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Abstract—Relations for calculating the amplitude and phase characteristics of sound pressure and or-
thogonal projections of the vibration velocity vector and phase gradient in shallow water have been derived.
Dependences of the effective phase velocity of equivalent plane wave, orthogonal projections of the gradient
of sound pressure phase, and projections of the vibration velocity vector on the transmitter (or receiver)
depth are calculated for different frequencies and location depths of receivers (and transmitters). It is found
that the horizontal projections of the vibration velocity vector and phase gradient satisfy the reciprocity
principle whereas their vertical projections do not obey this principle. Therefore, the characteristics of
the vertical components must be studied independently with variation in their transmission or reception
depth. It is shown that, for low frequencies and variable transmitter or receiver depth, the effective
phase velocities in interference maxima exceed generally the speed of sound in water by 5−15% or even
more. Some recommendations on the use of sound field characteristics in the regions of maximum sound
pressure for solving problems of direction finding and signal detection are formulated. The behavior of the
characteristics of arrival angles of equivalent plane wave with variation in the transmission or reception
depth are investigated.
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1. INTRODUCTION

There are three typical classes of problems in ap-
plied hydroacoustics:

(i) reception of signals from a source located at
unknown depth is performed by a horizontal antenna
placed on a specified horizon; in this case, one must
investigate the field parameters with variation in the
source depth (from the bottom to the free surface) to
determine the characteristics of the receiving antenna
response.

(ii) transmission is implemented in a waveguide by
vertical (blocking the waveguide) antennas, the field
of signals of which is received at specified depths;

(iii) transmission is carried out at a specified depth,
and reception is performed using a vertical (blocking
the waveguide) antenna.

Sound sources (single or vertically spaced) can
play the role of transmitters. Extended multi-element
horizontal or vertical antennas, composed of scalar or
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multicomponent vector-scalar receivers, can be used
as receiving antennas.

The amplitude-phase structure of the field on the
aperture of these antennas has been investigated (see,
for example, [1−5]). It was established that, in con-
trast to free space, where waves propagate retaining
the in-phase condition for the sound pressure and
vibration velocity, and the plane-wave propagation
direction always coincides with the sound pressure
(SP) phase gradient, a difficult-to-predict interfer-
ence field structure (determined by various factors) is
formed in a real waveguide. The in-phase condition
for the SP and different projections of vibration veloc-
ity vector (VVV) in this field is violated. Generally,
the directions of the VVV and SP phase gradient do
not coincide.

2. APPROXIMATING MODEL
OF LOW-FREQUENCY FIELD

IN SHALLOW WATER

Let us consider the opportunity of approximate de-
scription of the amplitude-phase field structure using
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simple approximating dependences. Such an attempt
was made in [3] to describe the phase gradients for the
regions of interference maxima (Pmax). It was found
that the dependence of the SP phase ϕ on distance
and grad ϕ in these regions can approximately be
described by means of the approximating dependence
of the effective phase velocity,

C∗
ϕ =

∑

l=1

CϕlW
2
l

/∑

l=1

W 2
l , (1)

where Cϕl is the phase velocity of the lth normal wave
and Wl is its amplitude. The corresponding relation
for the effective (weighted average) group velocity has
the form

C∗
g =

∑

l=1

CglW
2
l

/∑

l=1

W 2
l , (2)

where Cgl is the group velocity of the lth normal wave.
It is assumed that, using the expressions for C∗

ϕ in
the Pmax regions, one can approximately calculate
the phase shifts for tone signals in spaced points,
and, using the C∗

g values, one can estimate the group
delay times for pulse signals. Obviously, C∗

ϕ and
C∗

g are C∗
ϕ,g(r, ω, h, z, z0) and C∗

ϕ×C∗
g ≈C2

0 , where
C0 is the speed of sound in water. Hereinafter, r is
the distance between the transmitter and receivers;
ω = 2πf is the circular frequency; h is the waveguide
depth; z and z0 are, respectively, the receivers’ and
transmitter location depths; and f is the acoustic
signal frequency. It is also assumed that C∗

ϕ and C∗
g

are the phase and group velocities of equivalent plane
wave (EPW), approximating with a certain accuracy
the real field in Pmax regions.

Then we analyze the specific features of the C∗
ϕ

quantity, which can be used to form desired direc-
tional characteristics of antenna.

These problems were analyzed numerically in [4]
for different hydrophysical conditions of sound prop-
agation through a waveguide. It was shown that,
with an increase in distance, C∗

ϕ tends to a constant
value; however, it exhibits a natural dependence on
the soil hardness and sound frequency. It was found
in [5] that, using the C∗

ϕ value (C∗ below) instead of
the speed of sound in water (C0) and processing the
signal at the frequencies for which the antenna is lo-
cated in the Pmax region, the directional characteristic
of the antenna yields unbiased estimates of the the
bearing γ, and the lateral field does not contain any
spikes. On the contrary, when the antenna aperture
is located in the region of interference minimum of
the field (Pmin), the directional characteristic is split,
the bearing estimates are biased, and the lateral field
increases. The estimate bias for bearing γ obtained

with C0 instead of C∗ appears to be natural because
the C0 value is inconsistent with the real SP phase
gradient on the antenna aperture.

An approximate estimate of C∗ can be obtained
using relation (1), which takes into account all modes
propagating in the waveguide or only groups of the
most coherent modes with close wavenumbers. De-
pendences C∗(r, ω, h, z, z0) can also be determined
numerically within, e.g., the multimode acoustic
waveguide model, or measured by estimating exper-
imentally the spatial phase gradient in the horizontal
plane, C∗ = ω/(∂ϕ/∂r).

Note that the characteristics of only scalar fields
were discussed in [1−5], whereas currently vector-
phase (vector-scalar) fields are also of great interest
for researchers [6, 7]. In addition, the characteristics
of SP field in only the horizontal plane were consid-
ered in [3−5] while the dependences on depth z or z0

were not analyzed.
In what follows, the spatial and frequency ampli-

tude-phase SP characteristics P (r, ω, h, z, z0) (re-
ferred to as P below) and the horizontal and vertical
projections of the SP phase gradient vector and VVV
are analyzed for a few-mode waveguide under the
following conditions: (a) with variation in the depth of
sound source and fixed reception depths and (b) with
variation in the depth of receiving antennas and spec-
ified (fixed) transmitter depths.

The results obtained are recommended to use in
order to increase the detection noise immunity and re-
duce bearing bias when forming a directional charac-
teristic in shallow water by towed (at different depths)
or stationary (for example, bottom) horizontal scalar
or vector-scalar antennas, with location of transmit-
ters (noise sources) on different horizons: from the
near-bottom region to small depths, typical of above-
water sources. The results of our study can also be
used to optimize modes of shallow water sensing by
vertical transmitting and receiving antennas, forming
spatial receiving or transmitting channels in a wave-
guide.

In view of the well-known practical applications,
the vertical field structure in the regions of interfer-
ence maxima and minima is also of interest for the
problems in which a source moves in the vertical di-
rection with a constant velocity at a specified distance
from a receiving antenna.

3. THEORETICAL MODELS
OF VECTOR-SCALAR FIELD

IN A HOMOGENEOUS WAVEGUIDE

Let us consider a point harmonic source, the
sound potential of which in an unlimited space has
the form ψ = ψ0 exp(−iωt), where ψ0 is a factor inde-
pendent of time t. Under the assumption that the field
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is potential, the relationship between the vibration
velocity V and SP P is given by the well-known for-
mulas [8]: V = grad ψ and P =−ρ0(∂ψ/∂t) = iωρ0ψ,
where ρ0 is the density of the medium.

Let P = |P |eiϕ = ReP+iImP ; then, using the
above relations, one can show that the orthogonal
projections of the SP phase gradient grad ϕ, ex-
pressed in terms of the projections of VVV V , have
the form

∂ϕ

∂x
=

Re Vx Re P + Im Vx Im P

|P |2/ωρ0
,

∂ϕ

∂y
=

Re Vy Re P + Im Vy Im P

|P |2/ωρ0
, (3)

∂ϕ

∂z
=

Re Vz Re P + Im Vz Im P

|P |2/ωρ0
.

These relations for different projections of the SP
phase gradient can also be derived using the relation
gard ϕ = (Re P×grad ImP − Im P×grad Re P )/|P |2
[9].

To determine pressure fields P in a Pekeris wave-
guide, one can use the well-known integral represen-
tation for point-transmitter field potential in the form
[8, 10]

ψ0 = A

π/2−i∞∫

−π/2+i∞

H
(1)
0 (kr sin ϑ)F (ϑ) sin ϑ dϑ, (4)

where A is the source volume velocity, H
(1)
0 (kr sinϑ)

is a Hankel function, k is the wavenumber, r =√
(x − x0)2 + (y − y0)2 is the horizontal distance

between the transmitter and receiving point,

F (ϑ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− [e−bh+bz0+V1(ϑ) ebh−bz0 ](ebz−e−bz)
e−bh+V1(ϑ) ebh

,

0 � z � z0;

−(ebz0−e−bz0)[(e−bh+bz+V1(ϑ) ebh−bz]
e−bh+V1(ϑ) ebh

,

z0 � z � h,

(5)
where b = ik cos ϑ, h is the waveguide thickness, and
V1(ϑ) is the reflection coefficient from the waveguide
bottom.

Integral (4) converges uniformly beyond some ar-
bitrarily small vicinity of the sound source; therefore,
the components of VVV V can be found by differ-
entiating (4). As a result, we obtain the following
expressions for the VVV orthogonal projections of the
source under consideration in a Pekeris waveguide:

Vx = −Akx

r

∫

G

H
(1)
1 (u)F (ϑ) sin2 ϑ dϑ,

Vy = −Aky

r

∫

G

H
(1)
1 (u)F (ϑ) sin2 ϑ dϑ, (6)

Vz = − ikA

2

∫

G

H
(1)
0 (u)Fz(ϑ) sin2 ϑ dϑ,

where G = (−π/2 + i∞, π/2 − i∞), u = kr sinϑ,
and

Fz(ϑ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−b
[e−bh+bz0+V1(ϑ) ebh−bz0 ](ebz+e−bz)

e−bh+V1(ϑ) ebh
,

0 � z � z0;

−(ebz0−e−bz0)[(e−bh+bz−V1(ϑ) ebh−bz]
e−bh+V1(ϑ) ebh

,

z0 � z � h.

(7)
Integrals (4) and (6) can be calculated by di-

rect numerical integration or using the saddle-point
method. In addition, applying the technique of
residues, one can reduce integrals (6) to sums similar
to the sum of normal waves of SP field:

P = iωρ0

∞∑

l=0

AlH
(1)
0 (rξl),

Vx = −x

r

∞∑

l=0

AlξlH
(1)
1 (rξl),

(8)

Vy = −y

r

∞∑

l=0

AlξlH
(1)
1 (rξl),

Vz =
∞∑

l=0

A′
lH

(1)
0 (rξl).

Here ul = h
√

k2 − ξ2
l ; ζl (l = 0, 1, 2, ...) are roots

of the Pekeris waveguide dispersion equation cot x =
i
√

x2 − (khν)2/mx, where m = ρ/ρ0 is the ratio of
the densities of water and the underlying half-space,
ν2 = 1 − n2, n = n0(1 + iα̃), n0 = c0/c is the ratio of
the speeds of sound in the waveguide and soil, α̃ is
the absorption coefficient of the interface; and

Al = − 2πul sinαl0 sin αl

h(sin2 ul tan ul/m2 + sin ul cos ul − ul)
,

(9)
A′

l = ul cot αl/h,

where αl0 = ulz0/h and αl = ulz/h.
The calculations presented below were performed

using contour integration and an analog of SP field
expansion in normal waves, applied to VVV compo-
nents (see (6) and (8)).
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Fig. 1. Amplitude and phase vector-scalar field characteristics for f = 25 Hz and r = 5 km: dependences on the source depth
z0 at a reception depth z = 100 m (on the left) and dependences on the reception depth z at a transmission depth z0 = 100 m
(on the right).

4. INITIAL DATA
USED IN THE CALCULATIONS

Let us consider the field characteristics for a point
source in a Pekeris waveguide, which is a homoge-
neous water layer of thickness h = 100 m, with the
speed of sound in water C0 = 1450 m s−1. Calcula-
tions will be performed with the following parameters
of the bottom: m = 1.8, n = 0.725, and damping coef-
ficient α̃ = 0.02.

Let the OXY plane of the coordinate system coin-
cide with the waveguide free surface and the OZ axis
be directed downwards (to the waveguide bottom).

The following two problems are to be solved. In the
first case, a transmitter is located at a depth z0, which
changes from zero (free surface) to h (bottom). The

horizontal coordinates of the transmitter are assumed
to be zero: x0 = 0 and y0 = 0. A four-component
vector-scalar acoustic receiver (or multielement an-
tenna) is located in the horizontal plane at a distance
x = 5 or 20 km from the transmitter. The receiver
depths are z = 50 and 100 m. We assume that y = 0
and r = x because r�h.

In the second case, a vector-scalar receiving an-
tenna is located at a depth z, which changes from zero
(free surface) to h (bottom). The horizontal coordi-
nates of four-component receivers are assumed to be
zero: x0 = 0 and y0 = 0. The transmitter (or transmit-
ting antenna) is located in the horizontal plane at a
distance x = 5 or 20 km from the receiving antenna.
The transmitter depths are z0 = 50 and 100 m. We
assume, as above, that y = 0 and r = x because r�h.

PHYSICS OF WAVE PHENOMENA Vol. 23 No. 4 2015
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Fig. 2. Amplitude and phase vector-scalar field characteristics under the same conditions as in Fig. 1 but for a frequency
f = 50 Hz.

Let us investigate the amplitude and phase vector-
scalar field characteristics in a waveguide for the
purposes of solving the problems of weak-signal de-
tection and direction finding against the noise back-
ground. To this end, we will analyze the field structure
in the regions of interference maxima and minima
(Pmax and Pmin). Then in contrast to [4, 5], the
emphasis is on the dependences of the field charac-
teristics on the variables z and z0. In the Pmax and
Pmin regions, we investigate also the dependences
of the effective phase velocity (which characterizes
local phase gradients in the horizontal plane) on the
reception or transmission depth at fixed frequencies.

The field characteristics obtained using different
schemes of computational experiment are compared

in Figs. 1−8. The field characteristics as functions
of the source depth z0 at two fixed reception depths,
z = 50 and 100 m, are shown on the left, and the
characteristics as functions of the reception depth z
at two fixed source depths, z0 = 50 and 100 m, are
presented on the right.

The curves in Figs. 1−8 are enumerated as fol-
lows: (1) (plots (a)) SP amplitude |P |; (2) (b) effec-
tive phase velocity C∗ calculated from the SP phase
gradient; (3) (b) effective phase velocity C∗ calculated
from approximate formula (1); (4) (c1, c2) longitu-
dinal component of the phase gradient, ϕ′

r = ∂ϕ/∂r;
(5) (c1, c2, d1, d2) vertical component of the phase
gradient, ϕ′

z = ∂ϕ/∂z; (6) (c1, c2) amplitude of the
VVV horizontal component Vx; (7) (c1, c2) amplitude

PHYSICS OF WAVE PHENOMENA Vol. 23 No. 4 2015
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Fig. 3. Amplitude and phase vector-scalar field characteristics under the same conditions as in Fig. 1 but for a frequency
f = 100 Hz.

of the VVV vertical component Vz; and (8) (d1, d2)
directional angle of phase gradient ξ (EPW arrival an-
gle) in polar coordinates in the vertical cross section
of the sound field. The VVV components in plots (c1)
and (c2) are scaled with a factor of 5 or 100, while the
VVV and phase gradient components in plots (d1)
and (d2) are scaled with a factor of 100.

Calculations showed that the dependences of
the SP amplitudes P (z) and P (z0) (curve 1), the
effective phase velocities C∗(z) and C∗(z0) (curves
2 and 3, calculated from different formulas), the
horizontal projections of the SP phase gradient
ϕ′

r = ∂ϕ(z)/∂r = ∂ϕ(z0)/∂r (curves 4), and the VVV
horizontal projection Vr(z, z0) (curves 6) on the
transmission or reception depths, as one would

expect, turned out to be identical for the two above-
stated problems. In this context, they are shown for
only one case. This circumstance indicates that the
reciprocity principle is satisfied for scalar fields and
horizontal components of vibration velocity in the
waveguide.

The dependences of the vertical components of the
SP phase gradient, ∂ϕ(z)/∂z and ∂ϕ(z0)/∂z (curves
5), the vertical VVV projections Vz(z) and Vz(z0)
(curves 7), and the phase gradient direction (i.e., the
EPW arrival angle, equal to the grazing angle of the
SP phase gradient) (curves 8) on depths z and z0 are
significantly different; they are presented in the figures
on the right and on the left, respectively.
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Fig. 4. Amplitude and phase vector-scalar field characteristics under the same conditions as in Fig. 1 but for a distance
r = 20 km.

5. RESULTS OF NUMERICAL ANALYSIS
OF THE AMPLITUDE AND PHASE

INTERFERENCE STRUCTURE
OF VECTOR-SCALAR FIELD

Figures 1−4 show the calculation results for dif-
ferent frequencies of transmitted harmonic signal and
two distances (5 and 20 km), which were obtained on
the assumption that transmission or reception occur
in the near-bottom region (z = 0 or z0 = 0) and that
the transmitter or receiving antenna depths change in
the range from 0 to h.

According to the results presented in Fig. 1, the
specified conditions and two-mode field model pro-
vide fairly uniform filling the waveguide, with a small
interference minimum at the depth corresponding
to the effective-waveguide middle, h∗ = h + Δh≈

124.4 m [11]. Correspondingly, only small inhomo-
geneities of phase gradient ϕ′

r=∂ϕ(z)/∂r=∂ϕ(z0)/∂r
are observed; as a consequence, the C∗ values
calculated both from the analytical dependence (via
modes) and directly (using the SP phase gradient)
almost coincide and change only slightly with z or z0.

In the Pmax region, the C∗ value greatly exceeds
C0, whereas C∗→C0 in the Pmin region.

Note that the dependences of amplitudes P or Vr

on z or z0 are similar. The dependence Vz(z0) for
reception in the near-bottom region is also similar to
the dependences P (z, z0) and Vr(z, z0). At the same
time, the behavior of Vz(z) is almost in antiphase
with that of Vz(z0) that is in exact correspondence
with theoretical relations (8) and (9), according to
which the normal-wave amplitude Vz(z) is propor-
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Fig. 5. Amplitude and phase vector-scalar field characteristics for f = 25 Hz and r = 5 km: dependences on the source depth
z0 at a reception depth z = 50 m (on the left) and dependences on the reception depth z at a transmission depth z0 = 50 m (on
the right).

tional to cos z while the normal-wave amplitude is
proportional to Vz(z0)→ sin z0.

There is a fundamental difference in the depen-
dences ϕ′

z0
= ∂ϕ(z0)/∂z0 (curve 5 on the left) and

ϕ′
z = ∂ϕ(z)/∂z (curve 5 on the right) for these two

versions. Since variations in ϕ′
r are small, a difference

in ϕ′
z and ϕ′

z0
leads also to a radical difference in the

dependences of EPW arrival angles (grazing angles
of the SP phase gradient) on z or z0: the ξ(z0) plot
contains an inflection at the point corresponding to
Pmin, which separates the regions of EPW arrival at
the receiving point from above or below, and ζ(z) has
a deep minimum in the Pmin region.

A significant difference is observed for the depen-
dences Vz(z) and Vz(z0). The P (z0), Vr(z0), and

Vz(z0) values also decrease monotonically and tend
to zero with a decrease in z0 (z0 → 0). This is quite
natural because the transmitter near the free surface
has a zero transmission resistance due to the Lloyd
effect.

At z → 0, Vz(z) takes rather large values. This
conclusion is in complete agreement with the cosine
dependence of the expansion coefficients Vz(z) on z
and with the results of classical analysis of the behav-
ior of differently oriented dipoles near soft and rigid
surfaces. It was shown in [12, 13] that the pressure
amplitudes for horizontal dipoles near a free surface
(at kz < 1, where k = ω/C0), as well as the monopole
pressure, tend to zero while vertical dipoles double
the amplitude. On the contrary, the amplitude Vz(z)
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Fig. 6. Amplitude and phase vector-scalar field characteristics under the same conditions as in Fig. 5 but for a frequency
f = 50 Hz.

near bottom should decrease at k(h − z) < 1, which
is observed in Figs. 1−4 (curves 6).

At the same time, z →h at z0, i.e., when a trans-
mitter or a scalar receiving element is located near
the bottom, the amplitude of the signal transmitted
by monopole, as well as the received values of sound
pressure or VVV horizontal projections should in-
crease. This conclusion is confirmed by the data in
Fig. 1(c1, c2).

Figure 2 presents data similar to those in Fig. 1
but for a frequency of 50 Hz.

It can be seen that the region of deep minimum
(Pmin) exhibits large deviations of horizontal projec-
tions of the SP phase gradient and, correspondingly,
C∗ from mean values. In this case, the C∗ value
is stabilized in the Pmax region, but the inequality
C∗ > C0 is retained.

Note that the region of deep minimum (Pmin) is
characterized by alternating jumps of ϕ′

r(z, z0) (close
to break of continuity), which indicates proximity of
dislocation [9, 14, 15]. The change in the phase gradi-
ent sign along the current line confirms the formation
of reverse energy flux, i.e., the occurrence of vorticity.

The other calculation results are similar to those
presented in Fig. 1. Specifically, the dependences
P (z0), Vr(z0), and Vz(z0) are similar for near-bottom
reception; the dependences P (z) or Vr(z) are similar
and in antiphase with Vz(z); the functions P (z0),
Vr(z0), and Vz(z0) tend to zero at z0 → 0; and the
dependences P (z) or Vr(z) also tend to zero at z → 0,
whereas Vz(z) becomes nonzero at z → 0.

As in Fig. 1, one can see a significant difference
between the dependences ϕ′

z(z) and ϕ′
z(z0), as well as

PHYSICS OF WAVE PHENOMENA Vol. 23 No. 4 2015
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Fig. 7. Amplitude and phase vector-scalar field characteristics under the same conditions as in Fig. 5 but for a frequency
f = 100 Hz.

between the EPW arrival angles at the receiving point
ξ(z, z0): these values change almost in antiphase
with variation in z or z0.

Figure 3 corresponds to even higher frequency
(100 Hz). The number of extreme regions (Pmax or
Pmin) is larger in this case. The reason is that the
occurrence of modes with large numbers leads to an
increase in the intervals between the wave numbers,
thus narrowing the Pmax regions and, correspond-
ingly, increasing the number of these regions.

It can be seen that, as in Fig. 2, the deep Pmin re-
gion exhibits jumps of phase gradients, both ϕ′

r(z, z0)
and ϕ′

z(z, z0). Unrealistically large (or small) C∗ val-
ues correspond to these regions, and large alternating
deviations of the EPW arrival angle from horizontal
arise. At the same time, the deviations of angle ξ

in Pmax regions are small, and the ξ value is close
to constant within large intervals Δz or Δz0 that
allows one to form efficiently spatial channels in these
intervals (directional characteristics) using vertical
receiving or transmitting antennas.

Figure 4 shows the calculation results for the con-
ditions similar to those illustrated in Fig. 1 but for a
much larger distance to the transmitter: 20 km. It
can be seen that its amplitude and the first-mode
amplitude become comparable at a smaller depth z or
z0 in comparison with Fig. 1 because of the stronger
damping of the second mode. As a consequence,
all curves are on the whole distorted, and anomalous
portions with singularities shift to smaller z or z0

values. Other characteristic regularities are similar to
those described above.
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Fig. 8. Amplitude and phase vector-scalar field characteristics under the same conditions as in Fig. 5 but for a frequency
f = 50 Hz and distance r = 20 km.

Similar calculation results were obtained for other
frequencies (50, 100, and 200 Hz), all other factors
being equal. On the whole, an increase in the distance
reduces the contribution of modes with large numbers
and decreases the number of anomalous (extreme) re-
gions, while the dependences C∗(z, z0) are smoothed
out.

Figures 5−8 show the calculation results ob-
tained on the assumption that signal reception (with
variation in the source depth z0) or transmission (with
variation in the receiver depth z) is performed at a
depth of 50 m (almost in the middle of the effective
waveguide). Figures 5−7 were obtained at a distance
of 5 km to the transmitter; the distance for Fig. 8 is
20 km.

It follows from Figs. 5−7 that, when a receiving
antenna or transmitter are located in the middle of

the waveguide, the interference is smoothed out in
comparison with the near-bottom region, which cor-
responds to the experimental data of [16] and the re-
sults of computer simulation [17]. The characteristics
P (z, z0), Vr(z, z0), and ϕ′

r(z, z0) are qualitatively the
same as for the near-bottom reception. However, the
dependences Vz(z) and Vz(z0) in the case of recep-
tion (or transmission) in the middle of the waveguide
are in antiphase with the dependences P (z, z0) and
Vr(z, z0).

It can also be seen that, as for the near-bottom
reception (transmission), the Pmin region contains
anomalous zones, characterized by a change in the
signs of ϕ′

r(z, z0) and ϕ′
z(z, z0). This fact indicates

formation of singularities (dislocations). As was
shown in [9, 14, 15], a saddle-like phase front should
be formed near dislocations in the zones with a
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change in the sign of gradients, i.e., at zero values
of ϕ′

r(z, z0) and ϕ′
z(z, z0).

On the whole, the character of the dependences of
scalar or vector field on z and z0 obeys general regu-
larities; at the same time, anomalous zones manifest
themselves (primarily, in the Pmin regions).

Figure 8 shows the calculation results for the
same conditions as in Fig. 6 for the distance which
is now 20 km. It can be seen that, in the regions of
interference maxima, the effective phase velocity C∗

is almost constant and changes in antiphase with a
change in the longitudinal SP phase gradient. It can
also be seen that Vr and Vz also change in antiphase,
and that Vz(z), in contrast to P (z, z0) and Vr(z, z0),
tends to a constant (nonzero) value at z → 0.

Note that, as in Fig. 6, the SP phase gradient in
the vertical plane and the EPW arrival angles at the
receiving point change with a variation in z or z0 with
respect to the horizontal plane (mainly in opposite
directions).

6. CONCLUSIONS

We theoretically investigated the spatial sound
pressure structure, horizontal and vertical projections
of the vibration velocity vector, orthogonal projections
of the SP phase gradient, and the EPW arrival angles
at a receiving point with a variation in the transmitter
depth (reception in the middle of the waveguide and
in the near-bottom region) and with a variation in
the receiver depth (transmission in the middle of the
waveguide and in the near-bottom region).

Analytical relations were obtained to describe the
vector-scalar field in shallow water, and calculations
were performed using contour integration and an
analog of SP field expansion in normal waves, applied
to the VVV orthogonal components.

It was established that the characteristics of the
scalar field, the VVV horizontal projection, and the
SP phase gradients in the horizontal plane satisfy
the reciprocity principle: identical characteristics are
obtained by recalculating the aforementioned param-
eters from the transmission point to the receiving
point or vice versa. For the vertical components of
VVV or SP phase gradient, the reciprocity condition
is not fulfilled. As a consequence, one cannot obtain
identical EPW arrival angles at the receiving point.
Thus, the vertical projections Vz(z, z0) and ϕ′

z(z, z0)
must be studied separately from the characteristics
ξ(z, z0).

It was shown that the effective phase velocity C∗

in Pmax regions slowly changes with variation in z
or z0, always exceeds the speed of sound in water
C0 by 5 to 15%, and can be calculated both us-
ing the analytical dependence (via the normal-wave

characteristics) and through direct calculation of the
phase gradient (experimentally or by simulation). It
was recommended to use the C∗ value instead of C0
to form a directional characteristic, obtain unbiased
bearing estimates, and increase the detection noise
immunity.

The behavior of the dependences P (z, z0) and
Vr(z, z0) with a change in z or z0 is mutually similar,
and the dependence Vz(z, z0) can be either in phase
with these characteristics (case of near-bottom re-
ception) or in antiphase (if reception or transmission
are performed in the middle of the waveguide).

The behavior of the dependences Vr(z, z0) and
Vz(z, z0) and projections ϕ′

r(z, z0) and ϕ′
z(z, z0) is

consistent well with the pattern of interference max-
ima and minima: smooth dependences are observed
in Pmax regions and singularities (dislocation and
saddle-type points) are formed in regions with deep
Pmin; these points are characterized by a change
in the gradient signs, indicative of the formation of
backward energy flux and vorticity.

When z or z0 tend to zero, the P (z0), Vr(z0),
and Vz(z0) values decrease and tend to zero whereas
Vz(z) reaches a nonzero value that is in good corre-
spondence with the general theoretical concepts.

When receivers (transmitters) are located in the
near-bottom region, the interference field is brighter
than for their location in the middle of the waveguide.

The above results suggest that, depending on the
specific conditions of signal transmission and recep-
tion, there is a large variety of vector-scalar field char-
acteristics. To use efficiently vector-scalar antennas
or vector-scalar modules, one must take into account
a much larger set of hydroacoustic field characteris-
tics in a waveguide than in the case of scalar fields.
However, the use of this approach increases simul-
taneously the amount of processed data and should
improve the detection noise immunity and accuracy in
describing the characteristics of weak signals against
the noise background.

The use of vector-scalar (four-dimensional) hy-
droacoustic field characteristics should facilitate
gaining a deeper insight into the hydrophysical char-
acteristics of fields in shallow or deep water.
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