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Abstract—A cyclic test method for the fatigue strength of metals is proposed. In this method, fatigue curves
characterizing the stress dependence of the number of cycles to failure are plotted and statistically described.
The number of cycles to failure is described by a Weibull distribution, using the lowest guaranteed values.
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Fig. 1. Plotting the fatigue curve.
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A new method is proposed for probabilistic analysis
of the results of cyclic fatigue-strength tests. This
method is based on the possibility of plotting and sta-
tistically describing fatigue curves, which express the
number of cycles to failure as a function of the stress
amplitude. If the initial test results in Cartesian coor-
dinates are converted to double logarithmic coordi-
nates, they may be described by simple linear formu-
las. Their parameters are calculated by the least-
squares method.

Statistically, the number of cycles to failure may be
described by a three-parameter Weibull distribution in
terms of the lowest guaranteed values. With fixed val-
ues of the number of cycles to failure, the resulting
family of fatigue curves corresponding to different
probabilities may be used to determine the scattering
of the fatigue limits and the conditional fatigue limits.

The results obtained permit prediction of the life of
structures with previously unattainable reliability.

In the first approximation, the characteristics of the
fatigue strength are determined for a few (6–7) small
ground metal samples in failure tests with harmonic
stress of different amplitude 
(Fig. 1a). For each stress, we determine the number of
cycles to failure   and plot
curves of N against σ (Fig. 1b). The points in Fig. 1b
correspond to the test results, which may be compared
with the expected fatigue curve . In the
tests, the greatest amplitude of the stress  is 80–90%
of the yield point σy, at which the expected number of
cycles to failure is (3–5) × 104. The least amplitude of
the stress  in the tests is such that the expected num-
ber of cycles to failure  = (2–10) × 106.
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To establish the analytical dependence N = N(σ)
and plot the corresponding fatigue curve, the test
results are plotted in double logarithmic coordinates
logσ–logN and a linear dependence of the following
form is obtained by the least-squares method (Fig. 2)

(1)

The constants m and C are then determined [1].

We find C from the formula

(2)

where N0 is the limiting number of loading cycles in
the tests. (As a rule, N0 = 2 × 106 cycles.)

In Eq. (2),  is the fatigue limit with symmetric
loading cycles, when the asymmetry coefficient
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Fig. 2. Fatigue curve in double logarithmic coordinates.
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Fig. 3. Fatigue curve for low-carbon steel.
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Fig. 4. Scattering of the results in plotting the fatigue curve.
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 According to Eqs. (1) and (2),
the equation of the fatigue curve takes the form [2]

(3)

The fatigue curve given by Eq. (3) is shown in Fig. 3
in Cartesian (a) and double logarithmic (b) coordi-
nates.
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On the basis of Fig. 3b and Eqs. (1) and (2), we may
determine m from the formula [3]

We may only use Eq. (3) when σ ≤ σy. When σu ≥
σ ≥ σy, the fatigue equation may be written in the
approximate form [3]

In repeated experiments with the same stress
amplitudes  we may establish the statisti-
cal spread of the results for the number of cycles to fail-
ure (Fig. 4a). Each value of  corresponds to a partic-
ular threshold (guaranteed) number  of
cycles, below which failure does not occur.

We determine the function  as for N in
Eq. (3): the test results for the guaranteed number of
cycles to failure are expressed in double logarithmic
coordinates and described by a linear formula of the
form in Eq. (1). The form of the function is deter-
mined by the least-squares method

(4)

where  is the fatigue limit corresponding to the
selected  value for the tests.

The expected distribution density of the probabili-
ties for the number of cycles to failure is shown in
Fig. 4b.

Information regarding the scattering of  may
be expressed as a frequency polygon (Fig. 5).

The mean number N − N0 of cycles to failure is
determined from the formula

(5)

where pi is the frequency at which the number Ni appears;

 n is the number of tests at stress 
The mean square value is determined from the

formula

while its dispersion is determined from the formula [4]

The corresponding variation coefficient is deter-
mined from the formula

(6)
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Fig. 5. Scattering of the number of cycles to failure.

0N N1N nN2N 3N iN

1p

2p

3p

ip

np

p

Fig. 6. Determining the parameters of the Weibull distri-
bution.
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The distribution functions of the probabilities for N
at fixed  may be expressed by the Weibull law [5, 6]

(7)

where α and β are parameters.
The variation coefficient of N − N0 is determined

from the formula [7]

(8)

where  is a gamma function.

Substituting the statistical estimate of the variation
coefficient from Eq. (8) into Eq. (6), we obtain an
algebraic equation for α. We now consider the case
where δ and α do not depend on the stress σ.

According to Eq. (7), the mean value of N − N0 is
calculated from the formula

(9)

Substituting  from Eq. (5) and α from
Eq. (8) into Eq. (9), we calculate  from the formula

The parameter  depends on the stress amplitudes
σ1, σ2, …, σn. The expected form of the function

 is shown in Fig. 6a. The results given by
Eq. (4) are plotted in double logarithmic coordinates
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(logβ, logσ). By the least-squares method, we obtain
a linear dependence (Fig. 6b) and determine the con-
stants k and γ

(10)
This relation may be obtained by substituting

Eq. (9) into Eq. (1).
From Eq. (10), we obtain

(11)
Substituting β from Eq. (11) into Eq. (7), we find

that

and hence we obtain the fatigue curve corresponding
to fixed probability 

(12)

where 

Equation (12) describes the family of fatigue curves
corresponding to different p (Fig. 7a). When  we
have the guaranteed number  of cycles to
failure.

The points of intersection of this family of curves
with the curves N = const determine the scattering of
the stresses  known as the conditional fatigue
limits. We find the probability distribution for these
stresses at different N. To that end, Eq. (12) with

 which describes the conditional fatigue limit
for the fatigue curve with probability p, may be written
in the following form, taking account of Eq. (4)
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Fig. 7. Scattering of the conditional fatigue limits.
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On that basis, we obtain the integral probability
distribution for the conditional fatigue limits in
the form

(13)

We now obtain the Weibull probability distribution
with the lowest guaranteed values of the fatigue limit in
the form

The distribution of the fatigue limit from Eq. (13) is
obtained when  The fatigue distribution den-
sity for  is shown in Fig. 7b when 

The fatigue characteristics here derived correspond
to metal samples. For transition to the actual struc-
tural elements, taking account of the scale factor, the
surface quality, and the effective stress concentration,
we use empirical formulas based on experimental data,
as a rule.

We now consider the possibility of taking the num-
ber n of identical structural elements or identical stress
concentrators into account. This is known as the WFD
(widespread fatigue damage) problem.

The probability distribution function for the fatigue
limit of a sample with a single stress concentrator (for
example, a hole) is denoted by  Then the
probability that the fatigue limit for a structure with
n identical stress concentrators (or n identical ele-
ments) will be larger than some value  will depend
on how the failure of a single element affects the sta-
bility of the whole structure.

If the failure of any single element leads to failure of
the whole structure, the corresponding integral prob-
ability distribution function takes the form

If failure of the whole structure is only observed
after the failure of all the elements, the corresponding
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integral probability distribution function takes
the form

If failure of the whole structure is observed after the
failure of m or more elements (out of the n elements
present), the corresponding integral probability distri-
bution function takes the form

where 

In the first case, taking account of Eq. (13), the
corresponding integral probability distribution func-
tion takes the form

In terms of statistical variables (the mean and dis-
persion), the fatigue limit of a real structure is less than
that of a single element. The statistical information
obtained by the methods here outlined regarding the
fatigue strength of metals may effectively be used to
improve the precision in predicting the life of machine
tools and structural elements at the design stage.
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