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Abstract—A method using expansion of the wave function in the basis of photonic and free atomic
eigenstates is proposed for calculating the emission spectrum of an atom in a laser field. The wave function
is constructed using the Kramers−Henneberger transformation so that the expression for the transition
S matrix explicitly includes the nonlinear interaction with the laser field. The expansion coefficients are
determined by the residual interaction, which depends on the coordinates of the classical free electron
motion in the laser field. Resonances at the atomic transition frequencies explicitly arise in the emission
spectrum when the residual interaction is considered in the first order. The numerical solution of the time-
dependent Schrödinger equation for the hydrogen atom within the semiclassical approach is used to obtain
emission spectra for laser pulses of different intensities and durations.
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1. INTRODUCTION

An interaction of high-intensity (1013 to
1015 W cm−2) laser radiation with gaseous media
gives rise to the high-order harmonic generation
(HHG): up to the UV and soft X-ray ranges. This
phenomenon has been analyzed in most of theoret-
ical studies within the semiclassical approach, i.e.,
based on the time dependence of the mean atomic
dipole moment, found by solving the time-dependent
Schrödinger equation (TDSE) in the classical field
of laser wave. Significant progress in the theo-
retical studies is related to the use of the strong-
field approximation, which is based on the analytical
method developed by Keldysh [1]. Various versions
of the HHG theory have been constructed within
this method, which adequately reproduced many
experimental results [2, 3]. Results of the numerical
solution of the TDSE for an atom in a strong laser
field are used to verify the analytical methods [4−6]
(see review [7]).

Recently researchers have considered problems
where the semiclassical approach cannot be applied,
in particular, because of the effect of the atomic
resonances on the harmonic generation [8−13]. Ra-
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diation at atomic transition frequencies was observed
along with harmonics in recent experiments [14]. An-
other practically important case is the HHG gain
under conditions of multiphoton resonance with au-
toionization state [9−12], whose decay can be taken
into account in the TDSE [12]. The limitations of
the semiclassical approach to the description of HHG
were discussed in detail in [15].

In this study, the spectral and polarization char-
acteristics of HHG are formulated in terms of the
S-matrix approach. The TDSE is solved using
the Kramers−Henneberger transformation [16, 17],
which is widely used in the theory of multiphoton
processes [18−20]. The wave function (WF) of the
transformed TDSE with the potential of residual
interaction is expanded in the eigenstates of the free
atom. As a result, the radiative transition S matrix
explicitly includes nonlinear factors, which makes it
possible to use approximate solutions for expansion
coefficients. For comparison with the results of
semiclassical approach, the fifth-harmonic emission
spectra near the 2p−1s transition in the hydrogen
atom are obtained by solving numerically the three-
dimensional Schrödinger equation for laser pulses of
different intensities and durations.

Atomic units (e = m = � = 1 and speed of light
c≈ 137) are used unless otherwise specified.
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2. THEORY

The evolution of the initial atomic state in a laser
field is determined by the TDSE

i
∂Ψ
∂t

=
[
HA + V (t)

]
Ψ(t),

(1)
Ψ(t → −∞) → exp(−iEit)ϕi.

Here, Ei is the eigenvalue of the free-atom Hamil-
tonian HA in the initial state ϕi and V (t) is the
operator of the atom−laser pulse interaction in the
long-wavelength approximation:

V (t) = −1
c

PA(t) +
1

2c2

∣
∣A(t)

∣
∣2, (2)

where P = Σjpj is the total electron momentum oper-
ator; pj =−i∇j is the momentum operator of the jth
electron; and A(t) is the laser field vector potential,
related to the electric field E(t) by the expression
E(t) =−c−1∂A/∂t.

Within the semiclassical approach the atomic
emission spectrum is calculated as follows. First, the
WF Ψ(t) of an atom in an external laser field with
equivalent interaction in the form of scalar potential
V (t) =−DE(t) (D is the dipole moment operator of
the atom) is found by solving Eq. (1). Then the mean
atomic dipole moment d(t) = 〈Ψ(t)|D|Ψ(t)〉 is cal-
culated. The spectrum of radiation with polarization
eγ is proportional [21] to |d̈ωeγ |2, where d̈ω is the
Fourier transform for the second derivative of the
dipole moment with respect to time, d̈(t).

Within the quantum-mechanical approach we
consider the HHG as a process based on the sponta-
neous emission of an atom in a laser field. Following
[22], we expand the space of quantum system states

by including the quantized field states, which describe
the spontaneously emitted photon. The total WF can
be written as

Ψ(t) = Ψ0(t) |0〉 +
∑

γ

Ψγ(t) exp(−iωγt) |1γ〉, (3)

where only the vacuum field state |0〉 and the single-
photon Fock states |1γ〉= a+

γ |0〉 are taken into ac-
count; a+

γ and aγ are, respectively, the photon cre-
ation and annihilation operators in the state γ ≡ kλ
with the wave vector k (k = ωγ/c) and helicity λ =±1
(summation over γ implies the integral over k and the
sum over λ). The atomic component Ψ0(t) takes into
account the nonradiative processes in the laser field
(excitation, ionization), while the components Ψγ(t)
correspond to the spontaneous emission processes
(elastic and Raman scattering of laser radiation and
harmonic emission).

The Schrödinger equation for the WF of extended
system (3) is constructed by replacing HA in Eq. (1)
with the unperturbed Hamiltonian of the system,
H0 = HA + Σγωγa+

γ aγ , and the interaction operator
V (t) with V (t) + v, where the interaction operator of
the atom with the quantized field v in the Schrödinger
representation (in the long-wavelength approxima-
tion) has the form

v =
∑

γ

(vγaγ + v+
γ a+

γ ), vγ = −cγPeγ . (4)

Here, eγ is the unit polarization vector of the photon

and cγ = 1/(2πω
1/2
γ ).

Then, substituting (3) into (1) and projecting onto
the photonic states, we arrive at a system of coupled
equations for the atomic components of the total WF:

i
∂Ψ0

∂t
=

[
HA + V (t)

]
Ψ0 +

∑

γ

exp(−iωγt) vγΨγ , Ψ0(t → −∞) = exp(−iEit)ϕi,

i
∂Ψγ

∂t
=

[
HA + V (t)

]
Ψγ + exp(iωγt) v+

γ Ψ0, Ψγ(t → −∞) = 0.

(5)

Within the quantum-mechanical approach, the probability amplitude for emitting a photon γ in the i→ f
atomic transition under the action of the laser field is determined by the general expression for the S matrix
after substituting the WF (3):

Sfi(γ, L) = −i

∞∫

−∞

exp(iEf t)
[
〈ϕf |V (t) |Ψγ(t)〉 + exp(iωγt)〈ϕf | v+

γ |Ψ0(t)〉
]
dt, (6)

where L is a set of laser field parameters (frequency ω, electric field strength E, unit polarization vector e, and
relative phase ϕ).

The components of the atomic WFs Ψ0(t) and Ψγ(t) in (5) can be sought for using the unitary transforma-
tion [16, 17]
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Φ0(γ)(t) = U(t) Ψ0(γ)(t), U(t) = exp
[
−iPrc(t)

]
exp

[
iχ(t)

]
, (7)

where rc(t) =
1
c

t∫

−∞

A(t′) dt′ is the change in the classical coordinate of free electron in the laser field,

χ(t) =
1
2

t∫

−∞

v2
c (t

′) dt′, and vc(t) = ṙc = c−1A(t). The first (from the right) transformation on the right-hand side

of (7) shifts the WF phase, and the second transformation is the shift of electron coordinates. As a result of
these transformations of the free-atom Hamiltonian (with electrostatic interaction), we obtain the following
relations from Eq. (5):

i
∂Φ0

∂t
=

[
HA + W (t)

]
Φ0 +

∑

γ

exp(−iωγt) vγΦγ , Φ0(t → −∞) = exp(−iEit)ϕi,

i
∂Φγ

∂t
=

[
HA + W (t)

]
Φγ + exp(iωγt) v+

γ Φ0, Φγ(t → −∞) = 0,

(8)

where the residual interaction for an atom with a nuclear charge Z has the form

W (t) =
Z∑

j=1

[
Z

rj
− Z

|rj − rc(t)|

]
. (9)

If

∞∫

−∞

A(t) dt = 0, W (t) vanishes at t→±∞. On the other hand, W rapidly decreases with an increase in the

distance between the electron and nucleus: W ∝ r−κ−1
j (κ � 1) at rj > rc(t).

Using the expansion of Φ0(γ) in the basis of eigenfunctions of HA,

Φ0(t) =
∑

n an(t) exp(−iEnt)ϕn, an(t → −∞) = δin,

Φγ(t) =
∑

n bn(t) exp(−iEnt)ϕn, bn(t → −∞) = 0,

(10)

we obtain the following system of equations for the expansion coefficients from (8):

i
dan

dt
=

∑

m

exp(iωnmt)

[

Wnm(t) am(t) +
∑

γ

exp(−iωγt)(vγ)nm bm(t)

]

,

(11)

i
dbn

dt
=

∑

m

exp(iωnmt)
[
Wnm(t) bm(t) + exp(iωγt)(v+

γ )nm am(t)
]
,

where Wnm = 〈ϕn|W (t)|ϕm〉 is the matrix element of the residual interaction (9) and ωnm = En − Em is the
transition frequency.

Using the above-defined quantities, one can present expression (6) in the form

Sfi(γ, L) = −i
∑

n

∞∫

−∞

exp(iωfnt)
[
V ′

fn(t) bn(t) + exp(iωγt)V ′′
fn(t) an(t)

]
dt, (12)

where

V ′
nm(t) =

〈
ϕn

∣
∣
∣V (t)U+(t)

∣
∣
∣ϕm

〉
, V ′′

nm(t) =
〈
ϕn

∣
∣
∣v+

γ U+(t)
∣
∣
∣ϕm

〉
. (13)
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Spectra of the hydrogen atom in the vicinity of the fifth
harmonic at a laser wavelength of 580 nm, calculated by
solving numerically the Schrödinger equation: (a) laser-
pulse peak intensity 3×1013 W cm−2 at full pulse dura-
tions τ = 6Tc (thin solid curve), 12Tc (dashed curve), and
24Tc (solid curve) and (b) laser pulse duration τ = 12Tc at
intensities of 1013 (dotted curve), 3×1013 (dashed curve),
and 5×1013 W cm−2 (solid curve).

3. RESULTS AND DISCUSSION

The above approaches are used below to calculate
the emission spectrum of the hydrogen atom in an
external laser field.

The method of numerical solution of the TDSE
was described in detail in [23]. The electric field
strength in the interval 0 � t� τ is set as

E(t) = E0 sin2 πt

τ
cos

2πt

Tc
,

where τ is the pulse duration, E0 is the peak field
strength, and Tc is the optical period.

To determine the contribution of the residual
population to the emission spectrum, the calculations
were performed on the time interval up to 48 fs,

which is twice as large as the maximum of the
pulse durations in use. To solve the TDSE on a
spatial grid in our calculations, the Coulomb potential
was smoothed at the origin of coordinates: Vc =
−1/

√
r2 + a2, where a = 0.4. This smoothing slightly

changes the energies of excited states.

The figure shows the results of numerical cal-
culations for laser pulses of different durations and
intensities in the spectral regions of the fifth harmonic
and the 2p→ 1s transition. It can be seen that the
ratio of the intensities of these lines depends strongly
on the laser pulse parameters.

The emission intensity at the atomic transition
frequency decreases with an increase in the pulse
duration, which is in agreement with the result of
the analytical theory [8], and disappears when the
pulse duration greatly exceeds the optical period. In
addition, the emission intensity decreases with an
increase in the intensity in the pulse and disappears
when passing to the tunnel ionization mode (i.e.,
when the Keldysh parameter [1] is smaller than unity).
Thus, for a sufficiently long pulse and tunnel ioniza-
tion, the residual population of the excited states is
low and does not contribute to the emission spectrum.
Under these conditions, the semiclassical approach
does not lead to contradictions. For less intense
pulses, containing several field periods, the residual
population makes a significant contribution to the
intensity of resonance lines. The semiclassical ap-
proach becomes inconsistent in this case.

Then we consider expression (12) for the S matrix
in the case of the transition to the final ground state
of the hydrogen atom (f = i = 1 s) with approximate
solutions to (11).

In the first order of the residual interaction, the
initial values of the expansion coefficients (10) are
substituted into the right-hand side of (11):

an(t) = δin − i

t∫

−∞

exp(iωnit
′)Wni(t′) dt′,

bn(t) =
(v+

γ )ni

ωin − ωγ
exp

[
i(ωni + ωγ) t

]
.

(14)

Substituting expressions (14) into (12) and carry-
ing out simple transformations, we arrive at

S
(1)
ii (γ, L) = −i

∞∫

−∞

exp(iωγt)

{

V ′′
ii (t) +

∑

n

[
V ′

in(t)(v+
γ )ni

ωin − ωγ
+

V ′′
in(t)Wni(t)
ωni − ωγ

]}

dt. (15)

Note that the singularity in the resonant term at ωγ →ωni is eliminated by taking into account the radiative
or ionization widths of the excited state.
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Taking into account the dominant contribution of the resonance amplitude (15) in the vicinity of the np−i
transition frequency and using the momentum representation to calculate the matrix elements V ′′

nm(t) in (13)
and the multipole expansion for the residual interaction Wnpm,1s in (9), we obtain

S
(1)
ii (γ, L) = S

(0)
ii (γ, L) − i

γn
ii(γ, L)

ωni − ωγ − (i/2)Γn
, (16)

where

S
(0)
ii (γ, L) = −cγ

∞∫

−∞

exp
[
iωγt − iχ(t)

](
nc(t) eγ

)
J1

ii(rc(t)) dt, (17)

γnp
ii (γ, L) = −cγ

3

∞∫

−∞

exp
[
iωγt − iχ(t)

](
nc(t) eγ

)[
J0

i,np(rc(t)) − 2J2
i,np(rc(t))

]
y1

i,np(rc(t)) dt. (18)

Here, nc = rc/rc and Jκ
nm =

∞∫

0

jκ(prc)ϕ∗
n(p)ϕm(p) p3dp, jκ(x) is the spherical Bessel function of order κ. The

radial integral of the residual interaction y1
1s2p(rc) in (18),

yκ
nl,n′l′(rc) =

1
rκ+1
c

rc∫

0

Rnl(r) rκRn′l′(r) r2 dr + rκ
c

∞∫

rc

Rnl(r) r−κ−1Rn′l′(r) r2 dr,

is explicitly calculated for the hydrogen atom with
apparent asymptotic behavior at rc → 0 and rc →∞.

Thus, the emission probability amplitude in the
first order of the residual interaction (15) is expressed
in terms of the characteristics of classical free electron
motion in an electromagnetic wave. Dependences
on these characteristics (16) and (17) are determined
by the quantum distributions of the coordinate and
momentum in atomic states.

4. CONCLUSIONS

A method based on the S-matrix approach was
proposed to calculate the emission spectrum of an
atom in the field of an intense laser pulse. When the
Kramers−Henneberger transformation is used for the
WF, the S matrix of the photon explicitly includes
a contribution of nonlinear processes and is deter-
mined by the expansion coefficients of the WF in the
basis of free-atom stationary states in the potential
of the residual atom–field interaction. In zero order
of the residual interaction, the emission spectrum is
completely determined by the electron momentum
distribution in the initial state. In the first order,
peaks at the frequencies of atomic transitions through
excited states, including the autoionizing states of
multielectron atoms, arise in the spectrum.

The emission spectra of the hydrogen atom for
laser pulses of different intensities and durations were
obtained in the semiclassical approach by solving

numerically the Schrödinger equation. The semi-
classical approach is applicable for long pulses in the
range of resonant frequencies. For less intense or
shorter pulses (several field periods), one should use
more accurate methods, for example, the approach
formulated in this study.
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