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Abstract—The literature regarding the fatigue strength of certain steels is brief ly reviewed. Terms, concepts,
and numerical data are selected for subsequent use in equivalence criteria adapted to assessing the long-term
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On the basis of known criteria [1, 2], it is possible
to assess the likelihood that a structural material will
pass to a limiting state just both under the action of
static loads and under the action of some combination
of static and alternating loads, or under alter-nating
loads alone, with the creation of a regular loading
cycle. Repetition of that cycle will lead ultimately to
fatigue failure.

The loads on the material create a stress state
which, when characterized by the primary normal
stresses σ1, σ2, and σ3, may be uniaxial or simple; or
else multiaxial (in particular, biaxial) or complex.

The change in stress at a hazardous point of the
material in the course of a regular loading cycle may be
characterized by the mean stress σm and the amplitude
σa of the cyclic stress [3, pp. 125, 126].

A simple stress state is a consequence of cyclic
extension and compression or f lexure of the material;
a complex stress state in fatigue tests may be a conse-
quence of diverse loading methods. Тhe familiar crite-
rial approach [1, 2] to calculating σm and σa is only
applicable to the following loading methods:

• alternating torsion and/or f lexure of tubular or
nonhollow cylindrical samples, either with (asymmet-
ric loading cycles) or without (symmetric loading
cycles) static torsion and/or f lexure [4–10];

• alternating loads on a tubular sample in the spe-
cific form of “internal pressure and an axial force vary-
ing in phase with the pressure” [4, p. 721], resulting in

a zero-based loading cycle or a pulsating cycle of a
loading [5, pp. 103, 274; 11, p. 60];

• extension or compression of a circular thin plate
within a rigid hoop with catches, when the plate and
hoop form a single unit; different hoop dimensions
produce different ratios of the opposing primary nor-
mal stresses at the center of the plate [12, 13].

For example, in the following case, the fatigue
strength under alternating loads cannot be assessed by
the criterial approach in [1, 2]: when static loads are
applied to a tubular sample with the creation of plane
biaxial static tension, together with an alternating load
in the form of f lexure corresponding to stress of ampli-
tude . In fact, when applied to 30ХГСА, ЭИ435,
and ЭИ736 steels, this loading method reveals consid-
erable sensitivity of the  value “to biaxial static ten-
sion, especially with relatively low tensile stress”
[14, 15].

Fatigue tests in cyclic extension and compression
or f lexure reveal a unique functional dependence of σa
on σm, which may be represented as a σa–σm diagram
[3, 5, 6, 16, p. 179]: the limiting amplitude σa of the
normal stress is plotted against the mean stress σm in
the cycle [3, p. 128]. Thus, for simple cyclic loading of
any material, the function fa determining the depen-
dence of σa on σm is always known, and we may write
a specific relation σa = fa(σm).
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For a zero-based cycle, when the alternating load at
the sample rises from zero to a maximum and then
falls back to zero, we know that σm = σa [3, с. 126]. In
that case, it follows from the dependence σa = fa(σm)
for a uniaxial stress state that, if σm > 0, then σa = σ0/2,
where σ0 is the fatigue limit of the material in a zero-
based tensile or f lexural cycle. If σm < 0, by contrast,
σa = σ–∞/2, where σ–∞ is the fatigue limit in a zero-
based tensile or f lexural cycle corresponding to mini-
mum stress modulus of the cycle [9, pp. 125–130; 17].

Zero-based loading cycles that create a biaxial
stress state at the hazardous point of the material pro-
vide additional information regarding its fatigue
strength. For example, experimental data obtained by
Rosh and Eichinger with tubular samples of soft (pipe)
steel and cast steel in a million zero-based loading
cycles were presented in [11, p. 59]. They may be rep-
resented by a continuous smooth curve or an approxi-
mating limiting contour, which resembles the contour
employed in Mohr’s well-known static strength theory
for a plane stress state in the case of the maximum
stress of zero-based cycles with σ1 ≥ σ2 = 0 ≥ σ3 [11,
p. 59]. In that case, the equation σ0 = σ1 – χσ3 may be
written, where χ = σ0/σ–∞ < 1.

On the basis of these results, we may distinguish
numerically with more clarity between two character-
istic fatigue limits: σ00 ≈ (0.90–0.92)σ0 and τ0 ≈ 0.70σ0
for pipe steel (σ0 = 457 MPa); and σ00 ≈ (0.95–0.98)σ0
and τ0 ≈ (0.68–0.78)σ0 for cast steel (σ0 = 270 MPa).
Here σ00 is the fatigue limit in a zero-based cycle with
equal plane extension (σ1 = σ2 = σ00 and σ3 = 0); and
τ0 is the fatigue limit in a zero-based torsional cycle
(σ1 = τ0, σ2 = 0, and σ3 = –τ0). Other information may
be obtained from [4, p. 721]: for example, σ00 ≈ 1.16σ0
and τ0 ≈ 0.62σ0 for low-carbon steel (0.20% С;
0.55% Mn), for which the strength in static tension is
σв = 438 MPa, the yield point in static tension is σy =
253 MPa, and the fatigue limit in symmetric f lexure or
the fatigue strength under symmetrical cycling of a
flexure is σ–1 = 214 MPa, while σ0 = 258 MPa.

Regarding σ–∞, we know, for example, the following:

(1) For some plastic materials, σ–∞ = σ0 [10, p. 104;
18, p. 737], while for others (including forged iron) σ–∞ ≈
1.5σ0 [5, p. 98] or, more precisely, σ–∞ ≈ σ0(1 + )/(1 –

), where  ≈ tan 21°σ–1ex/σy [5, p. 96]. The fatigue
limit σ–1ex for a symmetric extension–compression
cycle is approximately related to σ–1: σ–1ex = 0.85σ–1
[16, p. 182]; or σ–1ex = 0.7–0.9σ–1 [4, p. 605].

(2) On the basis of a million loading cycles, σ–∞ =
1.52σ0 for tubular samples of pipe steel and cast steel,
according to the data of Rosh and Eichinger in [11,
p. 59; 4, p. 637]. In addition, σ–∞ = 1.60σ0 for plane
samples of low-carbon steel (σu ≈ 400 MPa, σy =
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270 MPa) and carbon steel (σu ≈ 700 MPa, σy =
392 MPa).

(3) For steel rollers in sheet rolling, σ–∞ ≈ 2.50–
3.64σ–1 [9, p. 129].

(4) For gray iron, σ–∞ ≈ 2.4–4.2σ0, with a mean
value σ–∞ ≈ 3.3σ0 [5, p. 98; 18, p. 738]; for iron con-
taining globular graphite, σ–∞ ≈ 4.1σ0 [9, p. 126].

For some steels, σ–∞ may be determined directly
from the σa–σm diagram (presented, for example in [6,
p. 32; 3, p. 149]; or by means of the modified Heywood
formula with constant of proportionality А0 = σ–1/σu
(presented in [19, p. 191]), since А0 = 0.5 was assumed
arbitrarily for the equation σ–1 = А0σu in the original
research [6, p. 28].

Experimental data regarding regular, synchronous,
and in-phase loading, without limits on the number of
loading cycles and without stress concentrations, were
presented with sufficient accuracy in [4, 8–13].
Numerical analysis of those experimental data con-
firms that a criterion may be formulated for assess-
ment of the equivalence of a complex alternating stress
state and simple cyclic loading (extension and com-
pression or f lexure) on the basis of the function σa =
fa(σm) and the criterial approach in [1]. In addition,
the following assumptions must be made here:

(1) The regular cyclic loading may be represented
as the sum of static and alternating loads.

(2) As a rule, the static loads on the material over
the regular loading cycle correspond to the static stress
state at the hazardous point of the material, which may
be characterized by σm.

(3) The action of alternating loads leads to two sig-
nificant stress states at the hazardous point of the
material. Each of these may be regarded as an extreme
stress state of the hazardous point of the material
within the loading cycle. One extreme stress state cor-
responds to the maximum effect of the alternating
loads; the other corresponds to the minimum effect of
the alternating loads or even their opposite effect, tak-
ing account of the minus sign for compressive loads.

On that basis, we will now formulate a criterion
characterizing the equivalence of a complex alternat-
ing stress state and simple cyclic loading (extension
and compression or f lexure). We will also compare the
criterion with the Gough experimental data, first pub-
lished in 1949 and partially accessible in [4, 13]. In par-
ticular, information is given there regarding the
mechanical properties of chromonickel steel (0.24% С,
0.20% Si, 0.57% Mn, 3.06% Ni, 1.29% Cr, 0.54% Mo,
and 0.25% V ). For such Cr–Ni steel, after normaliza-
tion at 900°С, quenching in oil at 850°С, and temper-
ing at 640°С, the properties are as follows: σu =
1025 MPa, σy = 970 MPa, torsional strength τu =
890 MPa, torsional yield point τy = 735 MPa, and
fatigue limit σ–1 = 595 MPa in symmetric plane f lex-
ENGINEERING RESEARCH  Vol. 41  No. 12  2021
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ure and τ–1 = 363 MPa in symmetric torsion. In addi-
tion, τ0 ≈ 705 MPa and σ0 ≈ 1087 MPa.

To verify that the chosen criterion agrees with
experimental data and apply it in practice, we need the
function σa = fa(σm), which may expediently be deter-
mined numerically by means of a polynomial taking
account both of the known mechanical properties of
the specific steel and the known characteristic rela-
tions and generalized information regarding the
dependence of σa on σm, as follows:

(1) When σm = 0, σa = σ–1. When σm = σu or σm =

, σa = 0. Here  is the strength of the material in
tests of a cylindrical sample in static f lexure, for exam-
ple (  > σu) [10].

(2) As an approximation,  may be determined as
the mean of two ratios, according to the data in
[4, p. 605; 19, p. 193]. Thus,  ≈ (σu/s + σ–1τu/τ–1)/2,
where s = 0.7–0.9.

(3) The decrease in the amplitude σa “with
increase in the static component of the stress may be
less in f lexure than in axial loading, since the sample
cross section does not decrease in testing, even if the
yield point increases” [5, pp. 94, 95].

(4) When σm = σu or σm = , the polynomial has
a tangent whose inclination β to the σm axis must be no
less than the –45° inclination for the static-loading
line bounding the maximum stress of the cycle (equal
to the sum of absolute values σa and σm) in the case of

σu or  [19, p. 192].
(5) When σm = σ0/2, the amplitude σa = σ0/2.

Analogously, when σm= –σ–∞/2, we know that σa =
σ–∞/2.

(6) It is expedient to express σa = fa(σm) as a poly-
nomial up to the value σm ≥ –σ–∞/2, if data are avail-
able regarding the inflection point of the σa–σm curve
when σm = –σ–∞/2, beyond which , as a rule, in cyclic
compression, there is a transition “from fracture to
shear failure … with the appearance of considerable
plastic compressive strain” [9, pp. 125–127].

(7) In the range –σ–∞/2 < σm ≤ 0, the function σa =
fa(σm) may be concave in the direction of the σm axis
[9, p. 126].

Finally, for Cr–Ni steel, a graphically smooth
function σa = fa(σm) may be obtained on the basis of
the following data:

• primary data: σ0 ≈ 1087 MPa, σ–1 = 595 MPa

[13], σ–∞ ≈ 1415 MPa,  = (1025/0.75 + 595 ×
890/370)/2 ≈ 1400 MPa;

• supplementary data:  = 565 MPa when σm =
272 MPa [13];
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• auxiliary data (adopted in order to obtain an
acceptable polynomial curve):  = 640 MPa when
σm = –300 MPa and  = 680 MPa when σm =
‒600 MPa.

As a result, the coefficients of the sixth-order poly-
nomial corresponding to the function σa = fa(σm) in
the form

take the following values: m6 = 0.2391, m5 = –0.3707,
m4 = –0.2402, m3 = 0.1978, m2 = 0.0914, m1 =
‒0.1433, and m0 = 0.595. The polynomial is then plot-
ted on the basis of the value  for the

range –σ–∞/2 < σm ≤  when tan β ≈ –37°.
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