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Abstract—The proposed mathematical model permits shaping of worm mills for the machining of parts with
helical surfaces. The model includes a module generating matrices for the spatial transformation of coordi-
nate systems. An algorithm is presented for formulating a model of the worm-mill surface. Shaping is com-
pleted in one stage, without determining the profile of the conjugate helical rack.
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Today, parts with helical (screw) surfaces are
mainly machined by means of disk tools. If several
helical surfaces are present on the part, it is more effi-
cient to use worm mills. However, the design of worm
mills for that purpose is a complex task, which has yet
to be fully understood.

Tooth-cutting worm mills are often produced on
the basis of the properties of a common normal [1].
This method consists of two stages. The first is to
determine the profile of the conjugate helical rack.
This method is inapplicable if the position of the nor-
mal cannot be determined—for example, if the initial
profile is specified by the coordinates of individual
points or a spatial curve. In addition, it cannot be used
for the machining of more complex surfaces, such as
tapered helical surfaces.

These problems may be circumvented by employ-
ing numerical methods in which the profile of the
worm mill is established in a single stage.

The proposed system includes four basic modules;
(1) formulation of a model of the surface to be

machined; (2) analysis of this model; (3) formulation
of a model of the tool surface; (4) analysis of that
model.

To solve specific production problems, we need
only use one or two modules. For predesign analysis of
a new tool for machining a complex part, it is best to
use all four modules.

The first module formalizes the numerical repre-
sentation of the points in the initial surface of the part,
on the basis of a coordinate system tied to the tool’s
generating surface [2]. The initial data are as follows:

(1) the coordinates xi , yi and the number i of points
on the surface of the part;

(2) the number f of coordinate transformations and
the number (order) n of each transformation;

(3) the angular displacements xy, yz, zx and linear
displacements Ax, Ay, Az characterizing the transfor-
mation of the coordinate systems.

The basis of the module is the initial matrix

(1)

The program implementing the first module per-
mits automatic formulation of the matrices М1, М2,
М3, М4 from the initial matrix МO in Eq. (1). The
matrices М1, М2, М3, М4 correspond to successive
transformation of the coordinate systems from the
profile of the part to the desired tool surface in accor-

dance with the specified values of f and n and the
numerical value characterizing each transformation.

In Fig. 1, we show the shaping of the worm mill for
machining a part with a helical channel of arbitrary
profile. This process includes four coordinate trans-
formations (f = 4) in the following sequence.
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Fig. 1. Formulating a three-dimensional numerical model of the worm mills.
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(1) Displacement along the Х axis (n = 1) of coor-
dinate system O0Х0Y0Z0 by a distance Ax = −ricϕ,
where ric is the radius of the initial cylindrical part to be
machined, and consistent rotation (rolling) around
the Z axis by an angle xy = ϕ, which is a variable ensur-
ing the rolling motion of the initial cylinder with respect
to the plane N tangential (in terms of the line L–L) to
the initial cylinder of a worm mill of radius Rim.

On the basis of the initial data, the program imple-
menting the module formulates transformation matrix
М1 from matrix МO in Eq. (1) in accordance with the
established algorithm

(2)
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(2) Rotation around axis Z (n = 3) of coordinate
system O1Х1Y1Z1 by an angle xy = −ν, which is a vari-
able ensuring the helical motion that creates the
machined surface of the part and consistent displace-
ment along this axis by a distance Ax = −pcν. Here pc =
rc/tan ω; rc is the external radius of the part; and ω is
the inclination of the helical channel produced.

According to the algorithm, the corresponding
transformation matrix М2 takes the form

(3)

(3) Displacement along the Y axis (n = 2) of the
coordinate system O2Х2Y2Z2 by a distance Ay = −A =
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Fig. 2. Graphical formulation of the numerical model of the initial surface with rolling parameter ϕj = ϕmax.
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−(ric + Rim) and rotation by an angle zx = −ε corre-
sponding to the skewing of the axes of the worm mill
and the part. On the basis of the initial data, the first
module forms transformation matrix М3 from the ini-
tial matrix МO in Eq. (1)

(4)

(4) Rotation around axis Z2 (n = 3) of coordinate
system O3Х3Y3Z3 by an angle xy = α, which is a variable
related to the coordinates x2i, y2i of the point consid-
ered, and consistent displacement along this axis by
distance Az = pmα, where pm is the helical parameter of
the mill. As an example, note that, for point

, tan α = 
According to the algorithm, the corresponding

transformation matrix М4 takes the form

(5)

The resulting numerical model MR is a column
matrix of the form

(6)

where .
Software has been written for the operations based

on the transformation matrices in Eqs. (1)–(5). As a
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result of those operations, we obtain the numerical
model in Eq. (6), where the coordinate y3i is the dis-
tance from the axis Z3 to the given point i after the
transformations just itemized. The coordinate z3i
determines the distance to the coordinate plane
O3Х3Y3.

To determine the tool profile, we may use the fol-
lowing shaping algorithm.

(1) Specification of the rolling motion by angle ϕj
in the range from +ϕmax to −ϕmax, in increments estab-
lished on the basis of the required precision (mean
value 0.01π).

(2) Specification of the number i of the point with
coordinates xi, yi for each value of ϕj. In Fig. 1, i =
1, …, 5.

(3) Specification of the change in the angle ν in the
range from +νmax to −νmax, for each angle ϕj and value
of i. The value of ν depends on the profile of the part,
the inclination of the helical channel, and the radius of
the initial worm circumference, which is (0.1–0.2)π.
In this case, points i = 1, …, S, …, 7 move to the posi-
tions i = 1', …, S ', …, 7'. The increment in ν is estab-
lished on the basis of the required precision (mean
value 0.01π).

(4) As a result of displacement of the point S to
position S ', say, plane P0 passing through that point is
moved to position P1. Correspondingly, the plane is
turned by angle α and moved consistently from center
О2 over a distance pmα to point О3.

As a result of these actions, when ϕj = ϕmax, we note
the appearance of curves representing the intersection
of the lines 1–1', 2–2', …, S–S ', …, 7–7' (Fig. 2) with
plane Р1, which moves helically around axis Z3 with
helical parameter pm.

In Fig. 3, we show all the curves for the complete
range of angular variation ϕmin ≤ ϕj ≤ ϕmax. Software
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Fig. 3. Graphical formulation of the numerical model of the shaped worm mill.
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constructing the envelope of these curves permits
determination of the desired worm-mill profile.

The proposed approach may be used for the
shaping and analysis of worm mills with a protuber-
ance [3]. It sets no constraints on the shape of the
generatrix and directrix of the helical surface pro-
duced nor on the method used to specify the genera-
trix and directrix.

The proposed system may be used not only to plot
curves and determine the desired profile but also to
formulate mathematical expressions for that purpose
on the basis of the initial matrix МO in Eq. (1) and the
transformation matrices. By that means the profile of
the worm mill may be determined in a single stage
without determining the profile of the conjugate heli-
cal rack.
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