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Several features of composite materials such as low crumpling strength, structural inhomogeneity, 
sensibility to irregularity of the geometry of parts, etc., promote the necessity to apply the surface 
adhesive and combined joints [1, 2]. The development of high-strength glues and improvement of 
adhesion technology and adhesion quality control are also conducive to their application. Compared to 
the usual types of joints, the adhesive joints have a number of advantages in the aerospace engineering, 
such as tightness, vibration isolation and vibration damping, high aerodynamic efficiency, manufacturability, 
low joint weight, relatively low cost of process equipment, and so on. However, in operation the access to 
the joint is usually complicated, and it is impossible to detect the fracture initiation by sight. This fact leads 
to increase of requirements to design of joints and techniques of stress state analysis.  

The finite element method (FEM) is used to analyze the stress state of joints. In the case of the 
complex joint geometry or nonlinear behavior of joint elements, this technique seems more preferable or 
uniquely possible. However, the analytical models and computation techniques allow us to find out in 
detail the effect of mechanical and geometrical joint parameters on the joint stress state, explain the 
fracture mechanisms, conduct the parametric investigation, create the design and optimization techniques, 
and find out the ways for increasing the bearing capacity of joints.  

Most of contemporary analytical techniques of analyzing the stress state of adhesive joints are based 
on the Goland and Reissner joint model [3, 4]. One of the lines in developing the theory of overlapped 
joints is the study of the through-thickness stress distribution in adherends. The solutions of the given 
problem [5, 6] are available that were obtained based on the hypotheses of structural mechanics. In [7], 
the solution was obtained using the hypothesis on the absence of lateral strains in the composite part. 
The analytical solution [8] of the two-dimensional problem of the elasticity theory involves a fair number 
of difficulties. A disadvantage of the techniques mentioned above is that the materials of bearing layers 
are assumed to be homogeneous and isotropic. Experience in the operation shows that extension of an 
interlayer crack and extraction of the layer adjacent to the glue line is one of the fracture behavior type in 
overlapped joints of the layered composite materials [9, 10]. Therefore, in determining the bearing 
capacity of the joint, the layered structure of the jointed parts should be taken into account.  

A disadvantage of the numerical techniques based on the structural discretization [1, 11] is that the 
composite material is modeled by a set of parallel rods working in tension–compression only, and 
interlayer connections work in shear only. Moreover, in this case, the normal stresses between the layers 
are not taken into account. In the Rzhanitsin model [0] that is similar in formulation, the bearing layers 
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are considered as Bernoulli beams, however, the lateral connections between them are also supposed 
being ideal rigid, owing to this the normal interlayer stresses are absent. Therefore, these models can not 
quite adequately describe the joint stress state.  

The purpose of this work is to generalize the adhesive joint Goland and Reissner mathematical model 
for an arbitrary number of layers, and to apply the results obtained for determining the stress state of the 
adhesive joint in the layered composite rod with metal edge.  

MODEL OF A COMPOSITE BEAM 

Let us consider a multilayered rod, which consists of m separate rods considered as Bernoulli’s beams. 
They are connected by joint layers, working in shear only and in tension–compression in the transversal 
direction. Under deformation of this system, the tangent and normal stresses appear in the joint layers; 
these stresses are supposed to be proportional to the differences of the longitudinal and lateral shifts of 
the rod sides, adjoining to the joint layer. The forces acting on the rod element are shown in Fig. 1. 

 

 

Fig. 1. Equilibrium of the rod differential element. 

Let us consider a package consisting of m rods. The outer limits of rods numbered as 1 and m are 
supposed being free of the distributed loads. The equilibrium equations have the following form  
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where 2,3,..., 1n m= − ; , ,n n nN Q M  are the longitudinal, lateral forces and linear bending moment in 

the beam n , respectively; ,n nτ σ  are the tangent and normal stresses, acting in the joint layer n ; ns  is the  

half of the beam thickness n . 

The tangent stresses in the joint layers are 
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where nP  is the pliability of the connective layer for shift, 1
n n nP G−= δ ; nG  is the shift module of 

the corresponding joint layer; nu , nw  are the longitudinal and lateral shifts  of the n th beam. 

The normal stresses in the joint layers are 
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where nK  is the tension–compression rigidity of the joint layer, ( ) 1g
n n nK E −= δ , ( )g

nE  is the modulus of 

elasticity of the joint layer; nδ  is the thickness of the corresponding joint layer.  

The motion equations of beams take the following form  

 n
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Here nB  and nD  are the tension–compression and bending beam rigidity, respectively; 2n n nB s E= , 
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The system of equations (1)–(6) can be reduced to a system of equations relative to the shifts, which 
has the following form 
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As the layers numbered 0 and 1m +  are absent then 0 1mP P += = ∞ , 0 1 0mK K += = .  

We are seeking a partial solution of system (7) in the form xeλ=X h , where h is some vector. 
Substituting this expression in (7), we get 

 ( ) ( ) ( ) ( )( )4 2 1 04 2 0λ + λ + λ + =A A A A h .  (8) 

From here we get a characteristic equation 
 ( )det 0λ =A ,     (9) 

where  ( ) ( ) ( ) ( ) ( )4 2 1 04 2λ = λ + λ + λ +A A A A A . 

Equation (9) has a root 0λ =  of multiplicity equal to six. The total number of nonzero solutions of (7) 
are equal to ( )6 1m − . Hence, the general solution of  Eq. (7) takes the following form 

   
( )

1

1 6 1 3

1 0

e... k

m
x n

k k n
k n

m

m

u

w

C x

u

w

−
λ

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= = +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑X h H .    (10) 



KURENNOV et al. 

RUSSIAN AERONAUTICS      Vol. 58      No. 2      2015 

148 

Vectors kh  are the  nontrivial solutions  of a system of linear equations  

 ( ) 0k kλ =A h . 

The vector kh  is determined with an accuracy up to an arbitrary factor kC , as a defect of matrix 
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The constants kC , ( )1,2,..,6 1k m= −  and 1 2 6, ,...,S S S  are obtained from  6m  boundary conditions. 

Three boundary conditions, namely, longitudinal shift or longitudinal force; lateral shift; rotation angle, 
bending moment or a lateral force, are set on each of the two ends of the separate beam.  

THROUGH-THICKNESS STRESS DISTRIBUTION IN THE ADHESIVE JOINT 

We use the given model for analyzing the stress state of an adhesive joint of a multilayer composite 
rod with metal ending (Fig. 2). 

 

 

Fig. 2. The scheme of a compound. 

The origin will be placed at the boundary of bonding. The multilayer composite will be considered in 
accordance with the model described above, and the ending will be considered as a homogeneous beam. 
The metal has a relatively high modulus of the interlayer shift and the uniform beam model describes well 
the stress state of the metal ending. Let the composite rod consists of N  monolayers, in this case, the 
problem is solved for  1N +  layers at bonding site. The length of the bonding site is L, the length of the 
composite rod protruding beyond the limit of compound is 1L . Let us denote shifts and forces in the rods 

L  1L  

0  x  

5 

1 

4 
3 
2 F  



THROUGH-THICKNESS  STRESS  DISTRIBUTION  IN THE  ADHESIVE  JOINT 

RUSSIAN AERONAUTICS    Vol. 58     No. 2     2015 

149 

outside the field of bonding [ ]( )10;x L∈  as  nu , nw , nN , nQ , nM , ( 1,..,n N= ) and inside the field of 

bonding [ ]( ); 0x L∈ −  ad nu , nw nN , nQ , nM  ( 1,.., 1n N= + ). The boundary conditions corresponding to 

Fig. 2 are as follows  

 ( ) ( ) ( ) 0n n nN L M L Q L− = − = − = ;  ( )1, 2,...,n N= ; 

 ( ) ( ) 1
1 1 0N

N N

x L

dw
u L w L

dx
+

+ +
=−

− = − = = ; 

 ( ) ( ) ( )1 1 10 0 0 0N N NN M Q+ + += = = ; ( ) ( )0 0n nu u= ; ( ) ( )0 0n nw w= ; 

 ( ) ( )0 0n nN N= ; ( ) ( )0 0n nM M= ; ( ) ( )0 0n nQ Q= ; 

 ( )1n nN L F= ; ( )
1

1 0n
n

x L

dw
w L

dx =

= = . 

Obviously, if the length 1L  is many times greater than the thickness of the multilayer rod, the 

differences in the boundary conditions for the isolated rods at the end 1x L=  have no effect on the stress 

state of the compound, since the local stresses are rapidly damped with removal from the end of the rod.  
As a model problem, we consider the adhesive joint of a four-layer rod ( 4N = , as shown in Fig. 2), 

made of carbon fiber reinforced plastic (CFRP) with aluminum ending. Lengths of sections are 
25L =  mm and 1 100L =  mm. The parameters of all joint members are shown in Table. 

 

Table 

n  ns , mm nE , GPa nδ , mm nG , GPa ( )g
nE , GPa 

1 0.125 210 0.1 1.5 4.35 
2 0.125 210 0.1 1.5 4.35 
3 0.125 210 0.1 1.5 4.35 
4 0.125 210 0.25 0.9 2.65 
5 1.5 72 – – – 

 

Suppose that the equal longitudinal stretching unit forces 1nF =  N/m, 1,2,3,4n =  are applied to all 

layers of the composite rod. The maximum stresses in the joint layers appear at the left end of the joint 
( )x L= −   and their graphs in the neighborhood of this point ( [ ]; 0.8x L L∈ − − ) are  shown in Fig. 3. 

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Stress state at the joint layers close to the left end of the compound: tangent stresses (a) and normal stresses (b) in 
the transverse direction. 
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As is seen from graphs (Fig. 3), stresses in the bonding layer of the multilayer rod ( 3τ  and 3σ ) that are 

nearest to the adhesive layer, although are lower in magnitude than the stresses in the adhesive, however, 
they are relatively high. Therefore, in the case of the low interlayer strength of the multilayer composite,  
compound destruction can occur in the form of bundles along the composite tie layer. 

The technique proposed can be verified by comparing the computational results with the results of 
analyzing the stress state of the compound by the classical model [0, 0]. In this case, the composite rod 
assumed to be homogeneous, and its modulus of elasticity is calculated by the rule of mixtures using the 
data from table. Calculations showed that the stresses in the adhesive layer ( 4τ  and 4σ ), calculated by the 

technique proposed are different from those calculated by the classical Goland–Reissner model only by 
a few percents. Distribution of shear stresses in the thickness of connected parts in a homogeneous rod 
has a quadratic dependence [0, 0] (generalization of the Zhuravskii formula) that is close to the linear one, 
and differs noticeably from the results shown in Fig. 3a. However, the through-thickness distribution of 
normal stresses in the transverse direction in the compound cannot be determined in general, if we 
consider the composite rod as a homogeneous beam. This is due to the fact that according to the bending 
theory the longitudinal fibers of beams do not press on each other. 

CONCLUSIONS 

Thus, the study performed shows that the joint destruction can occur in the form of composite material 
exfoliation along the connective layers, nearest to the adhesive layer.  

The technique proposed is not sensible to the packet thickness over joint length ratio, in contrast to the 
classic beam theory.  

This technique can be used for computation of the construction part joints of the layered composite 
materials with the stepped joint thickness change, the load-bearing element joints and for computation of 
the multiple-shift joints with arbitrary number of adhesive layers. Thermal stresses can also be taken into 
account in the model.  
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