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Abstract—This paper considers issues related to the identification of the parameters and form of the
probability density function of generally non-Gaussian additive and multiplicative noise affecting the
signal. The results of numerical simulation of methods for estimating the information parameters of
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INTRODUCTION

In most cases, the demodulation (filtering) algorithms for the information processes of useful signals
have been obtained assuming that the types and parameters of the probability density function (PDF) of
additive n or multiplicative η noise are exactly known [1, 2]. In practice, the situation often arises where a
priori information on the noise PDF and parameters are known partially or completely absent [3]. Typically,
information on noise PDFs have a general nature, e.g., only the class Ai{Wn(n)} (n = n, η) to which
distribution of belongs is known. In addition, during operation of radio systems, not only the characteristics
of information processes but also disturbances can change, which leads to unsatisfactory results when using
synthesized algorithms.

The aim of this work is to identify the distribution parameters of the non-Gaussian noise affecting the
processed signal under a priori uncertainty conditions.

Currently, there are two most widely used approaches to the synthesis of demodulators (meters) under
a priori uncertainty: adaptive (self-adjusting) [4] and robust (stable, steady) [5]. The first approach uses
iterative techniques to estimate the unknown random parameters of noise during operation of the demodu-
lator. In the second approach, values are specified by a set of possible PDFs Wn(n), and not by a particular
density probability function {Wn(n)}i. In this case, instead of a particular accuracy characteristic of the
synthesized demodulator (for a corresponding PDF), a guaranteed characteristic due to the worst PDF
W ∗

n (n) ∈ Ai = {Wn(n)} is used. In this case, the criterion of the minimum of the a posteriori variance σ2
ε of

the estimated parameter guaranteed on the set Ai can serve as an optimality criteria.
Note that there is no general method for solving problems with an arbitrarily specified set Ai. Only

particular cases of efficient numerical algorithms based on a coarsened maximum likelihood method have
been developed [3].
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IDENTIFICATION OF THE NON-GAUSSIAN NOISE DISTRIBUTION FORM

An important issue in the synthesis of demodulators under a priori uncertainty conditions is the identifi-
cation of the noise distribution form. There are various methods for identifying the distribution of random
processes. In particular, the skewness (Ks) and kurtosis (Kk) coefficients have been proposed [6] as char-
acteristics of the PDF form. However, if the noise probability density function is symmetric, then Ks = 0,
and Kk remains the only information characteristics. In this case, it is efficient to use of the entropy coeffi-
cient of the PDF Ken = σ−1∆en = (2σ)−1 exp{H(n)}, where σ is the standard deviation (SD); ∆en is the

entropy value of the error; H(n) = −
∞∫
−∞

Wn(n) lnWn(n)dn is the entropy of the PDF.

Note that for all distribution laws, the value of Ken is within 0–2.066, with the maximum value
Ken = 2.066 having a Gaussian distribution.

As a second characteristic of the PDF form, instead of the kurtosis coefficient Kk, which varies from 1
to ∞, it is convenient to use the counterkurtosis Kan = K−0.5

k , which varies from 0 to 1.
Using the introduced characteristics, any symmetric probability density function can be represented by

a point in the system of the coordinates (Ken and Kan). The proposed representation of analytical models
of symmetric PDFs as points in the plane of the characteristics (Ken and Kan) provides a fairly accurate
and reliable characterization of the closeness of the points corresponding to the extreme PDFs to one model
or another.

It should be noted that the parameters Ken and Kan of the given analytical distribution are found
uniquely. The reverse transition is not unique since a sheaf of curves corresponding to PDFs of different
classes can pass through a topographic point with given coordinates (Ken,Kan), which is the main disad-
vantage of the proposed systematization and classification of PDFs according to their form.

In the case of one-sided probability density functions, characteristic of, e.g., the distributions of envelopes
of narrowband random processes (multiplicative noise η), the skewness coefficient should be added to the
above quantities. In this case, the distribution W (η) being estimated is assigned a point (or a region in the
case of multiparameter PDFs) in the space of (Ks,Ken,Kan), and not in the plane of (Ken,Kan).

Recursive procedures, requiring much less computer memory than non-recursive (a posteriori) algorithms,
are widely used to obtain current estimates of numerical characteristics of random processes.

Recursive estimates of the initial moments of the ith order mi in sampling yh, h = 1,H, have the form

m̂
(i)
h = m̂

(i)
h− 1 + h−1(yh − m̂

(i)
h− 1), m0 = 0, h = 1,H. (1)

If the expectation of a random process my is known, the estimate of the variance (the second central
moment M2) is given by the formula

M̂2h = M̂2h− 1 + h−1((yh −my)2 − M̂2h− 1). (2)

In this case, the third and fourth central moments are given by the expressions

M̂3h = M̂3h− 1 + h−1((yh −my)3 − M̂3h− 1);

M̂4h = M̂4h− 1 + h−1((yh −my)4 − M̂4h− 1).

(3)

Using (1)–(3), we obtain the following recursive relations for the skewness and kurtosis, respectively:

Ksh = M̂3hM̂−1.5
2h ; Kkh = M̂4hM̂−2

2h . (4)

When implementing these algorithms in cases where the maximum number of measurements H is not
determined beforehand and is specified by external conditions, it is necessary to formulate a criterion for
stopping the estimation procedure and terminating the calculation of these parameters.

In particular, to stop the calculation procedure in accordance with algorithms (1)–(4), the number of
measurements H required to provide accuracy can be evaluated at each step and compared with the number
of measurements. As the criterion it is common to use the inequality |λ̂h − λ̂h− 1| ≤ δ, where λ̂h is the
estimate of the measured parameter λ in step h and δ is the permissible measurement error.
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Fig. 1. Numerical simulation results of the statistical characteristics of a random process with a
bimodal PDF: (a) is the expectation and variance of the fragment of the simulated process; (b) is
the PDF histogram of instantaneous values of the simulated process; (c) is the dependence of the
skewness coefficient on the iteration step; (d) is the dependence of the kurtosis coefficient on the
iteration step.

Figure 1 shows the results of numerical simulation of the statistical characteristics of a random process yh

with a bimodal PDF of instantaneous values depending on the iteration step h, where mH = h−1
( H∑

h = 1
yh

)
.

The solid curves in the figure are calculated by formulas (4), and the dashed curves were obtained by
non-recursive formulas using a finite sample.

As can be seen from the graphs in Figs. 1c and 1d, the solid and dashed curves converge with increasing
number of samples. This indicates the identity of the estimation procedures using the recursive and non-
recursive algorithms.

Note that the PDF histogram of instantaneous values can be used to calculate the entropy coefficient

Ken = (2σ)−1(bN)10
− 1

N

m∑
i = 1

ni ln ni
. Here b is the width of the histogram column, N is the sample size, m is

the number of histogram columns, ni is the number of samples in the ith column.
Below, we give formulas for estimating the spread of the SD estimates of the counterkurtosis and entropy

coefficient as a function of the sample size and kurtosis of the distribution.
The sample variance and standard deviation for N > 20 with an error of 10 % can be defined as

D(D∗) = N−1(M4− σ4), σ(σ∗) = (2σN)−1(M4− σ4)0.5; here σ2 and M4 are the second and fourth central
moments of the population.
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The relative rms error of the SD estimate depends on the sample size and kurtosis of the PDF
δ(σ∗) = σ−1(σ(σ∗)) = (2N0.5)−1(ε − 1)0.5, where ε = λh − λ̂h. The spread of the counterkurtosis
estimate for any PDFs with an error of no more than 8–10 % is defined as δ(Kan) = K−1

an (σ(Kan))−1 =
((29N)0.5)−1(ε2 − 1)3/4.

The spread of the estimates of the entropy coefficient Ken and the entropy value of the error ∆en can be
found from the relations

σ(Ken) = 0.9(KenKen(KenN)0.5)−1,

δ(Ken) =
σ(Ken)

Ken
=

0.9
KenK2

en(KenN)0.5
, δ(∆en) =

σ(∆en)
∆en

≈
[ 9.15 · 10−4

(1−Ken)3
+ 5.1(1−Ken)3

]0.5
.

Taking into account the expression for H(n), we represent the entropy ISh (information according to
Shannon, Shannon entropy) by the true PDF

ISh = Iun −∆I, (5)

where Iun is the entropy of the uniform distribution; ∆I is the deviation of the true entropy of the random
process with the PDF W (n) from the entropy of the uniform distribution.

It has been shown [6] that the entropy of the uniform distribution Iun depends only on the measurement
range (scale) of the random process, with the uncertainty interval in this case lying between nmin and nmax,
and the amount of Shannon information is a logarithmic measure of the length of this interval:

ISh = −
nmax∫

nmin

n−1
Sh log(nSh)−1dn = log nSh, nSh = nmax − nmin.

Note that the entropy of any PDF does not depend on mathematical expectations i.e., does not change
with transfer of the origin of the random variable.

A real-time estimate of the entropy of random processes with a uniform distributions can be calculated
either via the sample mean m̂h and sample variance M̂2, or by using order statistics {yh}.

In the first case,

n̂min = m̂h −
√

3M̂2h; n̂max = m̂h +
√

3M̂2h. (6)

In the second case,

n̂min = y′1 − (h− 1)−1(y′h − y′1); n̂max = y′1 + (h− 1)−1(y′h − y′1). (7)

Here {y′h}, h = 1,H is a variational series whose elements yh − y′h− 1 are used to obtain order statistics or
to group (systematize) experimental data.

If we set Iun � ∆I in (5), algorithms (6) or (7) can be used to estimate the entropy of non-Gaussian
processes.

Figure 2 shows numerical values for the entropy depending on the sample for a random process with a
bimodal PDF. It is evident from the figure that the estimation of the entropy requires a fairly large sample
size (H > 100).

IDENTIFICATION OF DISTRIBUTION PARAMETERS
FOR MULTIPLICATIVE NON-GAUSSIAN NOISE AS AN EXAMPLE

As an example, we determine the main characteristics for the PDF of the envelope of a narrowband signal
(multiplicative noise) described by the Nakagami distribution:

W (η) = (2/Γ(m))(m/Ω)mη2m− 1 exp{mη2/Ω}, η ≥ 0, m = Ω2/〈(η2 − Ω2)2〉 ≥ 0.5,

where Ω = 〈η2〉 are the distribution parameters and Γ(·) is the gamma function. Taking into account the
expression for the initial υ moments of the Nakagami PDF mυ

η = Γ(m+υ/2)/(Γ(m)(Ω/m)−υ/2), we express
the central moments as
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Fig. 2. Functional dependence of ISh on h.

M2 = Ω2
[
1− Γ2(m + 0.5)

mΓ2(m)

]
, M3 =

Ω3

m1.5

[ (0.5− 2m)Γ(m + 0.5)
Γ(m)

+
2Γ3(m + 0.5)

Γ3(m)

]
,

M4 =
Ω4

m

[
m + 1 +

(2m− 2)Γ2(m + 0.5)
mΓ2(m)

− 3Γ4(m + 0.5)
mΓ4(m)

]
.

In this case, the skewness and kurtosis coefficients are obtained in the form

Ks =
M3

M1.5
2

=
(0.5− 2m)Γ2(m)Γ(m + 0.5) + 2Γ3(m + 0.5)

[mΓ2(m)− Γ2(m + 0.5)]1.5
,

Kk =
M4

M2
2

=
m(m + 1)Γ4(m) + 2(m− 1)Γ2(m + 0.5)Γ2(m)− 3Γ4(m + 0.5)

[mΓ2(m)− Γ2(m + 0.5)]2
.

The entropy and entropy coefficient of the multiplicative noise will be determined based on the relations

H{η} = ln
{Γ(m)Ω exp(m)

2m0.5

}
− 2m− 1

2
Ψ(m), Ken =

Γ2(m)em · exp{−(m− 0.5)Ψ(m)}
4{mΓ2(m)− Γ2(m + 0.5)}0.5

,

where
Ψ(m) =

Γ′(m)
Γ(m)

, Γ′(m) =

∞∫
0

tm− 1 exp{−t} ln tdt.

Curves of the skewness, kurtosis, counterkurtosis, entropy, and entropy coefficient on the parameter m
are shown in Fig. 3. It is evident from these curves that as the parameter m increases, the values of Ka,
H{η} decrease and the values of the coefficients Kk, Ken, and Kan remain practically unchanged.

Consider the methods of estimating the information parameters of the multiplicative noise PDF described
by the Nakagami distribution.

In approximating the distribution of the envelopes of narrowband useful signals using the Nakagami
PDF, the distribution parameters m and Ω need to be determined from statistical data. It is not difficult to
estimate the parameter Ω which characterizes the average power of the multiplicative noise with known m.
It is much more difficult to choose the parameter m which specifies the distribution form [7].

Using the results obtained in [8], we can show that the estimate of the parameter Ω is effective and can
be found from the formula

Ω̂ = H−1
H∑

h = 1

η2
h.

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 53 No. 3 2017



IDENTIFICATION OF THE DISTRIBUTION PARAMETERS 235

m2.5 3.5 4.5

0.9

1.9

2.9

3.9

1.5
-0.1

Kk, Ken, Ks, Kan, Hfng

Kk

Ken

Kan
Kan
Hfng

Fig. 3. Coefficients Ka, Kk, Ken, Kan, and H{η} versus the PDF parameter m.
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Fig. 4. Curves of the standard deviation σm̂ (a) and the relative bias ∆m/m (b) versus the sample
parameter h.

The expectation and variance of the estimate of the parameter Ω can be determined from the expressions

〈Ω̂〉 = H−1
H∑

h = 1

〈η2
i 〉 = Ω, σ2

Ω̂
=

Ω2

mH
.

Note that the estimates of Ω obtained by the method of matching moments and the maximum likelihood
method coincide. The estimate obtained by the method of matching moments is

m̂ = Ω̂2
[
H−1

H∑
h = 1

η4
h − Ω̂2

]
.

The variance of the estimate m̂ is difficult to investigate analytically; therefore, statistical simulation is
used as a rule. For practical calculations, it is advisable to use the expressions

m̂ = 0.504
[
lnH−1

H∑
h = 1

η2
h + 2H−1

H∑
h =1

ηh

]−1
+ 0.126, σ2

m̂ = H−0.5(1.6m− 0.36).

The linear approximation error in this case does not exceed one percent.
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Curves of the standard deviation m̂ and the relative bias ∆m/m versus sample size are presented in
Fig. 4. It can be seen from the graphs that the estimate m̂ is due not only to the sample size, but also to
the parameter Ω. The bias decreases with increasing Ω. The estimate of the parameter m̂ is effective only
for large sample sizes (H ≥ 100).

CONCLUSIONS

The identification of non-Gaussian noise parameters under a priori uncertainty was discussed. It is shown
that the counterkurtosis Kan and the entropy coefficient Ken can be used for the current identification
of the PDF form parameters of additive non-Gaussian noise having a symmetric distribution. For the
current identification of non-Gaussian noise with a one-sided PDF (of multiplicative noise), the skewness
coefficient Ks should be added to the specified quantities. The results of numerical simulation of methods
for estimating the information parameters of random processes with a non-Gaussian PDF for a finite sample
show that the estimates obtained by recursive and asymptotic methods converge with increasing number of
samples.
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