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Abstract—A turbulence model for high-speed compressible flows is developed. It is based on 
modeling the rapid and slow parts of pressure-strain correlation depending on gradient Mach number 
and on the assumption that the velocity fluctuations normal to streamlines play a key role in turbulent 
mixing process. It is shown that an increase in the flow velocity leads to a slowing of turbulent 
mixing and an increase in the anisotropy of the flow. Comparison of the calculation results with 
the available experimental data showed good agreement. 
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Modeling of turbulence is extremely important in solving problems of airspace engineering [1]. It is 
well known that compressibility in high-speed flows has a stabilizing effect on turbulence so that 
the intensity of turbulent mixing reduces as velocity increases. This effect plays an important role in 
present-day problems of rocket and airspace engineering. For example, the rate of fuel and oxidizer 
mixing in supersonic engines is reduced. Compressibility changes the nature of laminar-turbulent 
boundary-layer transition over hypersonic vehicles during re-entry. 

In most turbulence models used, the effect of high-speed compressibility was taken into account by 
adding additional dissipation to the turbulent kinetic energy (TKE) transport equation [2, 3]. However, in 
more recent works, for example, in [4], it was shown that this effect is manifested through the mechanism 
of interaction of pressure and velocity gradient rather than through dissipation. 

In addition, the models based on supplementing additional dissipation to the equation of turbulent 
kinetic energy fail to predict the increasing turbulence anisotropy. The experiments [5, 6] showed that as 
the Mach number increases, the cross-stream turbulence fluctuations are affected in a greater extent than 
the streamwise ones. 

The equations for the transport of the Reynolds stresses 
�

ij i jR u u′′ ′′=  have the following form: 

 
( ) ( )ij k ij ij ij ij ij

k
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∂ ∂
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∂ ∂
� ,   (1) 

where ijT  is the turbulent, molecular and pressure-related diffusion; 
�
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 is 

the production of Reynolds stresses; ijε  is the dissipative term that, taking into account local isotropy, is 

modeled as 

 
2

3ij ijε = εδ ;  (2) 
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 is the pressure–strain correlation. Here ε is the TKE dissipation rate. 

The modeling of ijΠ  depends on the flow rate, i.e. on the Mach number. 

First, let us consider low speeds. Pressure–strain correlation is divided into the slow and rapid parts: 

 
( ) ( )s r

ij ij ijΠ =Π +Π .   (3) 

For the slow part that characterizes the tendency towards isotropy, the following formula is used 

 

( )
1

2

3
ijs

ij ij

R
C

K

⎛ ⎞
Π = − ρε − δ⎜ ⎟

⎝ ⎠
,  (4) 

for the rapid part a simplified model of Launder–Reece–Rodi [7] is used: 

 

( ) 2

3
r

ij ij ijP P
⎛ ⎞

Π = −Γ − δ⎜ ⎟
⎝ ⎠

,  (5) 

where P  is the TKE production. 
The numerical coefficients have the following meanings [7]: 

 1 1.5; 0.6C = Γ = .   (6) 

In the case of a compressible fluid, the tensor ijΠ

 
ceases to be a divergence-free (that is, the trace of 

this tensor is not zero). Consequently, formulas (4) and (5) no longer reflect the correct nature of 
the pressure–strain interaction. 

It is proposed in [8] to add an additional term proportional to the production ijP : ( )2 G ijC M P
Π

−   to the 

formula (5). 

In addition, it is shown that the coefficients 1,C Γ  are no longer constants, but depend on the gradient 

Mach number that is defined as follows:  

 

3/2
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where a is the speed of sound. 
In [8], on the basis of direct numerical simulation, formulas were obtained for all the coefficients that 

appear in the correction coefficients for the compressibility. 
An analysis of these formulas shows that for a rapid part of ijΠ  the correction coefficients for 

compressibility vary approximately equally depending on MG , therefore, in this paper, a unified 

correction is proposed for this: ( )1 MGC
Π

.  

Thus, for compressible flows, the following formula is proposed 

 ( ) ( ) ( ) ( )1 1 2

2ˆ M M M
3

ij r
ij G ij G ij G ij

R
C C C P

K Π Π

⎛ ⎞
Π = − ρε − δ + Π −⎜ ⎟
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,  (8) 

where for the coefficients that take into account the compressibility, the following relations are used 

 ( ) ( )* *
1 1

ˆ 0.2786exp 4,7758M 0.7213exp 0.0334M G GC = C   + ⎡ ⎤− −⎣ ⎦ ;  (9) 
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where *M M 3.05G G= . 

For relations (9), (10), the approximation formulas from [8] are used, and relation (11) is obtained in 
this paper.  

The dependence of the coefficients in the pressure-strain correlation on the gradient Mach number is 
shown in Fig. 1. 

 

Fig. 1. 

Thus, the source in the basic equation (1) is equal to 

 ( ) ( )2 1 1 1

2ˆ ˆˆ ˆ ˆ1 1 ,
3

ij
ij ij ij

R
R C P C C P C

KΠ Π
⎡ ⎤= − −Γ − ρε + − ρε + Γ δ Γ = Γ⎣ ⎦ .  (12) 

Similar relationships can be easily obtained when using the Menter baseline (BSL) model [9].  
A complete system of differential equations for transport of the Reynolds stresses is used in practice 

much less frequently than two-parameter models, such as k–ε or SST, because they do not give 
a significant improvement in the results of calculating turbulent flows, in addition they are much more 
complicated. Nevertheless, the analysis of these equations makes it possible to obtain important 
regularities for the determination of parameters entering into simpler models. In particular, this concerns 
the mechanism of affecting high-speed compressibility on turbulence. 

For this analysis, we use a so-called algebraic stress model, which is based on the assumption of 
similarity of the transfer of Reynolds stresses and turbulent kinetic energy.  

In this paper, we use the assumption of equilibrium of the convective and diffusion fluxes of turbulent 
stresses. It follows from this assumption that Rij = 0, and that the trace of the tensor is also zero: 
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2
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1 2 0; 2

1kk kk kkR C P P P
CΠ

Π
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−
.  (13) 

Taking into account Eq. (12) and its analogue for BSL, we obtain the following algebraic formulas for 
the Reynolds stresses: 
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where * *
1 2,C C

Π Π
 are formed using a transition function 1F  [9]. 

The obtained equations contribute little in comparison with the basic model of Reynolds stresses, since 
the solution of nonlinear algebraic systems of equations is not simpler than the solution of a system of 
partial differential equations.  

Therefore, we use one more assumption. Let us consider streamlines introduced on the basis of Favre 
averaged velocities. It is reasonable to assume that the derivatives of the velocity along the streamlines 
will be substantially smaller than the derivatives along the normal to them 
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 for ,s nV V ,  (16) 

and also that s nV V>> . Note that ,s nV V  are the instantaneous rather than averaged values of velocities, so 

nV  may not be equal to zero, in contrast to the average velocity 0nV ≡
� . 

For a plane-parallel flow (xy plane) along the x axis, using assumption (16), we obtain rigorously: 

 �
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,  (17) 

where u, v, w are the velocity components along the x, y, z axes. 
Similar relationships are valid for arbitrary curvilinear streamlines: 
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�

�
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�
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 (18) 

From this, taking into account formulas (13) – (15), we obtain the explicit formulas for 
�2

nV ′′  and 

�

s nV V′′ ′′ . In addition, testing the proposed model in the calculations and comparing it with the experimental 

data showed that a better agreement is obtained if the compressibility effect on the coefficients is not 
considered in the formulas for shear stress. Thus, the following formulas are obtained from the 
expressions (14), (15): 
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Let us compare expressions (19) and (20) with formulas for turbulent shear stresses using models 
based on the concept of turbulent viscosity. 

The standard k–ε model is 

 

�

2

; 0.09s
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n

∂
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�

.   (21) 

Standard model SST is  
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Such a comparison allows us to propose formulas for turbulent viscosity, in which it is possible to take 

into account the effect of high-speed compressibility via the coefficients 1 1 2
ˆ , ,C C C

Π Π
: 
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Here, ( )0C
µ

 means the value of C
µ

 at low speeds: 1 2M 0 1; 0G C C
Π Π

≈ → = = . If we use the values 

1 1.5,C =  0.6Γ = , then 
�2 0.49,nV K′′ =  ( )0 0.13C

µ
= , and if 1 1.8,C =  0.6Γ = , then 

�2 0.52,nV K′′ =  

0.115C
µ
= . 
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By taking the trace of Eq. (1), we obtain the transport equation for turbulent kinetic energy:  

 ( ) ( ) ( ) ( )21k T
k k k

K
K u K C P

t x x x Π

⎡ ⎤∂ ∂ ∂ ∂
ρ + ρ = μ + μ + − − ρε⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

� ;  (25) 

 ( ) ( ) ( )*
21T

j
j j K j

K
K u K C P K

t x x x Π

⎡ ⎤⎛ ⎞μ∂ ∂ ∂ ∂
′ρ + ρ = μ + + − − ρβ ω⎢ ⎥⎜ ⎟

∂ ∂ ∂ σ ∂⎢ ⎥⎝ ⎠⎣ ⎦
� .  (26) 

Testing the turbulence model considering the compressibility effect involved comparing 
the simulation results using this model with the available experimental data for various types of flow. 

1. Mixing Layer. 
This test involved the comparison with the experimental data of [5, 8]. A plane mixing of two parallel 

gas flows having different velocities and densities was investigated. The table presents the main 
parameters of these flows for seven options. 

Option Flow parameters 

1 1d 2 3 3r 4 5 

2 1r U U=   0.78 0.79 0.57 0.18 0.25 0.16 0.16 

2 1s = ρ ρ  0.76 0.76 1.55 0.57 0.58 0.6 1.14 

M1 , M2 2.01; 1.38 2.02; 1.39 1.91; 1.36 1.96; 0.27 2.22; 0.43 2.35; 0.3 2.27; 0.38 

M /r U a= Δ  0.4 0.4 0.91 1.37 1.44 1.73 1.97 

T1, T2 ,K 163; 214 151; 198 334; 215 161; 281 159; 275 171; 285 332; 292 

U1, U2 , m/s 515; 404 498; 392 700; 399 499; 92 561; 142 616; 100 830; 131 

P, Pa 46e3 55e3 49e3 53e3 53e3 36e3 32e3 

We represent the normalized similarity profiles of Reynolds stress 
�

1 2uv u u′′ ′′τ =  (Fig. 2a) and the cross-

stream turbulence intensity �

2 2v u u′′ ′′σ =  (Fig. 2b). 

 

  
(a)      (b) 

Fig. 2.  

Figure 3 shows the normalized similarity profiles of streamwise turbulence intensity �

1 1u u u′′ ′′σ = . 

Here: 1 2U U UΔ = − ; b is the thickness of the mixing layer; 0y  is the transverse coordinate corresponding 

to the average velocity ( )1 20.5 U U+ ; � �

1 2 21 ;u vu u u u′′ ′′ ′′ ′′σ = σ = . The calculations were compared with 

the use of three models of turbulence: - - -  —standard k–ε model; - ·-·-  —k–ε model with compressibility 
corrections [3]; ––– —the model presented in this paper. 
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Fig. 3. 

The best match is achieved when the model proposed in this paper is used.  

Figure 4 shows the effect of the relative flow rate ( )1 2 /rM U U a= −  on the main turbulent mixing 

parameters: (a)—the expansion velocity of the mixing layer; (b)—the shear stress. The calculated 
parameters are normalized to their analogues, obtained without taking into account the compressibility 
effect in the model in turbulence at the same values of the ratio of the velocities 2 1r U U=  and the ratio 

of densities 2 1s = ρ ρ . 

(a) (b)

Fig. 4. 

Figure 5 shows the dependence of the anisotropy of turbulence on the Mach number using different 
models of turbulence and comparison with experiment.  

Fig. 5. 
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2. Fully Expanded Heated Free Jets. 
This test was aimed at validating the turbulence model presented for the simulation of jets, 

temperature, density and pressure of which at the nozzle exit (indicated by the subscript a) are the same as 
those in the ambient (subscript  e), i.e. , ,a e a e a eT T p p= ρ = ρ = . 

This condition makes an estimate of a pure effect of compressibility on jet parameters. Simulations 
with k–ε model, Sarkar’s k–ε cc model [3] and model proposed in this paper were performed and 
compared. 

The results of the simulation were compared with the experimental data [10, 11]. 
It is rather difficult to determine experimentally the length of the initial section of the jet with 

sufficient accuracy. To estimate the jet length, it is more convenient to use a dimensionless coordinate 

0.75 0.75 aX X R=  from the nozzle exit corresponding to the value of the relative velocity 0.75C au u =  

[10, 11]. It should be noted that, in accordance with the data of [11], the maximum intensity of turbulence 

and the velocity gradient is observed precisely in the cross section 0.75X . 

Figure 6 shows the dependence of the relative coordinate 0.75X  on the Mach number at the nozzle exit. 
The simulation results were compared with the experimental data [10, 11]. 

 

 

Fig. 6. 

3. Under-Expanded Cold Supersonic Air Jet. 
Results of calculation of an under-expanded supersonic jet and comparison with experimental data are 

presented [12]. The simulation was carried out for jets having a total temperature 0 300KT =  and 

the output Mach number M 3.3a = . 

Figure 7 presents the simulation results and the experimental data for an under-expanded jet with static 
pressure ratio 1.5a ep p = , diameter of the profiled nozzle 53.7 mmaD =  and nozzle exit half cone angle 

10 degaθ = .  
 

 

Fig. 7.  
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Using standard k–ε model considerably under-predicts the jet length if compared with 
the experimental data, and also reduces a number of shock diamonds in the jet. The oscillations of 
the Mach number have much lower amplitude than in the experiment. 

An analysis of the results obtained showed that the turbulent mixing decreases as the velocity 
increases. An increase in the relative velocity leads to a decrease in the shear stress, a significant decrease 
in the transverse velocity pulsations, and a very slight change in the longitudinal pulsations. This means 
that the compressibility affects the velocity fluctuations directed normally to the streamlines, first of all, 
and through this value it affects the shear stress. The effect of compressibility on velocity fluctuations 
along the streamlines is small. 
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