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NONLINEAR
LIGHT SCATTERING

Nonlinear Induced Reflection of Light Waves in Semiconductors
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Abstract—A scheme of nonlinear optical four-wave mixing of two counterpropagating laser beams on
the surface of a semiconductor is proposed and analyzed. It is shown that the density modulation of
the electron-hole plasma current carriers in the light-induced grating manifests itself in the probe beam
depolarization signal after the reflection from the surface, which is sensitive to the state of the surface and
presence of complex molecules on it.
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1. INTRODUCTION

In particular cases, multiwave active spectroscopy
of condensed matters is based on scattering or ab-
sorption of the probing electromagnetic wave on col-
lective light-induced excitations of the medium. In
semiconductors or metals these excitations can be
perturbations in the electron-hole solid plasma. In
our recent work [1], we paid attention to the fact
that longitudinal density oscillations can be excited
in the field of two counterpropagating quite intensive
transverse electromagnetic beams in semiconductor
plasma, which leads to partial nonlinear reflection
of these beams. In experiments on four-wave light
scattering [2−4], this reflection can effectively mani-
fest itself as rotation of the polarization vector of the
detected signal.

2. THEORY

In this work we consider another possible physical
mechanism for stationary modulation of conduction
electron density in a semiconductor, which leads to
similar nonlinear reflection. Modulation arises from
interband optical transitions in a semiconductor in
the field of the counterpropagating electromagnetic
waves E(1) and E(2) with equal frequency ω:

E(1) =
1
2

E1 exp
[
−i(ωt − kz)

]
+ c.c.,

E(2) =
1
2

E2 exp
[
−i(ωt + kz)

]
+ c.c.
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It is assumed that frequency ω exceeds the width
of the bandgap and the frequency of the plasma os-
cillation corresponding to the equilibrium concen-
tration of the conduction electrons in the sample,
N0. Vertical interband optical transitions will occur
in the medium under the effect of illumination. The
free electron generation rate G is determined by the
optical absorption coefficient of the medium, γ, and
the illumination intensity: G = γ|E(1) + E(2)|2. For
semiconductors with spherical energy bands and ex-
trema lying at one point,

γ =
√

2
3

e2

ωcm2
p�2

(mr)5/2(�ω − ΔE)3/2, (1)

where c is the light velocity in vacuum, mp is the
effective mass of the holes, mr is the reduced mass
of the electron and the hole, and ΔE is the width of
the bandgap.

To avoid overcomplication in what follows, we as-
sume that the mass of holes is much larger than the
effective mass m∗ of electrons, and the latter is scalar.
Holes thus make up a fixed neutralizing background.

To describe kinetics of electron plasma, we will
consider the zero moment of the distribution function
f of electrons, that is, the continuity equation with a
collision term corresponding to the particle genera-
tion and recombination processes:

∂n/∂t + div j = γ
∣
∣E(1)+E(2)

∣
∣2 − (n−n0)/τrel. (2)

Here n is the density of free electrons, n0 is the
dark (in the absence of illumination) concentration of
electrons, j =

∫
Vf(r, V, t) dV, τrel is the longitudinal

time of interband relaxation in the system.
In the one-dimensional model for the stationary

regime, we have
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dj

dz
=

γ

4
[
E1E∗

2 exp(−2ikz) + c.c.
]
−n(z) − N0

τrel
, (3)

where N0 is the equilibrium density of the electrons in
the field,

N0 = n0 +
γ

4
τrel

(
|E1|2 + |E2|2

)
. (4)

Spatial inhomogeneity of illumination leads to in-
homogeneity of the distribution function f . A diffu-
sion current occurs in the system due to the gradi-

ent of the effective chemical potential proportional to
dn/dz. The diffusion shift in turn gives rise to an un-
compensated volume charge and an internal electric
field with strength E:

div E = 4πe(n − N0), (5)

and also to an ohmic current proportional to the total
density of the free electrons. Equation (3) takes the
form

〈τ〉
m∗

d

dz

[
e(N0 + y)E − kT

dy

dz

]
=

γ

4

[
E1E∗

2 exp(−2ikz) + c.c.
]
− y

τrel
. (6)

Here y = n(z)−N0 is the electron density deviation of interest, and 〈τ〉 is the average (with energy weight)
relaxation time of the distribution function.

We intentionally left in (6) the microscopic kinetic parameters of the semiconductor that determine the
mobility of electrons μ = e〈τ〉/m∗.

In what follows we assume that the intensity of one of the pump waves is substantially higher than the
intensity of the other wave. Then y < N0, and considering (5), we ultimately obtain from (6)

d2y

dz2
− m∗

kT

[
ω2

p +
1

〈τ〉τrel

]
y = − m∗

kT 〈τ〉
γ

4
E1E∗

2 exp(−2ikz) + c.c., (7)

where ω2
p = 4πN0e

2/m∗ is the induced plasma fre-
quency.

Note that the condition y < N0 is also fulfilled at
comparable intensities of the pump waves when the
dark electron density is rather high, n0 ≈N0.

It is very simple to find the solution to (5):

y = χE1E∗
2 exp(−2ikz) + c.c., (8)

χ =
m∗

kT 〈τ〉
γ

4
1

4k2 +
m∗

kT

(
ω2

p +
1

〈τ〉τrel

) .

Thus, the electron-hole plasma density suffers
periodic spatial modulation governed by the optical
pump field of the sample.

To describe dynamics of a transverse electromag-
netic wave (e.g., E2) in a medium, one can proceed
from the Maxwell equations with the transverse cur-
rent j⊥ and the vector of polarization P⊥ in the form

j⊥ = neV⊥(t), P⊥ = ne r⊥(t), (9)

where V⊥(t) and r⊥(t) are, respectively, the classical
velocity and displacement of the electron in the elec-
tric field of the wave under consideration. Far from
exciton resonances in the weak-collision limit for P2
we obtain

P2 = −1
2

e2

ω2
E2 exp

[
i(ωt + kz)

]
(N0 + y). (10)

As could be expected, in the system there arises a
reflected wave Eref with polarization vector E2 corre-
sponding to the light-modulated nonlinear part P2nl,

P2nl = −1
2

e2

ω2
χE2(E1E∗

2) exp
[
i(ωt − kz)

]
. (11)

For Eref we have an ordinary wave equation

ΔEref −
1
c2

∂2Eref

∂t2
=

4π

c2

∂2P2nl

∂t2
. (12)

Going in (12) to the slow stationary amplitude
Eref(z),

Eref =
1
2

Eref(z) exp
[
i(ωt−kz)

]
+ c.c.,

we arrive at the equation

−ik
dEref

dz
= −πe2

c2
χE2(E1E∗

2). (13)

From the above we ultimately obtain the obvious
result for the exit amplitude in the approximation of
the given pump field:

Eref = iπ
e2

kc2
χE2(E1E∗

2)L, (14)

where L is the effective mixing length of the counter-
propagating pump waves.
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3. CONCLUSIONS

It is worth noting that all the results of this work
are valid (with necessary quantitative corrections) for
any types of semiconductors and optical transitions
mechanisms. The above-mentioned mechanism for
nonlinear optical mixing of laser waves on the surface
of a semiconductor can be used for developing a new
generation of optical metamaterials sensitive to the
presence of complex molecules [5].
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