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Abstract—The forces acting on levitating water microdroplets in the structure of a droplet cluster
(A.A. Fedorets, 2004) have been analyzed. It is found that microdroplets in the cluster should undergo
low-frequency vertical damping oscillations near the equilibrium position. Oscillations occur also when
switching on an external electric field, which affects the oscillation frequency and equilibrium position.
Microdroplets are shown to lose their stability in the critical range of parameters. The electric fields are
calculated in the simplest experimental scheme for simulating the effect of electric field on a droplet cluster.
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1. INTRODUCTION

An observation of mist above heated water surface
reveals the existence of microscopic droplets in it,
which are suspended due to the equilibrium between
the pressure force of ascending vapor-air flow and
the gravity force [1]. It has also been noted that
suspended droplets disappear when bringing an elec-
trified ebonite stick to them, a fact suggesting that
microdroplets are electrically charged.

Suspended microdroplets can form an ordered
structure (droplet cluster) [2], where water micro-
droplets arise above a locally heated submillimeter
water layer to form a hexagonally ordered monolayer.
The characteristic size of microdroplets and their
height above the water layer are several tens of
micrometers. The droplet cluster turned out to be a
convenient tool for observing liquid microdroplets on
the minute scale. Grounding of a cuvette with water in
the first experiments did not visibly affect the cluster
stability; therefore, it was concluded that noncoales-
cence of microdroplets inside a droplet cluster is not
attributable to the electrostatic charging [3].

The direct effect of electric field on a droplet cluster
was experimentally studied in detail in [4] (later on,
the cluster was investigated in an IR electromagnetic
field [5, 6]). In the experiment performed in [4], a ver-
tical 0.16-mm-thick electrode was located above the
droplet cluster, and the plane water surface served as
the other electrode. The interelectrode distance was
3 to 5 mm, and the maximum potential difference was
1.5 kV. All the effects were explained in [4] proceeding
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from the plasma-dust analogy, when field inhomo-
geneity and microdroplet polarization neglected. At
the same time, according to the estimation of [7], the
error in determining the field strength reached ±50%,
which should affect the accuracy of estimating the
positive charge of microdroplets (103|e|, where e is the
elementary charge). It was admitted that the charge
cannot determine to a great extent the levitation ac-
cording to the Coulomb levitation mechanism, and
it is the Stokes levitation mechanism that is deci-
sive [4].

The plasma-dust interpretation of a droplet clus-
ter was disputed in [8]. In addition, several models
were proposed, which do not consider necessary the
presence of initial electric charge on water droplets
to explain their behavior in an electrostatic field [9]
(see also [10]). Thus, the origin of the charge of water
microdroplets in a cluster appears to be debated. This
is an important question, if only because the intrin-
sic charge of microdroplets should affect the kinetics
of their condensation growth [11]. In addition, the
possibility of controlling water microvolumes using
dielectrophoresis (by analogy with nanopipettes) may
be promising [12].

The purpose of our study was to develop a phys-
ical model of the levitation of a microdroplet from a
droplet cluster in an external field, with allowance for
both the charge and polarization of this microdroplet.
The study includes an analytical calculation aimed
at estimating the electric fields in the cluster region
(applying a possible experimental scheme) and a cal-
culation of the mechanical motion of microdroplets in
the estimated electric field.
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2. SUGGESTION OF A POSSIBLE
EXPERIMENTAL SCHEME

Let εsub be the permittivity of a flat round substrate
(disk) with radius a and thickness δsub (Fig. 1). There
is a submillimeter water layer with thickness δ and
permittivity ε on the substrate surface. Let there be
a thin conducting layer of thickness δcon between
the substrate and water, which uniformly covers the
substrate. This layer serves as one of the electrodes.
The other electrode is a thin straight-line wire with
diameter d and length 2L, located normally to the
substrate along its axis. The interelectrode distance
D is considered to be the shortest distance from the
lower tip of the upper electrode to the lower disk
electrode.

Let the semitransparent substrate be locally heated
at the center (for example, by a laser beam, as in
[5, 6]). The water layer is slowly evaporated in the
heated region, and, as a result of condensation,
microdroplets are formed above it; they levitate at a
height H on the order of their intrinsic diameter 2R.
These microdroplets form a droplet cluster [2], whose
maximum size is related to the size of the heated
region and does not exceed 1 mm. Microdroplets are
located mainly in the same plane (two-dimensional
aerosol).

For simplicity, it is convenient to apply an electric
potential (positive for definiteness) to only one elec-
trode and keep the other electrode grounded. The
metal elements of real system housing should to be
separated by a sufficiently large distance to exclude
the effect of mirror charges on the statement of ex-
periment. The problem of the behavior of micro-
droplets in a droplet cluster is reduced to calculation

Fig. 1. Relative position of electrodes and a droplet
cluster.

of the electric field in which these microdroplets exist.
Below we perform a fairly rough analytical calcula-
tion, which, however, takes into account the field
inhomogeneity and, therefore, is more exact than the
estimation of [4].

3. CALCULATION OF ELECTRIC FIELDS

3.1. Analytical Calculation

Let us assume that a positive potential ϕ0 > 0
is applied to the upper electrode (see Fig. 1) and
charges are distributed uniformly over its surface.
We denote the potential formed in space by ϕ0 as
ϕu(r, s, σu|ϕ), where s is the length of the perpendic-
ular from the point in space under consideration to
the electrode axis, r is the distance from the electrode
end to this perpendicular, and parameter σu|ϕ is the
surface charge density on the upper electrode. The
potential ϕu can be found from the Gauss theorem
(see Appendix). The droplet cluster is concentrated
almost on the axis of the upper electrode; hence, the
displacement s for it is always close to zero.

The lower grounded electrode in the field of the up-
per electrode acquires a negative charge. On the as-
sumption of uniform distribution of induced charges
over the electrode surface, their density can be esti-
mated as

σb|ind ≈ −ϕu(D, 0, σu|ϕ)Cb

πa2
, (1)

where Cb is the lower electrode capacitance (which
is approximately the same as for a flattened ellipsoid
[13]). The estimate given by (1) somewhat exceeds
the true averaged value because of the large distance
between the disk edges and upper electrode. There-
fore, the analytical calculation performed below is in
essence one-dimensional: we use the value of surface
charge density (1) on the axis instead of the exact
variable value, implying the parameters of spatial ob-
jects (capacitance and displacement from the axis, s).
In addition, the denominator in the expression for
σb|ind is valid for only a very thin disk (δcon � a), so
that the charges on the upper and lower surfaces of
the disk electrode are assumed to be identical. This
approximation is acceptable for electrodes of submi-
cron thickness, formed by depositing a conducting
material on a substrate.

A disk with induced charges forms an intrinsic
field ϕb(D − r, s, σb|ind) in the space above it. With
the water and substrate disregarded, the poten-
tial in the interelectrode gap is equal to the sum
ϕu(r, s, σu|ind) + ϕb(D − r, s, σb|ind). The strength
Eex, as the gradient of this potential with a minus
sign, polarizes both the water layer and the substrate.
The dipole moment of a round water layer (polar
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dielectric) of radius a and thickness δ, with a permit-
tivity ε, can be calculated using the Langevin−Debye
relation

℘w = 3πε0a
2δ

ε − 1
ε + 2

Eex. (2)

The dipole moment of a disk substrate (isotropic
dielectric) is calculated by definition

℘sub = ε0κEexπa2δsub, (3)

where κ = εsub − 1 is the dielectric susceptibility of
the substrate material. When calculating the polar-
ization, we will take its value only on the axis (as
previously for the charge density). The field compo-
nent Eex⊥ oriented perpendicular to the axis of the
system is small and varies only slightly when moving
away from the axis. Therefore, we can simplify the
calculation by neglecting this component Eex⊥ and
taking into account only the component Eex‖ oriented
parallel to the axis of the entire system. The strength
drop across the water layer (less than 1 mm thick) is
rather large; therefore, bound charges with different
moduli are formed on the upper and lower layer sur-
faces; the densities of these charges are given by the
formula

σw|pol =
℘w

πa2δ
, (4)

in which the external field Eex‖ must be taken, respec-
tively, on the upper and lower water surfaces. This
circumstance will be reflected through subscripts
“ab” and “be” (above and below, respectively). The
bound charges on the substrate are calculated and
denoted similarly. The bound water charges are
dispersed over round surfaces; hence, to calculate the
field formed by these charges in space, one can use the
function ϕb, having substituted necessary arguments.

In total, the electric field in the region of droplet
cluster is the sum of four fields, formed by the upper
wire electrode with a surface charge density σ = σu|ϕ;
free water plane (σ =−σw|pol|ab); lower electrode
(σ = σb|ind + σw|pol|be − σsub|pol|ab); and, finally, the
lower plane of the dielectric substrate (σ = σsub|pol|be).
The potential and strength at the point spaced by a
distance η from the water surface and located near
the axis of the system (s� a) can be written as

Φ(η, s) = ϕu(D − δ − η, s, σu|ϕ)

+ ϕb(η, s,−σw|pol|ab)

+ ϕb(δ + η, s, σb|ind + σw|pol|be − σsub|pol|ab)

+ ϕb(δsub + δcon + δ + η, s, σsub|pol|be), (5)

E‖(η, s) = − ∂

∂η
Φ(η, s)

(see Appendix).

This analytical scheme is quite applicable for
the case where potential ϕ0 is applied to the lower
electrode, whereas the upper electrode is grounded.
Then the field in the droplet cluster region is also
the sum of four fields: from the lower disk elec-
trode (σ = σb|ϕ + σw|pol|be − σsub|pol|ab), free water
surface (σ =−σw|pol|ab), lower substrate surface
(σ = σsub|pol|be), and upper wire electrode (σ = σu|ind).
The field formed by the grounded electrode can often
be neglected in applied calculations.

3.2. Results of Numerical Calculation

The realistic values of physical and geometric
parameters of the system will be taken for com-
puter calculations as follows: the upper vertical
electrode length 2L = 2×10−2 m, the upper electrode
diameter d = 200×10−6 m, the water layer thick-
ness δ = 500×10−6 m, the radius of the substrate
and lower electrode a = 10−2 m, the lower electrode
thickness δox = 500×10−9 m, the substrate thickness
δsub = 2×10−3 m, the microdroplet levitation height
above the water surface H = 100×10−6 m, the mi-
crodroplet displacement from the axis of the system
s = 0 m, the water permittivity ε = 57 (at 92.8◦C),
and the substrate material permittivity εsub = 3.75
(corresponds to quartz glass).

Let a potential be applied to the upper electrode.
A calculation (Figs. 2−5) shows that the strength E
decreases in modulus when moving away from the
upper electrode (i.e., when the distance to water η
decreases). However, near the lower electrode, it, on
the contrary, begins to rise because of the negative
induction charges, leaking into the lower grounded
electrode. At the point where the strength stops
decreasing and starts increasing, the derivative of the
vertical component E is zero (see Figs. 3 and 5). The
position of the extreme point depends strongly on
the interelectrode distance D, but is independent of
potential ϕ0 in view of the linear dependence of Φ(η, s)
on this potential. The extreme point divides the field
into two regions (see Figs. 3 and 5). In region I, the
upper electrode with active potential ϕ0 plays a key
role. In region II, the field is mainly induced by the
charges on the lower electrode.

When the interelectrode distance D is large (>1 cm,
case of high electrode), region II is also large and
covers a quarter of interelectrode gap (see Fig. 3).
When the upper electrode is located at a small dis-
tance (D≈ 1 cm or smaller, low electrode), region II
is much smaller, and the distance to the extreme point
is now on the submillimeter scale (see Fig. 5). With
a further decrease in D for a low electrode, the ex-
treme point, according to the analytical calculations
(Subsec. 3.1), may even pass into the water layer;
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Fig. 2. Potential Φ (a) and strength E (b) of electric field in the interelectrode gap on the axis of the system (s = 0) in dependence
on the distance η to the water layer at ϕ0 = 500 V and interelectrode distance D = 10 cm (high electrode).

Fig. 3. Derivative (a) of the vertical component of the electric field strength on the axis of the system (s = 0) and an enlarged
fragment near the intersection with zero (b), in dependence on the distance η to the water layer at ϕ0 = 500 V and D = 10 cm
(high electrode).

however, the calculation should be slightly corrected
in this case, because the polarity of free water surface
changes. In addition, when the extreme point is
close to the water layer, quantitative results are
determined to a great extent by the assumptions and
simplifications used to calculate field in Subsec. 3.1.
It is of key importance that a decrease in D diminishes
the sizes of region II to submillimeter scale. For
example, at D = 9.2×10−3 m, the inflection point is
located at a height of 56 μm, which is smaller than
the levitation height H accepted in the model. This
circumstance is interesting for the following reason:
the dielectrophoretic force acting on microdroplets
is directed upwards in this case. This force config-
uration is considered below (see Subsec. 4.3). If a

potential ϕ0 is applied to the lower electrode, and the
upper electrode is grounded, the fields are similar to
those depicted in Figs. 2 and 3, but region II is much
larger. In Sec. 4, the calculated fields are used as a
base for developing a model of mechanical motion of
microdroplets in electric field.

4. DROPLET LEVITATION

4.1. Free Droplet Levitation

The experiments performed in [2−7] showed that
microdroplets are retained above the water layer at an
almost constant height. The second Newton law for
microdroplets in the absence of electric field can be
written as
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Fig. 4. Potential (a) and strength (b) of the electric field in the interelectrode gap on the axis of the system (s = 0) in dependence
on the distance η to the water layer at ϕ0 = 500 V and interelectrode distance D = 1 cm (low electrode).

Fig. 5. Derivative (a) of the vertical component of electric field strength on the axis of the system (s = 0) and an enlarged
fragment near the intersection with zero (b), in dependence on the distance η to the water layer at ϕ0 = 500 V and D = 1 cm
(low electrode).

F = mg + Fd + FA, (6)

where mg is the gravity force for a droplet, Fd is
the force from the side of ascending vapor-air flow,
FA is the buoyancy force, and F is the resulting force.
We choose a frame of reference where a droplet is
on average at rest (Fig. 6) and the x axis is directed
upwards. The second Newton law in projection on
the x axis has the form

F = −mg + Fd + FA. (7)

The gravity force for a spherical microdroplets is

mg =
4
3
πR3ρwg, (8)

where the water density ρw = 963.4 kg m−3 (at
92.8◦C). The buoyancy force for a sphere moving

Fig. 6. Droplet in ascending steam-air flow.
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with acceleration in an ascending flow of density ρv ≈
1.01 kg m−3 [14] is

FA =
4
3
πR3ρv

(
g − ẍ

2

)
. (9)

The force exerted by the ascending flow in the
simplest form is taken to be equal to the Stokes force
[15, 16]:

Fd0 = 6πRμ vr, (10)

where μ = 2×10−5 kg m−1 s−1 is the dynamic viscos-
ity of the vapor-air mixture. Here, the flow velocity
vv and the intrinsic droplet velocity ẋ are taken into
account in the droplet velocity with respect to the
flow: vr = vv − ẋ. The velocity distribution in the
flow, vv = vv(x), is almost stationary, but depends on
temperature in the heated region (see Fig. 1). Near
the origin of coordinates, it can be written as

vv ≈ (1 + kx)v, (11)

where v is the velocity at x = 0 and k = (1/v)
×(dvv/dx)|x=0 < 0 (the flow is similar to the so-
called submerged jet [17]). According to [18], the
gradient kv is independent (within the experimental
accuracy) of the temperature of the water interface
and ranges from −0.2×103 to −1.0×103 s−1. We will
use the mean value from this interval.

Thus, the ordinary Stokes force is approximately
equal to

Fd0 = 6πRμ
[
v(1 + kx) − ẋ

]
. (12)

Note also that this formula was corrected in [4]
as applied to a droplet cluster, with allowance for
the fact that the aerodynamic force increases when
a microdroplet approaches the water surface (due to
the air-cushion effect). However, despite that fact
that the approximation of [4] describes qualitatively
the pattern for a thin gap between the droplet and
water surface, it is inconsistent with real experiments
because yields an infinite force when the gap tends to
zero. In reality, the droplet should coalesce with the
water surface. This drawback can be eliminated by
introducing three independent correction coefficients
α1, α2, and α3 into the formula from [4]:

Fd = Fd0α1

(
1 +

α2R

H − R + x + α3

)
. (13)

In the model considered in [4], these coefficients
are taken to be α1 = 1, α2 = 1, and α3 = 0. They can
be refined based on known experimental data. For
a temperature of 92.8◦C, these coefficients, found by
the least-squares method from the plots reported in
[18], are as follows (with a correlation coefficient of
0.9811):

α1 =
2g(ρw − ρv)

9μvA1
,

α2 = 1.061, α3 = 5.568×10−6 m, (14)

A1 = 1.433×109 m−2.

The way to calculate these coefficients will be
briefly described in Subsec. 4.3.

Thus, we now know all the forces keeping a mi-
crodroplet in vertical equilibrium.

4.2. Electrokinetic Forces Acting on Microdroplets

Let an external electrostatic field be instanta-
neously switched on. An electrokinetic (EK) force
arises in its presence, which is equal to the sum
of electrophoretic (EP) and dielectrophoretic (DP)
forces [19, 20]:

FEK = qE +
∑

n

(p(n)·∇n)E,

where p(n) are nth-order multipole moments and q is
the microdroplet charge. The EP force for positive
and negative charges is directed, respectively, along
and opposite the field force lines. The DP force is
always directed towards the force line concentration
(where the field strength increases in modulus), and
this is specifically the force that, e.g., makes small
scraps of paper stick to an ebonite rod rubbed with
wool. From the applied point of view, this force is of
interest for controlling micro- and nano-objects [12].

In most problems, it is sufficient to restrict oneself
to the first multipole approximation. The dipole mo-
ment of water microdroplets can be obtained (either
from [13] or from the Langevin−Debye relation) in the
form

℘b = 4πε0
ε − 1
ε + 2

R3Eex. (15)

Let the field near zero change only slightly and be
almost linear:

E(x) ≈ E0(1 + λx), (16)

where E0 is the electric field strength at x = 0,
λ = (1/E0)(dE/dx)|x=0. Then the electrokinetic force
component along the x axis is

FEK = FEP + FDP = qEex + ℘b
dEex

dx

=
(

q + 4πε0
ε − 1
ε + 2

R3 dE

dx

)
E(x), (17)

where q > 0 (for definiteness), E0 < 0, dE/dx < 0,
and λ> 0; the field is directed downwards, and the
field force lines concentrated to the top (as in Sub-
sec. 3.2), whereas the DP force is directed upwards,
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which correspond to region I in Fig. 5 (in region II
this force is directed downwards to water). The x
axis in Fig. 6 and the η axis in Figs. 2 and 4 are an-
tiparallel; therefore, the strength values from Figs. 2
and 4 should be taken for calculations with a minus
sign. We assume for simplicity that the characteristic
sizes of field inhomogeneity exceed the microdroplet
sizes. The possible presence of a relatively low in-
trinsic charge q on microdroplets and the formation
of an ordered cluster by these droplets are not con-
tradictory: it is well known that the Coulomb law
for charged spheres is significantly corrected at small
distances, up to the transition from repulsion to at-
traction [21−24].

4.3. Derivation of the Equation of Motion

The second Newton law for a microdroplet in an
electrostatic field can be written as

F = mg + Fd + FA + FEK. (18)

Let the electrokinetic force be directed upwards;
then, the component of the force (18) along the x axis
is

F = −mg + Fd + FA + FEK, (19)

and the equation of motion for a microdroplet has the
form

4
3
πR3ρwẍ = − 4

3
πR3ρwg + 6πRμ

[
v(1 + kx) − ẋ

]
α1

(
1 +

α2R

H − R + x + α3

)
+

4
3
πR3ρv

(
g − ẍ

2

)
+ qE0(1 + λx) + 4πε0

ε − 1
ε + 2

R3 dE

dx
E0(1 + λx). (20)

Experimental relations between radius R and levitation height H (see Fig. 2 in [18]) occur both in the
absence of field and in equilibrium (x = 0, ẋ = 0, and ẍ = 0). Based on the dependence H(R) and formula (20),
one can find coefficients α1, α2, and α3 by the least-squares method; the calculated values were presented
in Subsec. 4.1. Using these coefficients, one can put an equilibrium radius R into correspondence with each
height H by solving the cubic equation with respect to R, which stems from (20). For example, at H = 100 μm,
we have approximately R = 32 μm.

Let us transform Eq. (20) by introducing the following definitions:

K
def=

1
ρw + ρv/2

9μα1

2R2
=

g

vA1R2

ρw − ρv

ρw + ρv/2
, h̃

def= H − R + α3. (21)

In the linear approximation, (dE/dx)|x = (dE/dx)|x=0 and, therefore, (1/E0)(dE/dx)|x = λ. After intro-
ducing dimensionless coordinates and time,

X
def=

x

R
, τ

def= t

√
Kα1v

h̃
, (22)

we obtain the desired nonlinear differential second-order equation:

0 =
d2X

dτ2
+

dX

dτ

√
h̃K

v

(
1 +

Rα2

h̃ + RX

)
− (1 + kRX)

h̃

R

(
1 +

Rα2

h̃ + RX

)
+

h̃

KvR

ρw − ρv

ρw + ρv/2
g

+
3h̃

KvR

1
ρw + ρv/2

{
− qE0

4πR3
(1 + λRX) − ε0

ε − 1
ε + 2

λE2
0(1 + λRX)

}
. (23)

4.4. Solution of the Equation of Motion

Equation (23) will be solved numerically using a
standard computer program.

The solutions for a microdroplet disturbed from
equilibrium exhibit an oscillatory character of motion
(Fig. 7). The oscillation period is close to infrasonic.
Note that signs of specifically infrasonic oscillations
were found previously in variations in interdroplet

distance [25]. Therefore, the vertical and horizontal
oscillations of cluster microdroplets may be interre-
lated in some way.

The oscillatory character of solutions to Eq. (23)
indicates that mechanical oscillations may be gen-
erated artificially using electrodynamic resonance or
applying an intense acoustic wave directed along the
x axis. The plots in Fig. 7 demonstrate an increase
in the oscillation period of a microdroplet and its rise
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Fig. 7. Dependences of the microdroplet coordinate X on time τ at an initial deviation X =−0.25 in the absence and in the
presence of field (black and gray curves, respectively).

to a new equilibrium height when an electric field is
instantaneously switched on. In a strongly inhomo-
geneous field, where the DP force dominates over
the EP force, the oscillatory motion and levitation
height do not differ strongly for the cases of neutral
and weakly charged microdroplets (the charge sign
is of little importance). In this context, the model of
electro-gravitational balance [4], which does not take
into account the polarization in the low-electrode
mode, should obviously be refined.

A direct comparison of the EP and DP forces
shows that the maximin value of charge z (that is
necessary to provide dominance of the DP force),
expressed in terms of elementary charge e, does not
exceed

z �
∣∣∣∣ ℘b

eEex

dEex

dx

∣∣∣∣ =
∣∣∣∣4πε0

e

ε − 1
ε + 2

R3 dE

dx

∣∣∣∣. (24)

In the low-electrode mode (according to the
scheme in Fig. 1), the field strength E may reach1

2×105 V m−1, and the inhomogeneity |dE/dx| is
about 4×108 V m−2 (ϕ0 = 500 V, D = 1.5 mm). Then,
to make the DP force dominate over the EP force,
the charge z should be no larger than 103 elementary
charges. A droplet having this relatively low charge
in region I (see Fig. 5) will be attracted to the upper
electrode due to the DP force (as in Fig. 8) and
to the lower electrode in region II. An analytical

1Breakdown in dry air occurs at a field strength of
3×106 V m−1 (for wet air, the breakdown threshold is some-
what higher).

calculation shows the existence of this possibility;
however, because of the limitations of the model
considered in Subsec. 3.2, exact values of the inter-
electrode distance D and other parameters necessary
for implementing this situation can be found only
experimentally.

The logarithmic decrement Δ and frequency ω of
microdroplet oscillations depend on different para-
meters (Figs. 8−10). According to numerical calcu-
lations, the oscillations of a neutral microdroplet are
insensitive to the parameter k < 0 up to values on the
order of 103 m−1. With a further increase in k in mod-
ulus (which means a faster slowdown of the vapor-
air flow with an increase in height), the frequency ω
increases, while the decrement Δ (characterizing the
energy loss) decreases (see Fig. 8), and the micro-
droplet hops on an air cushion. At the same time, a
rise in the flow velocity v is accompanied by a de-
crease in ω and Δ (Fig. 9), because the resistance of
the vapor-air medium enhances. The aforementioned
regularities are retained qualitatively when an electric
field is switched on (see Figs. 8 and 9); the only
difference is that the Δ values (energy loss) are larger
and the ω values are smaller in the presence of field.

The decrement and frequency depend weakly on
amplitude (see Fig. 10). Therefore, the plots corre-
sponding to instantaneous switching on a field (see
Figs. 8 and 9) are representative, despite the jump of
the equilibrium height, which leads to a significant
jump of the oscillation amplitude (the initial deviation
from zero in Fig. 7 is small in comparison with the
microdroplet levitation height in electric field; there-
fore, in all cases, oscillations in field occur with an
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Fig. 8. Logarithmic decrement Δ (a) and damped natural frequency ω [s−1] (b) of microdroplet oscillations in dependence
on k×103 [m−1] (z = 0). The solid and dashed curves correspond, respectively, to the absence of electric field and to
instantaneously switched on electric field for the same droplet.

Fig. 9. Logarithmic decrement Δ (a) and damped natural frequency ω [s−1] (b) of microdroplet oscillations in dependence on
the flow velocity v×10−2 [m s−1], z = 0. The solid and dashed curves correspond, respectively, to the absence of electric field
and to instantaneously switched on electric field, E =−2×10−5 V m−1, dE/dx =−4×108 V m−2, for the same droplet.

Fig. 10. Logarithmic decrement Δ (a) and damped natural frequency ω [s−1] (b) in dependence on the initial deviation in the
absence of electric field.
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almost identical initial amplitude relative to the new
equilibrium position).

Equation (23) clearly shows that electric field af-
fects the microdroplet equilibrium position (which is
almost completely determined by the free term in this
equation). In a homogeneous field (λ = 0), the DP
force is zero, and the droplet equilibrium position
changes only due to the EP force.

The calculations revealed also a side effect: with
all other parameters being fixed, there was a critical
field in which the plot of microdroplet trajectory grew
unlimitedly. This effect has a simple physical inter-
pretation: the EK forces turned out to be sufficient to
overcome the microdroplet gravity force). However,
the analysis of the stability of solutions to (23), which
must be performed in this case (in particular, via the
Nyquist criterion [26]), is a nontrivial problem; this
analysis has not been performed yet. In addition, in
the absence of field, an instability occurs when k and
α2 in (23) are simultaneously zero, because stable
equilibrium is impossible in this case.

Another interesting effect that can be investigated
within model (23) is the artificial electrocoalescence
with water surface. To implement it, one can use
the high-electrode mode, in which region II is wide
(see Fig. 3), or simply apply a potential ϕ0 to the
lower electrode. Electrocoalescence of microdroplets
is easier to observe than their rise. Basically, this
process has not been substantially analyzed for freely
levitating microdroplets, although electrocoalescence
has been studied for several decades [27−29]. In most
cases, the electrocoalescence of droplets immersed in
a fluid was considered [30, 31]. The process occurring
on a substrate was studied in detail in [32].

Now it is clear that experiments on a droplet
cluster make it possible to clarify to a great extent
the precipitation processes occurring in thunderstorm
clouds.

5. CONCLUSIONS

Thus, a theoretical model of mechanical motion
of water microdroplets (forming a droplet cluster) in
an external linear inhomogeneous electric field, with
interdroplet interaction disregarded, was developed.
The realistic field magnitude was calculated based
on the proposed simplest experimental configuration
of electrodes (see Fig. 1). The field distribution in
this configuration is sensitive to the interelectrode
distance (cf. Figs. 3 and 5). When the electrodes are
located close to each other, the polarization forces
are rather strong. In this context, the experimental
and theoretical results reported in [4] can be signif-
icantly reinterpreted with allowance for the micro-
droplet polarization. According to Eq. (23), derived by
us, the question of the presence, value, and sign of

microdroplet charge can be solved experimentally by
applying an ultimately homogeneous electric field, in
which the contribution from the DP force is close to
zero.

It was established theoretically that water mi-
crodroplets in a droplet cluster may occur vertical
damping oscillations (see Fig. 7). Microdroplets are
fairly sensitive to the presence of external electric
field; therefore, as calculation examples showed, os-
cillations can be generated using an electrodynamic
resonance or an acoustic wave. Then these oscilla-
tions can easily be observed at high amplitudes. It
is difficult to perform experimental identification of
oscillations on a low-sensitive equipment because of
their high frequency and energy loss (see Figs. 8−10)
and in view of the immanent mobility of the droplet
cluster. The period and logarithmic decrement of
oscillations are sensitive both to the vapor-air flow
parameters and to the external field. The vertical-
oscillation frequency and equilibrium levitation height
depend on the value and sign of microdroplet charge
in the cluster.

The external electric field may be so strong that the
equilibrium height of microdroplets, depending on the
electrokinetic force direction, will facilitate either their
coalescence with the water layer or their arrival to the
upper electrode. The same should occur when the field
reaches the critical value, at which the solution to the
equation of motion (23) loses stability. When the field
is highly inhomogeneous, the critical strength may be
lower than the breakdown strength for wet air; hence,
this field can be implemented.
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APPENDIX

Proceeding from Gauss’s law, one can show that the potential at a point located at height h � 0 above a thin
uniformly charged disk of radius a with a surface charge density σd at a distance s from its axis, has the form

ϕdisk(h, s, σd) =
σd

4πε0

{
2π

[√
(a − s)2 + h2 − h

]
+ 2

a+s∫
a−s

ρ√
ρ2 + h2

arccos
(

ρ2 − a2 + s2

2sρ

)
dρ

}
. (A.1)

The strength components that are parallel and perpendicular to the disk axis can be written as (h� 0)

Edisk‖(h, s, σd) =
σd

4πε0

{
2π

[
1 − h√

(a − s)2 + h2

]
+ 2

a+s∫
a−s

rh

(r2 + h2)3/2
arccos

(
r2 − a2 + s2

2rs

)
dr

}
,

Edisk⊥(h, s, σd) =
σd

4πε0
2

a+s∫
a−s

r2

(r2 + h2)3/2
arccos

(
r2 − a2 + s2

2rs

)
dr. (A.2)

In particular, on the disk axis,

ϕdisk(h, 0, σd) =
σd

2ε0

[√
a2 + h2 − h

]
, (A.3)

Edisk‖(h, 0, σd) =
σd

2ε0

[
1 − h√

(a − s)2 + h2

]
, Edisk⊥(h, 0, σd) ≡ 0.

Obviously, the quantities ϕb, Eb‖, and Eb⊥, formed by the lower disk electrode in the system described in
Sec. 3, are, respectively, the quantities ϕdisk, Edisk‖, and Edisk⊥ in Eqs. (A3).

The field at a point located at a distance r from the end face of a uniformly charged cylinder of length 2L and
radius ac = d/2, with a surface charge density σc, and a distance s from the cylinder axis is the sum of the fields
from the lateral surface and end faces of this cylinder:

ϕcyl(r, s, σc) =
acσc

2πε0

2L∫
0

π∫
0

1√
(r + z)2 + a2

c + s2 − 2acs cos α
dα dz + ϕdisk(r, s, σc) + ϕdisk(r + 2L, s, σc),

Ecyl(r, s, σc) = −gradϕdisk(r, s, σc) (σ ≡ const). (A.4)

In particular, on the cylinder axis (s = 0),

ϕcyl(r, 0, σc) =
σc

2ε0

{
ac

[
arsinh

(
r + 2L

ac

)
− arsinh

(
r

ac

)]
+

√
a2

c + r2 − r +
√

a2
c + (r + 2L)2 − r − 2L

}
,

Ecyl‖(r, σc) =
σc

2ε0

[
ac√

a2
c + r2

− ac√
a2

c + (r + 2L)2
+ 1 − r√

a2
c + r2

+ 1 − r + 2L√
a2

c + (r + 2L)2

]
, (A.5)

Ecyl⊥(h, s, σc) ≡ 0.

Here, it is also obvious that the quantities ϕu, Eu‖, and Eu⊥, which are formed by the upper wire electrode in
the system considered in Sec. 3, are, respectively, the quantities ϕcyl, Ecyl‖, and Ecyl⊥.
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The expression for the surface charge density on
a disk was presented in Subsec. 3.1 by an example
of σb|ind (see (1)). The surface charge density on
a uniformly charged cylinder is proportional to the
potential ϕ0 applied to it,

σcyl =
ϕ0Cu

2πac(ac + 2L)
=

ϕ0Cu

πd(d/2 + 2L)
. (A.6)

To calculate these surface charge densities, it is
necessary to know the electric capacitances of the up-

per and lower electrodes, which can be approximated
by, respectively, elongated and flattened ellipsoids. In
our designations, their capacitances can be written
as [13]

Cu = 4πε0

√
L2 − (d/2)2

arcosh(2L/d)
≈ 4πε0L

arcosh(2L/d)
, (A.7)

Cb = 4πε0

√
a2 − (δox/2)2

arccos(δox/2a)
≈ 8ε0a.
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