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Abstract—The stress–strain state in chip is investigated by the finite-element method. In addition, the cutting
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With a view to import substitution, we need effec-
tive means of cutting new hard and temperature-stable
materials, which are difficult to machine.

Extensive experimental data are now available in
handbooks regarding the machining of parts made
from various materials. However, manufacturers must
still identify the best machining conditions for hard
materials and the best tool life attainable in the pro-
duction of new parts [1–4]. Determination of the best
machining conditions for tough materials entails
expensive, challenging, and lengthy endurance tests in
the laboratory. That implies significant expenditures
of time and money.

Analysis of literature data has shown how the type
of chip depends on the machining temperature and
cutting speed over the whole of the practical tempera-
ture range, for any particular material [5–9]. The chip
passes through the following sequence of types: ele-
mentary, articulated, continuous, articulated, and ele-
mentary [5–9]. This pattern is observed for materials
in different machinability groups. However, no expla-
nation for such behavior has been offered.

In the present work, we attempt to account for the
changes in chip structure over the whole of the practi-
cal temperature range, on the basis of the mechanics
of failure, as the machined material is converted to
chip.

Analysis of the photographs in Fig. 1 shows that, in
metal cutting, cracks form at the contact and free sur-
faces of the chip [8].

To explain this behavior, chip formation is simu-
lated by the finite-element method. In addition, the
mechanics of the cutting process and chip formation is
investigated experimentally over the whole of the
practical temperature range.

Graphic modeling of turning results in a clear pic-
ture of the workpiece and chip formation. That per-
mits tracking of all the deformation processes in the
chip [4].

Kompas V15 and ANSYS software is used for sim-
ulation; the results are entered in Excel tables.

The loading conditions are analogous to rough
turning: the cutting section consists of VK8 hard alloy;
the rake angle γ = 0°; the primary plane angle ϕ = 90°;

Fig. 1. Chip roots with coordinate grid [8]: (a) continuous
chip (KhN77TYuR alloy); (b) segmented chip
(KhN77TYuR alloy); (c) elementary chip (VT2 alloy);
(d) broken chip (cast iron).
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the machined material is 10Х11Н23Т3МР steel; the cut-

ting depth t = 1.5 mm; the supply s = 0.42 mm/turn; the

cutting speed v = 50 m/min [10–14].

The mechanical characteristics of the

10Х11Н23Т3МР steel used in ANSYS calculations of

the stress isolines are the Poisson’s ratio μ and elastic

modulus Е.

The boundary conditions of chip formation are

specified in terms of the reactions to the cutting forces

РZi and frictional forces Fi at the chip’s contact surface

(length С) in the cross section being considered

(Fig. 2a).

The stress is calculated by the finite-element

method (Fig. 2a), which is applied to a solid body. In

the general case, this is the region occupied by a con-

tinuum or a field, which is divided into finite ele-

ments. The boundaries of the elements form a grid.

At intersection, the boundaries form node points.

Additional nodes may be created at the boundaries

and within the elements. The ensemble of all the

finite elements and nodes constitutes the basic finite-

element model of the deformed body. This model

must cover the region occupied by the object as com-

pletely as possible [15].

ANSYS software automatically divides the three-

dimensional model of the chip into a finite-element

grid (Fig. 2b).

To verify the applicability of the finite-element

method, we compare the isolines of the maximum

tangential stress τmax obtained by simulation and the

isochromatic lines obtained experimentally by a pho-

toelastic method [16].

We find good agreement of the isochromatic τmax

lines and the results of simulation (Fig. 3).

The stress–strain state of the chip is calculated by

the finite-element method in three cross sections:

(1) A–B, which is the conventional shear plane (1);

(2) А–C, which is a plane perpendicular to the

direction of chip departure from the contact zone with

the tool’s front surface (2);

(3) А–D, which is the plane passing through point

A on the free chip surface, where the direction of chip

departure changes; and point D, where the chip breaks

away from the tool’s front surface (3).

Analysis of the stress–strain state in cross sections

A–B, А–C, and А–D indicates that the hazardous ten-

sile stress σ1 is a maximum at points А, B, and D. At

other points, including points where the chip is in

contact with the tool’s front surface, σ1 tends to zero.

The tensile stress σ1 is greatest at point D in cross

section А–D (Figs. 4a and 4b). The compressive stress

σ3 is greatest at point B in cross section А–B, as we see

in Figs. 4c and 4d.

The Mises equivalent stress σequ in the longitudinal

section of the chip is greatest in cross section А–B (the

conventional shear plane), as we see in Figs. 4e and 4f.

That is consistent with the idea of plastic shear failure

in this plane.

Analysis of the chip’s stress–strain state indicates

that, in the chip-formation zone (Figs. 4a and 4b),

tensile regions appear. Concentrations of tensile stress

σ1 are observed at the chip’s free surface at point А and

at the end of the contact line between the chip and the

tool’s front surface at point D. Note that, in cross sec-

tion А–D, considerable hazardous tensile stress σ1 is

observed, on account of crack formation in the chip at

its free and contact surfaces.

In Figs. 4e and 4f, we show isolines of the stress and

its distribution in a longitudinal section of the chip

corresponding to shear failure of the chip.

The table presents experimental data for the fol-

lowing parameters of chip formation as a function of

Fig. 2. Boundary conditions for chip formation (a) and
finite-element grid in a longitudinal section of the chip (b).
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Fig. 3. Isolines of the maximum tangential stress τmax in free
cutting (γ = 0°): according to a model based on optically
active material [16] (a); and according to simulation (b).
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the cutting temperature and speed: the type of chip

[4]; the inclination of the fracture surface to the

chip’s contact surface; and the chip’s continuity fac-

tor k [17].

In the light of the numerical data for the stress–

strain state of the chip and the experimental data

regarding the type of chip in different cutting condi-

tions, we may draw some conclusions regarding the

failure mechanics of the machined material in chip

formation.

(1) In the case of continuous chip, at temperatures

of 400–600°С, when the continuity factor k ≈ 0.96 and

the inclination of the fracture surface to the chip’s

contact surface is about 60°, failure corresponds to

plastic shear in cross section A–B, in the zone with the

maximum Mises equivalent stress σequ.

(2) In the case of segmented chip, at temperatures

of 600–800°С, when k ≈ 0.87 and the inclination of

the fracture surface is about 68°, the plasticity

declines. Mixed brittle–plastic failure (with rupture

and shear) occurs under the action of tensile stress σ1

and the Mises equivalent stress σequ.

(3) In the case of elementary chip (when he incli-

nation of the fracture surface is about 90°), at tem-

peratures of 800–1000°С, with high-temperature

embrittlement of the machined material, further loss

of plasticity is accompanied by weakening of the bonds

between elements, and k tends to zero. Brittle failure is

observed in cross section А–D, in the region with

maximum tensile stress σ1.

Thus, we have described the failure mechanics of

machined material as it is converted to chip, on the

basis of finite-element simulation of the chip’s stress–

strain state and experimental data on the type of chip

produced over the whole of the practical temperature

and cutting-speed range.

Fig. 4. Simulation of rough turning (10Х11Н23Т3МР steel; v =10 m/min; t = 1 mm) in a longitudinal section of the chip:
(a) isolines of the tensile stress σ1; (b) curves of tensile stress σ1; (c) isolines of compressive stress σ1; (d) curves of compressive
stress σ1; (e) isolines of Mises equivalent stress σequ; (f) curves of Mises equivalent stress σequ.
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