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Abstract—The factors responsible for periodic machining errors are analyzed, and corresponding mathemat-
ical models are proposed. Approaches to decreasing the periodic machining errors in machine tools are sug-
gested.
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Fig. 1. Distribution of the cold hardening over the wave
profile [6] (a) and depth of cold hardening q and degree of
hardening on turning (b): v = 175 m/min; s = 0.3 mm/turn;
t = 1 mm; (1) at trough 1–1; (2) at crest 2–2; (3) over line
а–а; Н0, microhardness; l, distance from tip to plane of
transverse section.
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For machine tools, the periodic machining errors
may be classified as follows: size variation within a
batch of workpieces; deviation in the position of sev-
eral surfaces for a single workpiece; and deviation in
surface profile. Periodic errors in the surface profile
may take the form of waves, characterized in terms of
quantity, profile, and height. For example, a single
wave on a surface of revolution may be regarded as
eccentricity; two waves as an oval; and three or more
waves as facets. They are all forms of noncircularity.
Likewise, surface roughness with periodic characteris-
tics may be regarded as a periodic machining error. A
form of periodic machining error intermediate
between a deviation in shape and in roughness is
undulation.

The influence of periodic machining errors on the
performance of joints in machine parts is negative,
generally speaking. However, the influence of the
parameters of periodic machining errors differs. For
example, the wear of frictional pairs increases linearly
with increase in height of the undulation and almost
parabolically with increase in the pitch. The load
capacity depends in a complex manner on the undula-
tion: it declines sharply on moving away from certain
optimal ratios of the undulation pitch and height. Cer-
tain profiles and tip radii significantly affect the
microhardness distribution (Fig. 1).

The influence of periodic machining errors on the
vibration and noise of machines is even more complex.
For example, the vibrational acceleration of bearing
balls increases linearly with increase in height of the
undulation but depends quadratically on its pitch. In
terms of the noise of operating couplings (contacting
surfaces), periodic machining errors have significantly
greater influence on higher spectral components than
on lower components. Hence, it is not enough to char-
acterize the periodic machining errors in the working
surfaces of machine parts in terms solely of the pitch
50
and height of the fundamental harmonic, say. We also
need to know the characteristics of all the spectral
components.
3
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Fig. 2. Formation of undulation in plane grinding on
account of wheel vibration (a); and influence of workpiece
velocity vw on undulation: vw = 30 (1), 25 (2), 15 (3),
10 (4), and 5 (5) m/min (b) [22].
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On the eve of the sixth technological age, as Kon-
drat’ev argues (some say it has already begun [1]), we
need to review the progress already made in terms of
machining precision—especially periodic machining
errors—and formulate goals for the future. That is the
purpose of this article.

The theory of surface precision and quality was
developed in the second scientific age (1941–1970)
[2]. Most researchers agreed that vibration of individ-
ual components in the elastic mechanical system is
responsible for undulation, regarded as the basic form
of periodic machining error [3–31]. Various factors
may produce the vibration. In grinding, undulation
may appear on account of clogging of the grinding
wheel; reverse rotation of the cylindrical workpiece; or
imbalance in the wheel [4].

Vibration also arises on account of jolts associated
with poor belt adjustment, gear wobble, unsatisfactory
balancing of the wheel, and inadequate wheel trim-
ming. Such vibration is accompanied by undulation [5].

Surface undulation is due to vibrational displace-
ment of points within the machine tool and depends
on its vibrational stability, wheel imbalance, nonuni-
form wheel feed, incorrect trimming, and clogging [7].

High-frequency tangential vibration of the tool (for
example, in turning)—that is, self-oscillation—pro-
duces undulation [6]. In self-oscillation, periodic
machining errors in the form of surface roughness are
converted to undulation with increasing height. With
different values of the feed and the cutting depth and
different cutter alloys, we note change in the extrema
of the cutting speeds, which influence the undulation
height [6]. A very important finding (Fig. 1) is that the
appearance of undulation is accompanied by change
in the physicomechanical properties—for example,
the microhardness—not only of the surface layer
where the undulation is seen but also in a subsurface
layer. These changes may penetrate to a depth that is
orders of magnitude greater than the height of the
RUSSIAN
undulation. That is the primary danger of undulation
in terms of the surface performance in couplings.

Cutter vibrations were measured in [8] and used in
[28]. Such vibrations tend to decrease. In centerless
grinding, the formation of undulation is promoted by
large grinding depth and transverse workpiece supply;
high workpiece speeds; incorrect positioning of the
workpiece’s center of rotation relative to the centers of
the wheel; large inclination of the blade’s supporting
surface; wheel imbalance; large wheel hardness; small
grain size of the wheel; and nonuniform wear of the
wheel [7].

Periodic machining errors with a relatively small
number of waves are due to a different factor: elastic
deformation of the workpiece by the forces applied
during its attachment (item 1 in Table 1) [29].

The simplest formula for the undulation height was
presented in [9] (item 2 in Table 1); it has since been
used by many authors. Conditions ensuring undula-
tion height less than the vibrational spread 2A were
described in [10] (item 3 in Table 1). The same phe-
nomenon was discovered independently in 1969 and
described in [22] (item 13 in Table 1); it is sometimes
known as wave clipping.

The formation of periodic machining errors as a
result of the discreteness of the cutting process was
analyzed at length in [30] (item 5 in Table 1). Practi-
cally all the basic cutting methods were investigated,
and recommendations were made for the reduction of
periodic machining errors.

The derivation of the undulation profile with spec-
ified center trajectory of the grinding wheel was pre-
sented in general form in [23].

The envelope of wheel positions with vibration
under the action of the centrifugal force in grinding
(Fig. 2) corresponds to the discriminant line described
by the equation ∂F(x, y, c)/∂C = 0, where x and y are
the coordinates of the wheel’s center trajectory.

For plane grinding, suppose that we solve the equation
of a family of circles 
and determine its derivative with respect to the param-
eter t, taking into account that x and y are functions of
t: . On that basis, we may
find the coordinates of the undulation profile in gen-
eral form

(1)

(2)

On the basis of Eqs. (1) and (2), if we specify the
variation in the relative trajectory of the tool and
workpiece, we may find the equation of the undula-
tion profile for the workpiece surface in any type of
machining.
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Table 1

No. Operation; cause of error Formulas for periodic machining errors Date, 
source

1 Reaming; attachment forces Height of undulation 1961
[29]

2 Wheel grinding; wheel 
imbalance

Height of undulation

 

1962
[9]

3 Wheel grinding; wheel 
imbalance
Wave-clipping condition

Height of undulation  1962
[10]

4 Wheel grinding; oval wheel Height of undulation 1963
[11]

5 Blade cutting; discreteness of 
cutting,
turning by broad cutters

Undulation, height of undulation 

Facet height H =  .

1964
[30]

6 Wheel grinding; vibration Height of undulation  1965
[12]

7 Plunged grinding; forced 
vibration

Height of undulation 1967
[14]

8 Plane milling’ mill wobble Height of undulation 1968
[31]

9 Wheel grinding; vibration Height of undulation 1968
[17]

10 Wheel grinding; wheel 
imbalance

1968
[18]

11 Plane grinding; vibration of 
machining system.

Amplitude of undulation  

   

1968
[19]

12 Turning; workpiece and spin-
dle imbalance

Facet height 1969
[21]

13 Internal grinding; imbalance 
of electric motor, wave-clip-
ping condition

Coordinates of undulating surface  

 

 

1970 
[22]
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In Fig. 2b (for plane grinding), we see that, with
variation in the workpiece speed  from 30 to 5 m/min,
loops appear in its profile (compare curves 4 and 5).
RUSSIAN

Fig. 3. Influence of the amplitude А of relative vibrations
of the wheel and workpiece, the velocity ratio qv = vw/vwh,
and the workpiece speed nw on the undulation height in
internal ball grinding [23].
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The wheel passes its contact point with the workpiece
twice, and some of its tip is removed. This is known as
clipping; the corresponding conditions were first
derived for internal spherical grinding of ball-bearing
races in [22].

It follows from Eqs. (1) and (2) that the formation
of undulation may be controlled by selecting the opti-
mal relative trajectory of the tool and workpiece. The
key factors here are the static and dynamic rigidity of
the system, the eigenfrequencies, and the velocity of
the system components.

A new method of measuring the relative vibration
of the system components was presented in [13]. In
experiments regarding plane grinding on a 3B71M
machine tool, such measurements showed that the
grinding headstock, the grinding wheel and spindle,
and the table with the plate and workpiece exhibit an
extremely unfavorable combination of vibrational
eigenfrequencies [23].

In internal ball grinding on an L3-5M machine
tool (Fig. 3), two ranges of workpiece velocity (indi-
cated by a dashed line) are observed. In the first, the
height of the undulation is equal to the vibrational
spread; in the second, it is less.
14 Grinding; noncircular wheel, 
dwelling process

Coordinates of undulating surfase:  1970 
[23]

15 Turning; spindle imbalance Noncircularity 1970 
[24]

16 Grinding; vibration of spin-
dle chuck on account of 
wheel eccentricity Е

Coordinates of machined surface 

 

,  
1970 
[23]

17 Internal grinding; wheel 
imbalance, incorrect wheel 
mounting

 
1970
[27]

18 Wheel grinding with dwell-
ing; forced vibration

Profile radius  1970
[23]

No. Operation; cause of error Formulas for periodic machining errors Date, 
source
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A new method of internal grinding has been pro-
posed, such that the rocking motion of the headstock
ceases in the course of dwelling. In this method, the
dynamic rigidity Kd of the machine tool is increased.
The height of the undulation is decreased from 0.87 to
0.46 μm [23]. New grinding cycles are proposed to
decrease the periodic machining errors [23]. Table 1
presents mathematical models of the periodic
machining errors.
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