
ISSN 1068-798X, Russian Engineering Research, 2022, Vol. 42, No. 3, pp. 278–281. © Allerton Press, Inc., 2022.
Russian Text © The Author(s), 2022, published in STIN, 2022, No. 1, pp. 25–28.
Neural Networks in Manufacturing
L. A. Simonovaa, *, E. I. Egorovab, **, and A. I. Akhmadievb, ***

a Kazan (Volga Region) Federal University, Kazan, Russia
b Tupolev Kazan National Research Technical University (Kazan Aviation Institute), Kazan, Russia

*e-mail: lasimonova@mail.ru
**e-mail: egrvelena@mail.ru

***e-mail: blood_aid@mail.ru
Received February 12, 2021; revised February 12, 2021; accepted February 12, 2021

Abstract—Attention focuses on minimizing the time to train a neural network so that it recognizes a specified
set of a system’s input parameters. In training the neural network, the error function must be minimized. This
is important in expert assessment of solutions generated by a smart system for the design of manufacturing
processes. In such a system, solutions are generated by the combined operation of numerous modules on the
basis of logical rules. The system to be designed will generally be complex and may contain subsystems of dif-
ferent types that function according rules described by fuzzy logic and systems of precedents [1].

Keywords: neural networks, training, artificial intelligence, design solutions, fuzzy logic, cutting tools, man-
ufacturing processes
DOI: 10.3103/S1068798X22030224

INTRODUCTION

In determining the optimal design solution, each
component of the decision-making process is
regarded as an individual system with its own charac-
teristics and its own input and output parameters of
the design process. The goal is to identify common
features in the design process and to construct func-
tional models of decision-making capabilities [2].

To assign the weighting factors in expert assess-
ment of a smart system for designing industrial pro-
cesses using artificial neural networks, genetic algo-
rithms are employed. In conditions of indeterminacy,
genetic algorithms offer a good chance of achieving
the required results. By that means, neural networks
may be adjusted and trained. The product to be
designed was considered from the perspective of vari-
able technological processes in [1]. To that end, a
technology for displaying information regarding the
design indices of the part was proposed in [3].

METHODS

We employ a genetic algorithm to train a neural
network for the example in [4]. There are two tasks:
(1) to select the optimal structure for the neural net-
work; (2) to formulate an effective algorithm for train-
ing the network.

In optimizing the neural network, we want to min-
imize the volume of calculations, while maintaining

the required accuracy of solution. The optimization
parameters in the neural network are as follows.

1. The dimensions and structure of the network’s
input signal.

2. The neural synapses of the network. For the sake
of simplicity, those that are least important are
removed, or the required or optimal weight factors for
the synapses are specified.

3. The number of neurons in each layer. On
removal of a neuron from the network, those synapses
in the next layer conveying its output signal are auto-
matically removed.

4. The number of layers in the network.
The algorithm for effective training of the neural

network involves adjusting the network so that the
desired set of outputs corresponds to some set of
inputs.

In training, the vectors of the training set are suc-
cessively specified, with simultaneous adjustment of
the weights by a predetermined procedure, until the
error over the whole set is within acceptable limits.

The genetic algorithm is the best known of a class
of evolutionary algorithms and is essentially a means
of finding the global extremum of a function with
numerous extrema. It consists of parallel analysis of a
set of alternative solutions. The search is concentrated
on the most promising candidates. This indicates the
possibility of using genetic algorithms in any problem
involving artificial intelligence, optimization, and
decision making.
278

NEURAL NETWORKS IN MANUFACTURING 279

Fig. 1. Three-layer neural network.

Input layer Hidden layer Output layer

Accuracy

Surface
roughness

H1

H2

O1

Table 1

Element (n) Accuracy Surface roughness Operation

Hole 1 8 6.3 Milling
Recess 1 6 3.2 Milling
Hole 2 14 12.5 Drilling
Recess 2 8 6.3 Milling

Fig. 2. Weighted neural network.

Input layer Hidden layer Output layer

Accuracy

Surface
roughness

H1

H2

O1

w1

w4

w2

w5

w6

w3

Table 2

Element (n) otrue opred

Hole 1 1 0 1
Recess 1 1 0 1
Hole 2 0 0 0
Recess 2 1 0 1

()− 2
true 1o o

Table 3

Element (n) Accuracy Surface roughness Operation

Hole 1 8 6.3 Milling
RESULTS AND DISCUSSION
For a structural element—specifically, a hole—we

train a neural network of multilayer perceptron type,
with the following parameters: a) the input parameters
are the surface roughness and accuracy; b) there are
three layers: the input layer 1, intermediate layer 2, and
output layer 3 (Fig. 1) [1].

This element is described by a table of correspon-
dences, with specific numerical values of the input
parameters (Table 1).

After completing the calculations by the genetic
algorithm for the structural element (the hole), we
assign the identifier 1 to milling, and 0 to drilling.

To train the network, it is best to consider the mean
square error (MSE) of the losses

where n is the number of objects considered (n = 3 in
the present case); and o are the predicted variables. In
the present case, otrue is the true value (the correct
answer); and opred is the predicted value (the network
output).

We assume that our neural network always gener-
ates the output 0. In other words, for all the structural
elements, the network proposes drilling (Table 2).

The mean square error of the loss due to the neural

network output (Table 2) is (0 + 1 + 0 +

1) = 0.5. A fragment of the program for the calculation
is as follows:

import numpy as np
defmse_loss(o_true, o_pred):
o_true and o_pred are numpy sets with the same

length
return ((o_true - o_pred) ** 2).mean()
o_true = np.array([1, 1, 0, 1])
o_pred = np.array([0, 0, 0, 0])
print(mse_loss(y_true, y_pred)) # 0.75
We now modify the network prediction: we intro-

duce weights by means of multivariate calculus. For
the sake of simplicity, we consider only hole 1 from
Table 2. Its characteristics are shown in Table 3.

()
=

= −
2

true pred
1

1 ,
n

i

MSE o o
n

= ×1
4

MSE
RUSSIAN ENGINEERING RESEARCH Vol. 42 No. 3
In this case, the mean square error of the loss is

The weights employed are shown in Fig. 2.
Writing the loss as a multivariate function

we consider how the loss P changes if one of the
weights is modified. To that end, we determine the

partial derivative

()

() ()
=

= −

= − = −

1

2
true pred

1
2 2

true pred pred

1
1

1 .
i

MSE o o

o o o

()1 2 3 4 5 6, , , , , ,P w w w w w w

∂
∂ 1

P
w

∂∂ ∂=
∂ ∂ ∂

pred

1 pred 1

;
oP P

w o w

() ()∂ −∂ = = − −
∂ ∂

2
pred

pred
pred pred

1
2 1 .

oP o
o o
 2022

280 SIMONOVA et al.

Table 4

Element (n) Accuracy Surface roughness Operation

Hole 1 8 6.3 Milling
To determine we need H1, H2, and O1 to

correspond to the outputs of the neurons that they rep-
resent

where is the sigmoid activation function.

Since only affects H1, we may write

We determine the partial derivative analo-

gously

and

where X1 is the accuracy, and X2 is the surface rough-

ness. In addition, f ′(X) is the derivative of the sigmoid
function, which is appearing for the second time. We
may write

and

We determine by inverse error propagation

We now consider all these formulas for an example.
The numerical values for the calculation are given in
Table 4.

We specify unit weights. The neural network yields

∂
∂

pred

1

,
o
w

()= = +pred 5 61 1 2 ,o O f w H w H

f

1w

∂ ∂ ∂=
∂ ∂ ∂

pred pred

1 1

1
;

1

o o H
w H w

()∂
= +

∂
pred

5 5 6 ' 1 2 .
1

o
w f w H w H

H

∂
∂ 1

1H
w

()= +1 21 1 2H f w X w X

()∂ = +
∂ 1 2

1

1
1 ' 1 2 ,

H X f w X w X
w

() −=
+

1

1
xf X

e

() () ()()
−

−= = −
+ 2

' 1 .
(1)

x

x
ef f X f X

e
X

∂
∂ 1

P
w

∂∂ ∂ ∂=
∂ ∂ ∂ ∂

pred

1 pred 1

1
.

1

oP P H
w o H w

() ()= + = + =1 21 1 2 8 6.3 0.9999;H f w X w X f

() ()= + = + =3 42 1 2 8 6.3 0.9999;H f w X w X f

() ()= + = + =5 61 1 2 8 6.3 0.8807.O f w H w H f
RUSSIAN
Hence, we find that . This gives little

guidance in choosing milling or drilling. Next we cal-

culate

On that basis, we conclude that the computational
error will increase if the weight is increased.

Now we have all the necessary tools for training the
neural network. We consider optimization on the basis
of stochastic gradient descent (SGD), which will indi-
cate exactly how to change the weight so as to mini-
mize the losses. We may write the equation:

, where is a constant (the training

estimate).

The training estimate determines the rate of train-

ing. All we need to do is to subtract from . If

is positive, will decrease, leading to decrease in P. If

 is negative, will increase, leading to increase in

P. If we apply this technique to each weight in the neu-
ral network, the error will gradually decline, and the
output parameters will improve.

The following algorithm may be used to train the
neural network.

1. Select one point from the data set in Table 4, and
apply stochastic gradient descent. Consider one point
at a time.

2. Calculate all the partial derivatives of the losses,

by weight. These may include , , and so on.

=pred 0.8807o

∂
∂ 1

P
w

∂∂ ∂ ∂=
∂ ∂ ∂ ∂

pred

1 pred 1

1
;

1

oP P H
w o H w

() ()∂ = − − = − − = −
∂ pred

pred

2 1 2 1 0.8807 0.238;
P o

o

()
() () ()

∂
= +

∂
= + = −

= =

pred

5 5 6' 1 2
1

1 ' 0.9999 0.9999 1.9998 (1 1.9998

0.88070.1192 0.105;

o
w f w H w H

H
f f f

() ()

() ()() −

∂ = + = +
∂

= − = ×

1 2

1

6

1
1 ' 1 2 8 ' 8 6.3

8 14.3 1 14. 4 10 ;3

H X f w X w X f
w

f f

− −∂ = − × × × = − ×
∂

6 8

1

0.238 0.105 4 10 0.123 10 .
P
w

∂← − η
∂1 1

1

Pw w
w

η

∂
∂ 1

P
w 1w ∂

∂ 1

P
w

1w
∂
∂ 1

P
w 1w

∂
∂ 1

P
w

∂
∂ 2

P
w

 ENGINEERING RESEARCH Vol. 42 No. 3 2022

NEURAL NETWORKS IN MANUFACTURING 281

Table 5

Surface

roughness

Accuracy

IT6 IT7 IT8 IT9 IT10 IT11 IT12 IT13

0.2 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997

1.25 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997

3.2 0.993 0.997 0.997 0.997 0.997 0.997 0.997 0.997

6.3 0.007 0.017 0.167 0.888 0.990 0.996 0.997 0.997

12.5 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
3. Use the renewal equation to update each weight
and displacement.

4. Return to step 1.

CONCLUSIONS

In a smart design system for technological pro-
cesses, decisions are made on the basis of the algo-
rithm for formulating and training a neural network
with two input parameters: accuracy and surface
roughness.

In training, the main goal is to minimize the error
function, which may be written in the form [5]

where i is the number of the training sample; j is the
number of the output neuron; p is the total number of
training samples; m is the total number of output neu-
rons; yj(i) is the signal of output neuron j for training

sample i; and dj(i) is the expected value of training

sample i for output neuron j.
The neural network is recalculated for a predeter-

mined structure with weighting factors obtained by
means of a genetic algorithm. In the present case, a
genetic algorithm is most effective, since it yields some
set of alternatives that are sufficiently close to the opti-
mal value. These are weighted estimates for the tech-
nological process, which depend on the two chosen

input parameters: accuracy and surface roughness.
Table 5 summarizes the results given by the algorithm.

Thus, we have described a training method for a
neural network used in a smart system intended for the
design of manufacturing processes. The method per-
mits the calculation of quantitative process parameters
affecting the quality of the machined surfaces and the
overall product cost.

REFERENCES

1. Simonova, L., Egorova, E., and Akhmadiev, A.,
Knowledge acquisition for engineering decisions based
on functional relationships, Int. J. Emerging Trends
Eng. Res., 2020, vol. 91, pp. 2774–2778.

2. Simonova, L.A. and Egorova, E.I., Modular represen-
tation of the product in the knowledge base in the tech-
nological process formation, Int. Sci. Conf., 2015,
no. 258, pp. 6537–6540.

3. Egorova, E.I., Representation of information about
part on the basis of its engineering features internation-
al, J. Innovative Technol. Explor. Eng., 2019, vol. 8,
no. 12, pp. 4084–4089.

4. Solomka, Yu.I., Application of genetic algorithms for
training neural networks, Materialy IV studencheskoi
nauchno-prakticheskoi konferentsii “Mir molodezhi—
molodezh’ mira” (Proc. 4th Student Sci.-Pract. Conf.
“The World of Youth—the Youth of the World”), Vin-
nitsa: Vinnits. Inst. MAUP, 2004, ch. 1, pp. 85–90.

5. Haykin, S., Neural Networks. A Comprehensive Founda-
tion, Upper Saddle River, N.J.: Prentice Hall, 1998.

Translated by B. Gilbert

() () ()()
= =

= − →
2

1 1

1
min,

2

p m
i i

j j
i j

E w y d
RUSSIAN ENGINEERING RESEARCH Vol. 42 No. 3 2022

	INTRODUCTION
	METHODS
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

		2022-03-21T21:48:37+0300
	Preflight Ticket Signature

