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Abstract—The problems concerned with the dispersion and attenuation of surface wave propagations
due to imperfect elasticity are of great interest to seismologists. The present work reports the dispersion
and attenuation characteristics of Love-type wave propagation in a fiber-reinforced layer laid on an
inhomogeneous viscoelastic half-space. The inhomogeneity in the viscoelastic medium arises due to the
hyperbolic trigonometric variation in depth. A complex frequency equation for the Love-type wave has
been procured using the suitable boundary conditions. Thus, the dispersion and damping equations have
been calculated to analyze the dispersion and attenuation peculiarities of the wave. Results for the uniform
homogeneous isotropic media have been compared with existing solutions. Numerical computation and
graphical sketches have been set forth for the relevant parametric variations.
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1. INTRODUCTION

The dynamical behavior of near-surface materials
could not be explained on the basis of classical con-
tinuum mechanics due to their complex nature. The
presence of many effective physical factors causes the
materials to behave imperfect elastic to the propa-
gation of waves through it. Hence, the problems of
continuous media are not restricted to the mechanics
of those elastic materials which are perfect elastic,
rather the problems take a more general and realistic
form when the media considered are imperfect elastic.
The dynamical interaction between medium and seis-
mic waves propagation through the imperfect elastic
and reinforced medium have many important appli-
cations in geophysics, civil engineering and modern
physical engineering.

Propagation of surface waves in fiber-reinforced
composite materials is a widely known and prime
feature of wave theory. The analysis of surface waves
in reinforced medium plays a very important role in
structural engineering to design earthquake resistant
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buildings. In 1983, Belfield et al. [1] introduced the
continuous self-reinforcement at every point of an
elastic solid. Othman and Abbas [2] examined the
effect of rein-forcement on the total deformation of
rotating body on the propagation of plane waves.
Propagation of Love wave in a fiber-reinforced layered
medium over an orthotropic half-space was investi-
gated by Kundu et al. [3]. Abo-Dahab and Edfawy
[4] investigated the analytic solution for the secu-
lar equation of surface waves in thermoelastic fiber-
reinforced anisotropic solids. Alam et al. [5] consid-
ered corrugated irregularity with magneto-elasticity
in the anisotropic (Monoclinic) medium for the study
of SH-wave propagation.

The viscosity in a viscoelastic body arises due to
its imperfect elasticity. The rocks are physically cold
in lithosphere, whereas the materials in the astheno-
sphere are highly viscous, ductility deforming and
mechanically weak. Although, both lithosphere and
asthenosphere materials behave like viscoelastic. It
has been observed that, the most dynamical Earth
processes take place in these zones and are liable for
the earthquake. In the last few years, the study of
seismic wave propagation in the viscoelastic medium
under different physical circumstances is the topic of
prime interest for researchers [6−9].

281



282 ALAM et al.

The problems related to the seismic response of
elastic waves regulating through the bodies, those
mechanical properties are functions of space (i.e. in-
homogeneous bodies), are finding many applications
in engineering and applied sciences. Considering the
importance of seismic wave responses in inhomo-
geneous bodies, many researchers have assessed in
large quantities under the different physical circum-
stances. For instance, Kundu et al. [10], Kumari et al.
[11, 12], Alam et al. [13, 14], and Sahu et al. [15] con-
sidered trigonometric functions of space. Abd-Alla
et al. [16] assumed exponential function of space for
the orthotropic medium. In other papers, Kakar and
Kakar [17] and Sahu et al. [18] took linear function of
space for the surface wave study.

The aim of the present study is to find the dis-
persion and attenuation characteristics of Love-type
waves in the presence of various affecting param-
eters (dissipation factor, attenuation coefficient, in-
homogeneity, viscoelasticity and fiber-reinforcement)
involved in the assumed model. The present Earth
model consists in a fiber-reinforced layer lying on an
inhomogeneous viscoelastic half-space for the Love-
type wave regulation and the assumed inhomogeneity
in the viscoelastic half-space is due to the hyperbolic
cosine function of depth and inhomogeneity param-
eter. The viscoelastic materials have both elastic
and viscous properties (i.e., linear anelastic) which
may be fabricated as an infinite number of possible
configurations of elastic springs and viscous dash-
pots (Kelvin−Voigt model). Mathematical analysis
reveals that the damping nature of Love-type waves is
exclusively due to the dissipation factor (viscosity) of
the viscoelastic half-space. The damping occurrence
can be perceived in the form of energy loss during
viscous lubrication between moving particles of the
viscoelastic medium.

2. FORMULATION OF THE PROBLEM

Consider a composite structure of single layered
half-space media for the Love-type wave propagation,
in which a inhomogeneous viscoelastic half-space
(M2) overloaded by a fiber-reinforced elastic layer
(M1). The geometry of the composite structure in
a Cartesian coordinate system o−xyz is shown in
Fig. 1, where the wave is propagating along x-axis
and h is the thickness of layer.

Love-type wave propagation is characterized by

ui = 0, vi = vi(x, z, t), wi = 0,
(1)

∂

∂y
≡ 0, i = 1, 2,

where (ui, vi, wi) is the displacement vector, i = 1 for
the layer (M1) and i = 2 for half-space (M2).

M1

M2

h

z = −h

z = 0
y

x

z

Fiber-reinforced
layer

Inhomogeneous
viscoelastic
half-space

μ2 = μ2 cosh2pz
ρ2 = ρ2 cosh2pz
ϑ = ϑ0 cosh2pz

0

0

Fig. 1. (Color online) Considered Earth model of the
problem.

3. DYNAMICS OF THE FIBER-REINFORCED
LAYER (M1)

The formative equations for fiber-reinforced lin-
early anisotropic elastic medium with respect to pre-
ferred direction are given by [1]

Ωij = 2μTeij + λekkδij

+ α(amakekmδij + aiajekk)
− 2(μT − μL)(akaiekj + akajeki)
+ β(ajaiamakekm), k, m, i, j = 1, 2, 3, (2)

where Ωij are the components of the stress vec-

tor; eij =
1
2

(
∂uj

∂xi
+

∂ui

∂xj

)
are the components of

infinitesimal strain, μT and μL are longitudinal
and transverse elastic shear moduli, respectively;
δij is Kronecker delta; α, β, λ are elastic constants
with dimension of stress; ai are components of a
in the rectangular Cartesian coordinates xyz, and
a = (a1, a2, a3) is the preferred directions of rein-
forcement such that a2

1 + a2
2 + a2

3 = 1. Therefore, the
characteristic of the Love-type wave allows us to take
the direction of reinforcement as (a1, 0, a3).

Substituting (1) in (2), we get the following non-
zero stress components:

Ωxy = a1(μL − μT)
(

a1
∂v1

∂x
+ a3

∂v1

∂z

)
+ μT

∂v1

∂x
,

(3)

Ωyz = a3(μL − μT)
(

a1
∂v1

∂x
+ a3

∂v1

∂z

)
+ μT

∂v1

∂z
.

We have the only non-vanishing dynamical equa-
tion of motion for the Love-type waves propagation
along the x-direction in the absence of any body force
[19]:

∂Ωxy

∂x
+

∂Ωyz

∂z
= ρ1

∂2v1

∂t2
. (4)
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Equations (4) together with Eq. (3) gives[
1 +
(

μL

μT
− 1
)

a2
1

]
∂2v1

∂x2
+ 2
[(

μL

μT
− 1
)

a1a3

]
∂2v1

∂x ∂z
+
[
1 +
(

μL

μT
− 1
)

a2
3

]
∂2v1

∂z2
=

ρ1

μT

∂2v1

∂t2
. (5)

Taking v1 = Ψ1(z) exp[i(ωt − kx)] as a harmonic wave solution for (5), we have

d2Ψ1

dz2
+ α

dΨ1

dz
+ βΨ1 = 0, (6)

where α = −2ik[(μL/μT − 1)a1a3]
1 + (μL/μT − 1)a2

3

and β = ω2(ρ1/μT) − k2[1 + (μL/μT − 1)a2
1]

1 + (μL/μT − 1)a2
3

.

Therefore, the displacement v1 of layer (M1) is found as

v1 = exp
(
−αz

2

)[
A1 cos(χ1z) + A2 sin(χ1z)

]
exp
[
i(ωt − kx)

]
. (7)

where χ1 =
√

β − α2/4 and A1, A2 are arbitrary constants.

4. DYNAMICS OF THE INHOMOGENEOUS VISCOELASTIC HALF-SPACE (M2)

The only non-vanishing dynamical equation of motion for a viscoelastic medium (without any body forces)
is given by [19]

∂Θxy

∂x
+

∂Θyz

∂z
= ρ2

∂2v1

∂t2
, (8)

where Θxy and Θyz are the stress components of the viscoelastic layer and given by

Θxy =
(

μ2 + ϑ
∂

∂t

)
∂v1

∂x
, Θyz =

(
μ2 + ϑ

∂

∂t

)
∂v1

∂z
, (9)

where μ2 is elastic modulus, ρ2 is density, and ϑ is viscosity of viscoelastic layer. If ϑ = 0, then the viscoelastic
medium becomes elastic solid.

We consider the following transformations for these material constants:

μ2 = μ0
2 cosh2 pz, ρ2 = ρ0

2 cosh2 pz, ϑ = ϑ0 cosh2 pz, (10)

where p is inhomogeneity parameter having dimension L−1.
Substituting (9) into (8), we get(

μ2 + ϑ
∂

∂t

)
∂2v2

∂x2
+

∂

∂z

[(
μ2 + ϑ

∂

∂t

)
∂v2

∂z

]
= ρ2

∂2v2

∂t2
. (11)

We are assuming v2 = Ψ2(z) exp[i(ωt − kx)] as a solution of Eq. (11). Therefore, Eq. (11) leads to

d2

dz2
[Ψ2(z)] +

1
μ2

d μ2

dz

d

dz
[Ψ2(z)] −

[
k2 − ω2ρ2

μ2

]
Ψ2(z) = 0. (12)

We simplify Eq. (12) taking a substitution Ψ2(z) = Φ(z)/
√

μ2:

d2Φ(z)
dz2

+

{
1

4μ2
2

[(
d μ2

dz

)2

− 2 μ2
d2μ2

dz2

]
+
(

ω2ρ2

μ2

)
− k2

}
Φ(z) = 0. (13)

where μ2 = μ2 + iωϑ.
Substituting relations from (10) into (13), we get

d2Φ(z)/dz2 − χ2
2 Φ(z) = 0, (14)

where χ2 =
√

p2 + k2 − ω2ρ0
2/μ0

2 and μ0
2 = μ0

2 + iωϑ0.
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So, the solution of Eq. (14) is

Φ(z) = B1 exp(−χ2z) + B2 exp(χ2z), (15)

where B1 and B2 are arbitrary constants.
So, the displacement v2 of medium (M2) is obtained as

v2 =
B1 sech pz√

μ0
2

exp(−χ2z) exp
[
i(ωt − kx)

]
. (16)

5. BOUNDARY CONDITIONS

5.1. The continuity of stresses and displacement components at the common interface gives (i.e., at z = 0)

(a) a3(μL − μT)
(

a1
∂v1

∂x
+ a3

∂v1

∂z

)
+ μT

∂v1

∂z
=
(

μ2 + ϑ
∂

∂t

)
∂v2

∂z
,

(b) v1 = v2.

5.2. Stress-free surface of the layer gives (i.e., at z =−h)

(a) a3(μL − μT)
(

a1
∂v1

∂x
+ a3

∂v1

∂z

)
+ μT

∂v1

∂z
== 0.

6. DISPERSION AND DAMPING EQUATIONS

Using solutions (7) and (16) in the above boundary conditions, we obtain the following homogeneous
system of equations:

ik μTa1a3

(
μL

μT
− 1
)

A1 − μTχ1

[
1 +
(

μL

μT
− 1
)

a2
3

]
A2 − χ2

√
μ0

2 B1 = 0, (17)

√
μ0

2 A1 − B1 = 0, (18){
χ1

[
1 +
(

μL

μT
− 1
)

a2
3

]
sin(χ1h) − ik a1a3

(
μL

μT
− 1
)

cos(χ1h)
}

A1

+
{
χ1

[
1 +
(

μL

μT
− 1
)

a2
3

]
cos(χ1h) + ik a1a3

(
μL

μT
− 1
)

sin(χ1h)
}

A2 = 0. (19)

For the nontrivial solution of above system of equations, the determinant of the coefficient matrix should be
zero. Therefore, the following equation will satisfy for a non-trivial solution of A1, A2, and B1:

f(k, c) = tan(χ1h) −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0
2 χ1χ2

[
1 +
(

μL

μT
− 1
)

a2
3

]

μT χ2
1

[
1 +
(

μL

μT
−1
)

a2
3

]2
− ka1a3

(
μL

μT
−1
)[

kμT a1a3

(
μL

μT
−1
)

+ iχ2μ0
2

]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0.

(20)

The above expression of f(k, c) gives the wave velocity profile of Love-type waves in a fiber-reinforced layer
resting over an inhomogeneous viscoelastic half-space. Considering the wave number k as a complex number

k = k1(1 + iδ), (21)

where δ = k2/k1 is the attenuation coefficient which is dimensionless and k1, k2 are real. Thus, the velocity c of
the wave can be evaluated by the relation

ω = ck1 (22)

The dimensionless dissipation factor (inverse of quality factor Q0 = μ0
2/ωϑ0) is given by

Q−1
0 = ωϑ0/μ0

2. (23)
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The real part of the frequency equation Re[f(k, c)] characterizes the dispersion occurrence, whereas the
imaginary part Im[f(k, c)] describes damping of the wave. Hence, the velocity associated with the dispersion
is defined as the ’phase velocity’ (Vp = c/c1) of wave, and the velocity associated with the damping is termed as
the ’damped velocity’ (Vd = c/c1). To find out the dispersion and damping equations, we are considering

χ1 = x1 + iy1 =
√

r1 exp(iθ1), (24)

χ2 = x2 + iy2 =
√

r2 exp(iθ2), (25)

where

x1 =
√

r1 cos(θ1/2), y1 =
√

r1 sin(θ1/2), x2 =
√

r2 cos(θ2/2), y2 =
√

r2 sin(θ2/2),

r1 cos θ1 =
k2

1

1 +
(

μL

μT
− 1
)

a2
3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2

c2
1

+ (1 − δ2)

⎡
⎢⎢⎢⎣

a2
1a

2
3

(
μL

μT
− 1
)2

1 +
(

μL

μT
− 1
)

a2
3

−
[
1 +
(

μL

μT
− 1
)

a2
1

]
⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

r1 sin θ1 =
k2

1

1 +
(

μL

μT
− 1
)

a2
3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2δ

⎡
⎢⎢⎢⎣

a2
1a

2
3

(
μL

μT
− 1
)2

1 +
(

μL

μT
− 1
)

a2
3

−
[
1+!

(
μL

μT
− 1
)

a2
1

]
⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

r2 cos θ2 = p2 + k2
1(1 − δ2) − k2

1c
2/c2

2

1 + (Q−1
0 )2

,

r2 sin θ2 = k2
1

[
2δ +

Q−1
0 c2/c2

2

1 + (Q−1
0 )2

]
, c1 =

√
μT

ρ1
, c2 =

√
μ02

ρ02
.

The real and imaginary parts of Eq. (20) generate two equations

Re [f(k, c)] =
sin(2x1h)

cos(2x1h) + cosh(2y1h)
− D1N1 + D2N2

D2
1 + D2

2

= 0, (26)

Im [f(k, c)] =
sinh(2y1h)

cos(2x1h) + cosh(2y1h)
− D1N2 − D2N1

D2
1 + D2

2

= 0, (27)

where

N1 = (x1x2 − y1y2)μ0
2T1, N2 = (x2y1 + x1y2)μ0

2T1,

D1 = μT k2
1T

2
2 (δ2 − 1) + μT T 2

1 (x2
1 − y2

1) + k1T2μ
0
2(δx2 + y2),

D2 = 2x1y1μT T 2
1 + k1T2

[
(δy2 + x2)μ0

2 − 2k1T2μTδ
]
,

T1 =
[
1 +
(

μL

μT
− 1
)

a2
3

]
, T2 = a1a3

(
μL

μT
− 1
)

.

7. PARTICULAR CASE

If the layer is free from reinforcement and the
half-space is homogeneous elastic, then Eq. (26) be-
comes the classical dispersion equation of Love wave
[20, 21]:

tan

(
k1h

√
c2

c2
1

− 1

)
=

μ0
2

μ3

√
1 − c2/c2

2√
c2/c2

1 − 1
, (28)

where c1 =
√

μ1/ρ1, c2 =
√

μ02/ρ02, μL = μT = μ1

and Eq. (27) vanishes to zero.

8. NUMERICAL COMPUTATION
AND DISCUSSION

To inspect the dispersion and attenuation charac-
teristics of Love-type waves in the presence of var-
ious affecting parameters, we are considering some
numerical examples of material constants for medium
(M1) and medium (M2) as given in Table 1 [22].

In this section, the variational impacts of dimen-
sionless parameters—such as fiber-reinforcement
parameters (a2

1, a
2
3), dissipation factor (Q−1

0 ), atten-
uation coefficient (δ) and inhomogeneity parameter
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Fig. 2. Variation in reinforcement parameters (a2
1, a

2
3) for velocity profile versus real wave number (k1h): (a, b) a2

1 = 0.30,
a2
3 = 0.70 (solid curve), 0.35, 0.65 (dashed curve), 0.40, 0.60 (dotted curve), and 0.45, 0.65 (dash-dotted curve).

Fig. 3. Variation in dissipation factor (Q−1
0 ) for velocity profile versus real wave number (k1h): (a, b) Q−1

0 = 0.05 (solid curve),
0.35 (dashed curve), 0.65 (dotted curve), and 0.95 (dash-dotted curve).

(p/k1)—on the phase velocity (Vp) and damping
velocity (Vd) with respect to the real wave num-
ber (k1h) of Love-type wave are shown by several
curves in Figs. 2−8. The numerical fixed values of
dimensionless parameters in these figures are listed
in Table 2. Brief observation of all figures allows one
to conclude that as the wave number (k1h) decreases,
the phase velocity (Vp) increases, whereas damped
velocity (Vd) increases with the wave number (k1h).

Figure 2 exhibits the effect of reinforce parameters
(a2

1, a
2
3) associated with the fiber-reinforced medium

on the propagation of Love-type wave. The curves of
Fig. 2(a) show the variation in phase velocity (Vp) and
the curves of Fig. 2(b) show the variation in damped
velocity (Vd) of the wave. It is seen in the figures

Table 1. Material constants

Medium Rigidity, Density,
×109 N m−2 kg m−3

(M1) μL = 7.07, μT = 3.5 ρ1 = 1600
(M2) μ02 = 219.7 ρ02 = 5563

that as the value of a2
1 increases and a2

3 decreases, the
damped velocity of the wave increases, whereas the
phase velocity of the wave decreases.

Figure 3 is plotted to depict the impact of dissi-
pation factor Q−1

0 affined with the viscoelastic half-
space on the propagating wave. The shifting of curves
in Fig. 3(a) shows the phase velocity (Vp) variation
and the shifting of curves in Fig. 3(b) shows damped
velocity (Vd) variation of the wave. Careful con-
sideration of figures points out that as the value of
Q−1

0 increases, the phase velocity (Vp) and damped
velocity (Vd) of the wave also increases.

Table 2. Values of parameters

Parameter Fig. 2 Figs. 3−6 Figs. 4−7 Figs. 5−8

a2
1 — 0.3 0.3 0.3

a2
3 — 0.7 0.7 0.7

Q−1
0 0.5 — 0.5 0.5
δ 0.05 0.05 — 0.05

p/k1 0.1 0.1 0.1 —

PHYSICS OF WAVE PHENOMENA Vol. 27 No. 4 2019
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Fig. 4. Variation in attenuation coefficient (δ) for velocity profile versus real wave number (k1h): (a, b) δ = 0.05 (solid curve),
0.06 (dashed curve), 0.07 (dotted curve), and 0.08 (dash-dotted curve).

Fig. 5. Variation in inhomogeneity parameter (p/k1) for velocity profile versus real wave number (k1h): (a, b) p/k1 = 0.05 (solid
curve), 0.35 (dashed curve), 0.65 (dotted curve), and 0.95 (dash-dotted curve).
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Fig. 6. (Color online) Surface plot of dissipation factor (Q−1
0 ) versus real wave number (k1h): (a) Vp and (b) Vd.

In Fig. 4, curves are drawn to show the impact of
attenuation coefficient δ. The curves of Fig. 4(a) show
the variation in phase velocity (Vp) and the curves of
Fig. 4(b) show the variation in damped velocity (Vd)
of the wave. It is clear from both figures that as

the value of δ increases, the phase velocity of Love-
type wave also increases, while damped velocity of the
wave decreases.

Figure 5 exhibits the effect of heterogeneity pa-
rameter (p/k1) associated with the half-space. The
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Fig. 7. (Color online) Surface plot of attenuation coefficient (δ) versus real wave number (k1h): (a) Vp and (b) Vd.
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Fig. 8. (Color online) Surface plot of inhomogeneity parameter (p/k1) versus real wave number (k1h): (a) Vp and (b) Vd.

curves of Fig. 5(a) show the variation in phase veloc-
ity (Vp) and the curves of Fig. 5(b) show the variation
in damped velocity (Vd) of the wave. Brief observa-
tion of the figure reveals that as the value of p/k1

increases, both damped and phase velocities of the
wave also increases.

Keeping in mind the dependency of phase velocity
(Vp) and damped velocity (Vd) on the wave number
(k1h), surface plots of phase and damped velocities
against wave number, dissipation factor, attenuation
coefficient and heterogeneity parameter are shown in
Figs. 6−8 by 3D plot.

9. CONCLUSIONS

The present layered Earth model is proposed to
study the Love-type waves propagating in a fiber-

reinforced strip placed over an inhomogeneous vis-
coelastic half-space. The model has been extended
to include the influence of dissipation factor, atten-
uation coefficient, and inhomogeneity present in the
viscoelastic medium. It also includes the effect fiber-
reinforcement of the strip on the phase as well as the
damped velocity of the wave, which is usually ignored
in theoretical studies. In this problem, a closed form
frequency relation has been obtained and then dis-
persion and damping equations are derived. Effects
of involved parameters on the considered waves have
been studied and demonstrated graphically. As a
whole, we conclude by this study that as wave num-
ber increases, damped velocity also increases, while
the phase velocity decreases with an increment in
the wave number; which is the feature of Love-type
waves. The effect of heterogeneity on phase velocity

PHYSICS OF WAVE PHENOMENA Vol. 27 No. 4 2019



DISPERSION AND ATTENUATION CHARACTERISTICS OF LOVE-TYPE WAVES 289

has been found to be less pronounced than that of the
reinforcement and dissipation factor. On the other
hand, the effect of heterogeneity and dissipation factor
on damped velocity is found less effective than rein-
forcement and attenuation coefficient. The obtained
results of this study may provide a better prediction
to the nature of Love-type waves in bedded structure
and may also find applications in the geophysical
explorations.
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