 136306 triangles and 68418 vertices; it was converted to 83
functions (see Fig. 4). The description of the surface with n × n vertices on the basis of polygons requires
3n2 real numbers necessary to store these vertices and 6(n− 1)2 integer numbers necessary to describe the
triangles, whereas ten coefficients are sufficient to describe one function in the general case. The considered
model consists mainly of ellipsoids, and they are defined by an even smaller number of coefficients. The
compression ratio is more than 200. The experimental investigations showed that the compression ratio
varied from 10 to 100 and higher depending on the level of detail of the test model; the conversion time
varied from several milliseconds to one second. The method was tested for several types of cars, three types of
aircraft, many parts, and several assembly units of polygonal models. Using this method, one can transform
polygonal models to functional models without losses. Moreover, the image quality will be improved for
smooth curvilinear surfaces. If necessary, the model can be converted back to the polygonal description
format, as it was done in [17], and then the model can be visualized in a standard manner used for geometric
accelerators or in a functionally prescribed form [18]. The tests were performed on the processor Intel Core2
CPU E8400 3.0 GHz. The known approaches to conversion of polygonal models to implicit surfaces involve
iterative methods, which are approximate and rather slow. In the proposed approach, the initial polygonal
mesh of the complex object is transformed to a function-based model by means of rigorous mathematical
calculations without any iterations.

An analyzer of criterial deviations was developed for determining the deviations (vertices and normals).
The degree of approximation of the resultant functionally defined surface to the initial triangular mesh was
analyzed with the use of two metrics: deviation of the vertices of the triangular mesh from the surface of
the functional object and deviation of the normals at the triangular grid vertices from the normals of the
functional surface. For this purpose, we first calculated the data of the buffer of the depth of the polygonal
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and functional models in the form of a 2D array. Each element of this array is the distance from the camera
to the point on the model surface. Then we compared all points of the buffers for finding the mean difference
and calculated the mean deviation for the corresponding model. If the polygonal and functional models
completely coincide, then this deviation is equal to zero. These results were determined in a 3D cube with
a resolution of 1.0× 1.0× 1.0, and it was found that compression occurs without losses.

CONCLUSIONS

An effective lossless method of compression of geometric (polygonal) data is proposed. The essence
of the method implies the transformation of objects to a functional description on the basis of perturbation
functions. The transformation is ensured by means of rigorous mathematical calculations rather than by
iterative or other approximate methods, which lead to partial loss of information. The proposed methods
of definition of 3D objects and geometric data compression offer a number of advantages over available
approaches. The main advantages are the simplicity of the transformation of polygonal objects to the
functional description with rapid search for the describing functions and significant reduction of the number
of surfaces used to define curvilinear objects.

This work was supported by the Federal Agency for Scientific Organizations (State Registration
No. AAAA-A17-117062110016-4).
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