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In creating some types of aircraft, cylindrical shells made of composite materials that consist of 
sections having different thicknesses are used as power elements. Such shells with a piecewise constant 
thickness are, for example, the engine housings, at the ends of which the docking assemblies are 
additionally wound, and in the locations of the intermediate supports, the zones of reinforcement are 
organized, as well as compartments and various protective casings. During the aircraft flight, these thin-
walled elements are under the action of acoustic loads (aerodynamic forces, buffeting, atmospheric 
turbulence) [1] in the form of a pulsating external pressure, which under certain conditions, is able to 
cause their destruction. 

The problems of calculating the variable–thickness shells were investigated in [2, 3]. The problem of 
dynamic stability of thin-walled structures began to be studied in the middle of the last century in 
connection with the development of aeronautics and astronautics. Ways to solve it were outlined in 
a number of monographs and papers [4–12].  

Thus, in [8], the dynamic stability of a hinged orthotropic shell supported by elastic bonds (springs) 
under the action of harmonically changing external pressure was investigated. The springs are arranged in 
several rows along the length of the shell, and along the circumference—the springs are arranged 
symmetrically relative to the vertical diameter. The solution of the equation is sought in the form of two 
trigonometric series with respect to the axial and circumferential coordinates. The problem is reduced to 
the system of algebraic equations relative to the radial displacements of the shell in the place of 
installation of the springs. For uniformly spaced similar springs, the solution is obtained explicitly. 
The effect of the spring stiffness on the boundaries of stability regions was shown. 

In [9], the dynamic stability of the orthotropic cylindrical shell discretely supported by annular ribs 
and loaded by the constant compressive force was considered. The external surface is under the pressure 
consisting of three components, namely, the static constant component over the entire length, the static 
variable component over the length, and the harmonic variable one over the entire length. The solution is 
sought as a series with respect to the axial coordinate. The dependences of the main instability region for 
different values of the axial force are obtained for three laws of distribution along the axis of the variable 
component of the static pressure.  
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In [10], the dynamic stability of the orthotropic cylindrical shell discretely supported by longitudinal 
ribs and a hollow elastic cylinder under the action of harmonically changing axial forces was studied. 
The solution of the equations is sought in the form of a trigonometric series with respect to 
the circumferential coordinate. In solving the Mathieu–Hill type equations, the two-term approximation is 
used that allows the calculation accuracy to be increased up to 10 %. Solution was obtained in explicit 
form for uniformly located similar ribs. The change of instability regions depending on the number and 
geometric parameters of ribs and the cylinder stiffness is shown. 

In [11], the dynamic stability of a layered orthotropic shell discretely supported by ring edges and 
a hollow elastic cylinder loaded with a constant axial force and external pressure changing in time 
according to the harmonic law was investigated. The equations of motion of the shell take into account 
the transverse shift that increases the accuracy of determining the boundary of the instability region  
up to 20 %. 

The solution of the problem is sought in the form of a trigonometric series along the axial coordinate. 
The problem is reduced to a system of three algebraic equations for uniformly spaced equal edges. 
The dependences of the main instability region on the number of ribs, the shear modulus of the shell, 
the radius of the cylinder channel and the axial force are established. 

In [12], the dynamic stability of the orthotropic shell supported by an elastic hollow cylinder and 
longitudinal diaphragms under the action of harmonically changing external pressure was considered. 
Diaphragms have different physical and mechanical properties and are arranged symmetrically with 
respect to the vertical diameter. The solution of the equation is sought in the form of a trigonometric 
series with respect to the circumferential coordinate. To improve the accuracy of calculating the Mathieu–
Hill equations, the two-term approximation is used. The problem is reduced to a system of two algebraic 
equations for uniformly spaced similar ribs. In the case of the one-term approximation, the solution was 
obtained explicitly. Dependences of the stability regions for different stiffnesses of diaphragms, the radii 
of the cylinder channel, and the magnitude of the axial force were obtained. In [10–12], the cylinder was 
represented as an elastic Winkler base, the bed coefficient of which was determined from the equations of 
the three-dimensional theory of elasticity. 

In [13], the dynamic stability of the orthotropic layered cylindrical shell under the action of 
periodically changing external pressure is investigated. Using the Bubnov–Galerkin method, the problem 
is reduced to the Mathieu–Hill equation. The main instability regions for different shell parameters are 
constructed. 

The dynamic stability of the cylindrical shell under the action of torques applied at the ends and 
changing in time according to the harmonic law is considered in [14]. The main instability regions for 
four types of boundary conditions are determined. 

However, at present, due to the widespread introduction of composite materials in structural design of 
aircraft and the development of fundamentally new structures, actual problems arose related to the use of 
additive technologies and the design of shell structures, the thickness of which varies according to 
a certain law.  

The study of oscillations and stability of cylindrical shells of variable thickness, as is known, leads to 
the solution of differential equations with variable coefficients. For shells with piecewise constant 
thickness, which can be attributed to a special class of shells, these coefficients are the generalized 
functions (the unit Heaviside function, the Delta function and its derivatives) [15]. The solution of such 
equations is a fairly complex process, and the desired function has a poor convergence. Therefore, this 
paper uses a simplified initial equation, in which the terms containing the delta functions and its 
derivatives are discarded. The solution error is estimated as a result of introducing these assumptions. 

Consider an orthotropic cylindrical shell of piecewise constant thickness, the outer surface of which is 
under the uniformly distributed pressure that varies in time according to the harmonic law. The shell is 
hinged at the ends and loaded by axial forces. The tangent and axial components of inertial forces are 
neglected. Structural damping in the shell is not taken into account. The design scheme is shown in Fig. 1. 
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Fig. 1. 

We introduce the dimensionless system of cylindrical coordinates, in which the linear dimensions are 
related to the radius of the outer surface of the shell taken as a coordinate surface. Then the equation of 
the shell can be represented as [16] 
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Substituting expression (2) into Eq. (1) and using the Bubnov–Galerkin method, we obtain an infinite 
system of the Mathieu–Hill differential equations: 
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Let us seek the solution of Eq. (3) in the following form 
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Reducing system (5) and equating the determinant of the matrix obtained to zero, we come to 
the sought characteristic equation for finding the critical frequency. 

Substituting the second sum from expression (4) into Eq. (3), we obtain characteristic equation (5), in 
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Figure 2 shows the instability regions (the shaded part) of the shell with reinforced end sections 1, 
the reinforced middle section 2, and the average integral thickness 3 without action of the axial force  

(T = 0). The ordinate is expressed in terms of the ratio 
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Figure 3 presents the similar dependences for shells additionally loaded by an axial force 0.3 crT T=  

( crT  is the axial buckling force of a smooth shell with base thickness). 
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—the presence of an axial compressive force reduces the boundaries of the instability region of 
the shell with strengthened end sections by 40% and increases the area of the region by two times; 

—for shells with average-integral thickness and reinforced middle section, the presence of an axial 
force reduces the boundaries of the instability regions by 10%; 

—the definition of the boundaries of the instability regions using the average integral thickness in 
the range of 10% error can be carried out for shells, in which the difference of thickness at different 
sections does not exceed 20%. 

To assess the impact of the assumptions made, the results of calculating the standard design by 
the base (used by different authors) technique and the technique being proposed were compared. 
A smooth orthotropic shell supported by a rectangular frame was used as a computational model. 
The material of the shell and the frame was the same and its characteristics corresponded to the above 
example. In this technique, the total height of the frame and smooth shell was formed by the thickness of 
the middle section, and the length of this section was equal to the width of the frame. The critical values 
of the static external pressure and the axial compressive force causing the loss of stability, and the natural 
frequency of the shell at different values of the height of the frame were determined. 

In the base technique, the equation of motion of the shell supported by the frame was used in the form [7] 
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are the width and height of the frame;  iα  is the coordinate of the frame location. The other notation 

corresponds to Eq. (1). 

The geometric parameters of the shell and frame were as follows: 6;
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The calculation results for both techniques are presented in the table, where pk, Tk, fk are the critical 
external pressure, the critical axial force and the natural frequency of the shell, respectively; , ,p T fΔ Δ Δ  is 

the difference of calculation results between the methods in percentage; 0k = —results of the proposed 
technique; 1k = —the results of the basic technique. 
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0 3.7 3.7 0 9.0 9.0 0 22 26 15 

2 4.3 4.1 5 9.5 9.0 5 23 27 15 

4 4.8 4.8 0 10.5 11.0 5 26 30 13 

6 4.9 5.1 4 11.0 12.0 8 28 35 20 

8 5.0 5.1 2 11.5 12.0 4 32 38 15 
 

Analysis of the results shows that the error of the technique proposed in calculating the stability of 
the shells of piecewise constant thickness under the action of external pressure and axial force is about 
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5% that is a fairly good indicator. The error in determining the natural frequencies is about 15% that is 
quite acceptable in carrying out design work. Note that the stiffness of the shell with an artificial frame is 
lower than of the shell with a classic frame for all types of load. 
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