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Combustion chamber is one of the most loaded elements of aircraft equipped with ramjets. 
Combustion chamber consists of two composite cylindrical shells. These shells are coaxially located and 
attached by means of pylons. A main frame with a set of cross holes is located on the surface of the inner 
shell. Hot air enters through these holes. 

This paper is devoted to the study of the dynamic stability of the inner shell taking into account 
possible distribution of the external pressure in the gas path. 

The problem of dynamic stability of thin-walled structures associated with the development of 
aeronautics and astronautics was solved in [1–4]. The stress strain state, stability and dynamic stability of 
composite shells were also investigated in [5–8]. Analytical solutions of shell deformation mechanics 
problems were considered in [9, 10]. The through-thickness stress distribution in the adhesive joint for 
the multilayer composite was studied in [11].  

At present, in connection with development of essentially new types of aircraft and implementation of 
composite materials, we are confronted with a new class of relevant tasks, which are connected with 
supporting elements discretely located in structures [12–15]. 

We consider a shell reinforced by a set of annular ribs and loaded by the external pressure. This 
pressure consists of common constant, axially alternating, and time variable components (Fig. 1). 
The ends of the shell are assumed simply supported and loaded by the axial compressive force. Only 
radial components of the contact interaction between the shell and ribs are considered. Axial and 
tangential components of the inertial forces as well as structural damping in the motion equations are not 
taken into account. 

Let us introduce the dimensionless cylindrical coordinates, all linear dimensions in which relate to the radius 
of the middle shell surface. Then the equation of shell motion can be represented in the following form [4] 
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Here α, β are the dimensionless coordinates in the longitudinal and circumferential directions; w is the 
normal shell displacement; ,R h  are the radius and thickness of the shell; , ,E E G

α β αβ
 are the elastic 

moduli in axial and circumferential directions and the shear modulus; ,
α β

ν ν  are Poisson’s ratios; ,i iI F  

are the moment of inertia and the area of the ith  rib; iE  is the modulus of ith rib; 0 , iρ ρ  are the densities 

of the shell and rib materials; M  is the number of ribs; N
α

 is the initial axial force; 0 1, ( ),jP P P
α
α  are the 

common constant, variable, the amplitude ripple of external pressure, respectively; ω  is the pulsation 
frequency; ( )δ α is the delta function. 

 

 

Fig. 1. 

Depending on shell structural features, gas density or flow rate, the following pressure distribution 
along the variable axis  can be taken, namely, constant 1P

α
; linear 2P

α
; quadratic 3P

α
 (Fig. 2). 

These relationships can be represented as  
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where 0 L Rα = , L is the length of the shell; 1α  is the coordinate of the gas inlet; 2P  is the  pressure on 

the rear shell of the section; 0 )(σ α  is the unit function equal to unity  at 0α >  and zero at  0α < .  
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Fig. 2. 

The solution of Eq. (1) will be sought as follows 
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where 0 ;mγ = π α n  is the number of waves in the circumferential direction; m is the number of half-waves 

in the axial direction; ( )mf t  is the unknown function of time (hereinafter, the argument t is omitted). 

We substitute expression (3) into Eq. (1) and apply the Bubnov–Galerkin procedure. Each term of 
Eq. (1) is multiplied by 0sinξα  (where 0kξ = π α ) and integrated from 0 to 0α . As a result, we obtain an 

infinite system of differential equations of the non-uniform Mathieu–Hill type: 
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The solution of Eq. (4) will be sought in the following form 
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where ,sk skA B  are the constant coefficients.  

Substituting the first sum from expression (5) into the system of inhomogeneous differential equations 
(4) and equating coefficients with equal sin( ) 2s tω , we get an infinite system of algebraic equations.  In 

the following we will restrict ourselves to the first term of the series that defines the main area of 
instability. It is sufficient for practical calculations according to [1]. 

As a result, we get 
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We obtain the characteristic equation for determining the critical frequencies by means of reducing 
the system (6) to the number of members that provide the required accuracy and equating to zero 
the determinant of the truncated matrix.  

We get the characteristic equation (6) if the second sum from expression (5) is substituted into 
the system of inhomogeneous differential equations (4). It will be correct if the coefficients 1kA  be 

replaced by 1kB  and the coefficient kd  takes  the plus sign. 

As an example, the shell reinforced by a rib is considered. The basic parameters of the shell, ribs, and 
the load are the following ones: 
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Three variants of the law of distribution for the variable component of external pressure are 
investigated. All variants have the same force integral along the length. If this condition takes place, 
the pressure P2 (excluding common constant)) will have the following values: 

-----for the constant law 2 02P P= ; 

-----for linearly increasing law 2 04P P= ; 

-----for quadratic law ( ) ( )2 0 0 1 0 16 2 .P P= α + α α + α   



BAKULIN et al. 

RUSSIAN AERONAUTICS     Vol. 60     No. 4    2017 

512 

It was taken that *
0 0.7P P=  for all calculations, where *P  is the critical buckling pressure of the 

unsupported shell. 
Figure 3 presents the regions of shell instability (this part is shaded) for constant (1), linear increasing 

(2), and quadratic increasing (3) laws of pressure distribution.  

Here the ordinate ( )0Y = ω ω  is the ratio of the critical pulsation frequency and the natural frequency 

of the unsupported shell. The value ( )1 0X P P=  is the ratio of pulse component of external pressure and 

the common constant.  
Figure 4 presents the similar dependences for a shell loaded by the axial compressive force 

*0.4N N
α α
= , where *N

α
 is the critical buckling force for the unsupported shell.  

 

    

Fig. 3.      Fig. 4. 

CONCLUSIONS 

The following conclusions can be made:  
—the lowest boundaries of the instability region are obtained when the variable component of external 

pressure law is constant; 
—the area of the instability regions increases twice when the axial compressive force is 40 % of 

critical force; 
—the instability region boundaries at a linear increasing law are 1.3 times higher than in the case of 

quadratic law for the shell unstressed by the axial force. These boundaries are 1.3 times lower taking into 
account the action of the axial force; 

—the instability region boundaries at a constant law are in 1.4 times lower than in the case of 
the linear increasing or quadratic law of the variable component of the external pressure. It indicates 
a need of taking into account these factors; 

—variability of the pressure along the axial coordinate is essential when 1 00.5α < α . 
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