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Abstract—A method is proposed for calculating the cutting characteristics in the end milling of stainless steel
workpieces. The calculation is based on analysis of the parameters for the chip-formation zone and takes
account of softening of the material under the action of the cutting temperature. The calculated tool life and
the torque are approximated by polynomial equations, which may be used to calculate the constraints on mill-
ing and to optimize the machining conditions.
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Stainless steel components are widely used in the
aerospace industry and in manufacturing. Accord-
ingly, it is important to increase the productivity and
efficiency in machining such components. One
approach is to use well-designed mills made of up-to-
date materials in numerically controlled multicoordi-
nate machine tools, in optimal conditions.

In the design of milling operations, we calculate the
cutting conditions and the technological constraints
on the power, the torque, and the tool life. For such
calculations, we determine quantitative relations
between the cutting characteristics and the controlla-
ble parameters. For example, for a long time,
researchers focused on the calculation of the milling
forces. Thus, the Weck–Teipel model of the cutting
forces (1977) was noted in the review [1]. In this
model, the cutting force takes the form F = Kaph,
where ap is the axial cutting depth; h is the thickness of
the cut layer. The constant K depends on the
machined material and the cutting speed, and is deter-
mined experimentally. This approach was developed
by Altintas, who proposed the equation F = Kaph +
Keap, where Ke is a constant. Thus, when h = 0, the
second term takes account of the influence of the cut-
ting edge [2].

Tobias and Stepan proposed a nonlinear depen-
dence of the force on the cut-layer thickness [1]: F =
Kaphx, where x is an empirical parameter.

Faassen used models for the tangential and radial
components of the cutting force [3]

(1)

where Kt, Kte, Kr, Kre, and the exponent x are deter-
mined experimentally.

A development of this approach is the calculation
of the cutting forces on the basis of the unit force, as
outlined in detail in the handbook [4]; this method is
widely employed by non-Russian tool manufacturers.
In this approach, for any cutting process such as mill-
ing, the tangential component of the cutting force is
determined as follows

(2)
where b and h are the width and thickness of the cut
layer; Kc is the unit cutting force; Kf is a correction fac-
tor; kc11 is the unit force per unit area of the cut; and
m is an exponent.

For numerous materials, values of Kc and m may be
found in [4].

In the Russian literature, power laws are used to
calculate the tangential force Pz and cutting speed v in
milling

(3)

Here Cp and Cv are constants; Kp and Kv are correction
factors; T is the tool life; t is the cutting depth; Sz is the
supply per tooth; B is the milling width; z is the num-
ber of mill teeth; d is the mill diameter; and n is the
spindle speed. In general, the exponents are fractions.

A deficiency of Eqs. (1)–(3) is that they represent
experimental results for specific machining condi-
tions. Changes in the machining conditions are taken
into account by means of correction factors. Mathe-
matically, this implies the proportionality of nonlinear
equations; considerable errors may result.
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In addition, in order to obtain Eq. (3), numerous
very laborious monofactorial or multifactorial experi-
ments must be conducted, and the influence of six
variables must be taken into account. On account of
the considerable experimental difficulties, literature
sources lack equations similar to Eq. (3)—in particu-
lar, equations for the cutting characteristics in the
machining of current structural materials by hard-
alloy mills.

A literature review indicates the need to develop
analytical methods of calculating the cutting forces,
temperature, wear, tool life, and other characteristics.
In the present work, we outline a method by which the
basic cutting characteristics may be calculated, with-
out additional experiments, for the milling of stainless
steel components. An approximate method is pro-
posed for the derivation of polynomial equations with
high precision on the basis of the calculation results
obtained.

CALCULATION 
OF THE CUTTING CHARACTERISTICS

The methods developed for calculating the cutting
parameters have been outlined in a number of papers.
For example, for the turning of structural steel by
composite cutters and for the superprecise machining
of nonferrous metal and alloy surfaces by diamond
cutters, methods were presented in [5, 6]. On that
basis, cutting characteristics have been developed for a
one-piece hard-alloy end mill in the machining of
slots and channels in aluminum-alloy workpieces
[7, 8]. In the present work, the basic principles of
those methods are analyzed and extended to the
machining of stainless steel components by a hard-
alloy end mill.

In the calculation of the cutting characteristics by
the proposed method, it is possible to take account of
the mechanical characteristics of the tool and work-
piece and their softening under the action of the cut-
ting temperature. An innovation is that the wear rate of
the rear tooth surface is first calculated and then its
wear and life are determined.

The calculation of the cut thickness and cutting
forces in end milling was considered in detail in [7, 8].
In Fig. 1, we show the cutting edge of the mill teeth in
simplified form. It consists of three section: the helical
edge 1–2, with inclination ω0 to the mill axis at the
cylindrical section; the radial edge 2–3 with radius r;
and the end section 3–4, at the auxiliary plane angle
ϕ1. The radial edge 2–3 is divided into several por-
tions, each of which is at a radius Ri relative to the mill
axis. With horizontal supply, the end section has no
influence on the cutting forces. In kinematic terms,
milling consists of mill rotation at speed n and the aux-
iliary supply motion Ds (Fig. 1).

In the coordinate system XYZ, with its origin at
point 2, the X axis runs along the mill axis (not shown

in Fig. 1); the Y axis runs along the radius; and the Z
axis is aligned with the cutting speed.

At the helical edge 1–2 and for each portion of the
radial edge 2–3, we determine the resultant chip-
forming forces Rc and Rci on the basis of the tangential
force in the shear plane. Thus, for helical edge 1–2,
the chip-forming force is inclined at an angle ω to the
cutting speed and is

(4)

where τp is the tangential stress in the shear plane; β is
the mean shear angle; a and b are the cut-layer thick-
ness and width.

We employ the following results for 12X18H10T
stainless steel.

1. The relation between the tangential stress and the
strength: τp = 0.9σB (MPa).

2. The relation between the hardness and the
strength: HB = σB/0.345.

3. The softening under the action of the tempera-
ture Td in the shear plane: σB = 657 – 0.41Td.

4. The decrease in the elastic modulus under the
action of the temperature in the shear plane: E =
200 – 0.077Td (GPa).

The chip-forming force has tangential and radial
components (not shown in Fig. 1):

The tangential and normal components of the force at
the tool’s front surface are also determined from geo-
metric considerations

where γ is the tool’s mean rake angle. The contact
length of the chip with the front surface is assumed to
be l1 = 2a/sin β.

The maximum contact pressure at the cutting edge
may be expressed in terms of the normal force at the
front surface and the contact area, as follows

(5)

Here n1 is the exponent in the contact-pressure for-

mula , where m is the relative
distance from the cutting edge to the contact point
along the tool’s front surface; l1 is the contact length of
the chip. We assume that n1 = 1. In other words, we
assume a triangular distribution of the normal contact
pressure at the front surface. On the basis of the calcu-
lated values of the normal pressure, we determine the
resultant force Pm at the edge (rounding radius ρ) and
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the normal force P2 and tangential force F2 at the tool’s
rear surface

(6)

Here ftr is the frictional coefficient; AB is the arc length
over the edge; b is the cut-layer width; hz is the wear.

The frictional coefficient at the rear surface is
assumed equal to the molecular component: ftr =
τ0/HB + β0. (The approximation of τ0 and β0 as a func-
tion of the temperature is outlined in [6].) The total
contact length at the rear surface is l2 = AB + hz.

The primary (tangential) component of the cutting
force is determined by summation over the corre-
sponding directions of the forces at the front surface,
the rounding arc at the edge, and the rear surface

(7)

Analogously, Eqs. (4)–(7) are used to calculate the
primary component of the cutting force over the sec-
tions at the radial edge 2–3.
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Then, we may calculate the total torque on the mill
tooth

(8)

where d is the mill diameter; Ri is the radius of the sec-
tion at radial edge 2–3; Pz1–2 is the tangential compo-
nent of the force at helical edge 1–2; Pzi is the tangen-
tial component of the force at edge 2–3; k is the num-
ber of sections at edge 2–3.

If there are several teeth at the contact arc, the cor-
responding forces must be included in the sum in
Eq. (8).

The thermophysical cutting parameters are calcu-
lated by the method in [9]. At each cutting edge of the
mill tooth, the following quantities are determined:
the intensities qd, q1t, and q2t of the heat f luxes to the
shear plane and at the front (T1) and rear surfaces,
respectively, and the temperature in the shear plane
(Td) and at the front (T1) and rear (T2) surfaces and the
mean cutting temperature
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Fig. 1. Calculating the cutting forces in milling.
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where ΔT is the correction for the action of the heat
source of the preceding mill tooth at the contact arc.

Note that the cutting temperature stabilizes within
ten contact cycles of the mill tooth and the work-
pieces—in other words, practically instantaneously.

By analogy with the wear model adopted by Pron-
ikov, in which the basic factors are the contact pres-
sure, the frictional speed, and the hardness of the worn
material, while the quantitative influence of the cut-
ting speed on the contact pressure and temperature is
taken into account, we consider the relation of the
wear rate at the tool’s rear surface with a generalized
parameter characterizing the cutting process.

The generalized parameter chosen is the ratio of
the cutting speed (frictional speed) to the hardness of
the worn surface as a function of the cutting tempera-
ture: x = v/HV(Tcu). Here v is the cutting speed, m/s;

and HV is the Vickers hardness or microhardness,
MPa.

The temperature dependence of the hardness is
adopted in the following forms:

—for VK8 hard alloy, HV = 12976.89 – 9.2θ;

—for VK6M hard alloy, HV = 13448.1 – 8.7θ;

—for R10 fine-grain hard alloy, HV = 17 500 – 10θ;

—for VK6–TiN hard alloy (with a wear-resistant
coating), HV = 24 495.2 – 22.7θ.

The cutting temperature is calculated from the for-
mula

Here λp is the thermal conductivity of the hard alloy;
λ, w are the thermal conductivity and thermal diffusiv-
ity of the machined material; Kl is the chip shrinkage;
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the coefficient c takes account of the heating of the
chip surface; the coefficient M1 takes account of the
influence of discontinuous machining on the cutting
temperature.

For contemporary tool materials and different
groups of machined materials, we establish the rela-
tion between the wear rate and the generalized param-
eter in the form

(9)

where the tool hardness is a function of the contact
temperature.

The cutting period is calculated as the sum of the time
increments in each iteration and Δt (min): t0,i+1 = t0,i + Δt.

Then the corresponding wear increment, found from
the wear rate in Eq. (9), is Δhz = ΔtInt,i, while the total

wear is hz,i+1 = tz,i + Δhz (mm). The tool life corre-

sponds to the cutting period such that the wear reaches
the maximum permissible value hzmax

(10)

The maximum permissible wear at the rear surface
of the mill tooth is assumed to be 0.1 mm.

The formulas for the cutting forces, torque, tem-
perature, wear rate, wear, and mill life are incorpo-
rated in the Milling program and algorithm. The cut
thickness is assumed to be the mean thickness at the
contact arc of the mill tooth.

In the analysis, we consider a one-piece hard-alloy
end mill with the following parameters: d = 16 mm;
z = 2; inclination of the edge to the axis ω0 = 55°;

rounding radius at the tooth tip r = 2 mm; rounding
radius of edge ρ = 0.01 mm. The tool materials are
VK8, VK6M, R10, and VK6–TiN hard alloys.

As an example, we show the calculated time depen-
dence of the wear hz at the mill tooth’s rear surface in

Fig. 2 for the milling of a slot by a VK6M alloy end mill
in a 12X18H10T stainless steel workpiece, at different
spindle speeds. The milling width here (the distance
along the axis) is B = 10 mm; the supply per tooth Sz =

0.08 mm. In Fig. 3, we show the dependence of the
mill life T on the supply Sz at spindle speed n =

1500 rpm.

POLYNOMIAL EQUATIONS 
FOR THE MILL LIFE AND CUTTING TORQUE

Multifactorial approximation is based on polyno-
mial equations, within the framework of a general
function approximating the experimental value at
point i of factorial space
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Fig. 2. Dependence of the wear hz at the rear surface of the
mill tooth on the time τ when the spindle speed n =
1000 (1), 1500 (2), 2000 (3), and 2500 rpm (4).
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Fig. 3. Dependence of the mill life T on the supply Sz.
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or in matrix form

where N is the total number of points; k is the number
of terms in the model; xi is the column matrix of input
variables; fi(xi) denotes the functions (polynomials); bj

are unknown coefficients; B is the coefficient matrix.

We calculate the coefficients of the polynomial
models by means of stochastic approximation, which
is essentially a larger-scale generalization of the least-
squares method. (The application of stochastic
approximation to metal-cutting formulas has been
analyzed in detail elsewhere.)

The stochastic approximation algorithm includes
procedures in which the coefficient matrix is refined
in each iteration at each experimental point. The cycle
continues until the mean error of the approximation is
less than the specified value. The general procedure
for changing the coefficient matrix in the stochastic
approximation algorithm is as follows

(11)

where yei is the initial value of the function at point i of
factor space; g1, …, gr is a sequence of positive numbers
tending to zero; r is the number of iterations.

By stochastic approximation, we may find a new
sequence of unknown coefficients constituting the
matrix B of the polynomial model by refining the
model in each iteration, without formulating and solving
the systems of equations required in the least-squares
method. The number of coefficients in matrix B corre-
sponds to the number of terms in the model specified
by the matrix f of polynomial functions for the set of
values of the factors xi at each experimental point. The

program calls for the input of positive numbers gr and

dd and also interacts with a text file of input data con-

taining N rows of sequential numbers: the values of the
factors and the corresponding initial value of the func-
tion in each row. The coefficient matrix B is refined by
means of the data in each row of the initial file, in
accordance with Eq. (11). After all of the N rows of the
file have been used, the mean error of the approxima-
tion is calculated and compared with its preceding
value. The difference is consistent with the specified
number dd.

On the basis of Eq. (11), the polynomial equations
may be classified as adaptive and modified by adding
or removing terms (factors). Thus, in the development
of equations for the tool life, the polynomial model is
progressively complicated: from a linear model to a
third-order model.

The third-order polynomial model for five vari-
ables includes 45 terms and may be written in general
form as follows

(12)
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where T is the tool life, min; x1 = 1 is a dummy variable.

The other variables x2, …, x6 are included in

Eq. (12) in coded (dimensionless) form, in accor-
dance with the general procedure

(13)

where xin is the natural value of xi; xmax, xmin are the
maximum and minimum values.

In accordance with the procedure in Eq. (13), the
relation between the coded and natural variables in
Eq. (12) is as follows

(14)

Here d is the mill diameter, mm; v is the cutting speed,
m/min; t is the milling depth (perpendicular to the
mill axis), mm; Sz is the supply, mm/tooth; B is the
width, mm.

As a preliminary, a grid of combinations of the five
variables at five levels of each is formed, in accordance
with the procedure in Eq. (14). In all, it consists of n =

55 = 3125 points within the minimum and maximum
values. From these points, we exclude those that are
unfeasible, by means of the condition t > d. In other
words, the milling depth must not be greater than the
diameter of the end mill. For the remaining N =
2500 points corresponding to possible combinations
of the variables, the tool life is calculated from Eq. (10)
and the torque from Eq. (8). Thus, we formulate the
initial databases for approximation by polynomial
equations. Points with very low tool-life values are also
excluded from the initial database.
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The following polynomial models for the tool life
are considered successively: a linear model; a qua-
dratic model; a quadratic model with variable interac-
tions; and a third-order model with variable interac-
tions. Table 1 presents the results of the analysis. For
each model, we present the number k of terms; the
mean square error Qksr; the mean error Qar; the rela-

tion of the T value calculated from the polynomial
equation with its initial value from the database. Note
that the error decreases severalfold on passing from a
linear model to a third-order model.

Table 2 presents polynomial functions constituting
the third-order model (with variable interactions) for
the tool life and also the coefficients corresponding to
different hard alloys from Eq. (11).

In Fig. 4, as an example, we show the relation
between the initial Ti values in the database and the

values Tp given by the polynomial equation in Table 2

for VK6M alloy. The relation is practically linear; its
characteristics and the error of the approximation are
presented in Table 1. The number of points N = 2450.

Analogous results are obtained for the torque.

ANALYSIS 
OF THE POLYNOMIAL EQUATIONS

In the analysis, we plot isolines in the v–Sz coordi-

nate plane for the model functions, by means of the
standard MATLAB contour function. In Fig. 5, we plot
the isolines corresponding to tool life T = 30, 90, and
150 min for the machining of a 12X18H10T stainless
steel workpiece by a VK6M end mill. The calculation
is based on Eq. (12), with the corresponding coeffi-
cients from Table 2 (mill diameter d = 16 mm; cutting
depth t = 16 mm; milling width B = 10 mm).

We see that the cutting speed v has a considerable
influence on the mill life. The supply Sz also affects the

tool life, but to a lesser extent.

In Fig. 6, we plot the corresponding isolines for
tool life T = 90 min when machining a 12X18H10T
stainless steel workpiece by VK6M, R10, and VK6–
TiN hard-alloy end mills. The results qualitatively
confirm that fine-grain R10 alloy and coated VK6–
TiN alloy permit considerable increase in the milling
speed.

The equations derived here may be used in opti-
mizing the milling parameters. Consider the milling of

Table 1. Approximation of the mill life by polynomial equations

Model Number of terms, k
Error, min Relation of calculated 

and initial valuesQksr Qar

Linear 6 28.2 8.8

Quadratic 11 25.3 8.3

Quadratic, with interactions 21 6.8 2.7

Third-order, with interactions 45 5.4 2.4

= 1.11p iT T

= 1.09p iT T

= 0.99p iT T

= 1.00p iT T

Fig. 4. Relation between the initial values of the mill life Ti
from the database and the calculated values Tp from a
third-order polynomial equation.
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Fig. 5. Isolines corresponding to the life T = 30 (1), 90 (2),
and 150 min (3) of a hard-alloy end mill in machining
stainless steel workpieces.
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Table 2. Polynomial functions and coefficients of polynomial equations for the function y = log T

Term Polynomial function

Hard alloy

VK6M VK6–TiN R10

coefficients

1 x1 1.73834 1.62427 1.38102

2 x2 0.08277 0.19304 0.07807

3 x3 –1.21845 –1.09143 –0.96703

4 x4 –0.08779 –0.17526 –0.04954

5 x5 –0.15862 –0.35595 –0.15543

6 x6 –0.10059 –0.21186 –0.10091

7 –0.02212 –0.04929 0.001

8 –0.00339 0.02081 0.06872

9 0.00178 0.02216 0.04203

10 –0.06859 –0.2218 –0.09368

11 0.00765 0.00781 0.02014

12 x2x3 0.07677 0.23047 0.06536

13 x2x6 0.0274 0.10192 0.00588

14 x2x4 0.01557 0.0226 –0.04664

15 x2x5 0.06247 0.21063 0.07488

16 x3x4 –0.06179 –0.18425 –0.04889

17 x3x5 –0.09933 –0.28791 –0.10863

18 x3x6 –0.05605 –0.16036 –0.03569

19 x4x5 –0.04984 –0.1787 –0.06181

20 x4x6 –0.01812 –0.07387 0.00229

21 x6x5 –0.03632 –0.13694 –0.02581

22 –0.13957 –0.20502 –0.18566

23 0.00645 0.02351 0.01183

24 0.00688 –0.04892 –0.07108

25 –0.00522 –0.0151 –0.0091

26 0.01636 –0.02141 0.00229

27 –0.00869 –0.02022 –0.00999

28 –0.00013 –0.05034 –0.03757

29 0.01876 0.10171 0.05003

30 –0.01142 –0.03452 –0.00525

31 0.0062 0.0138 0.0047

32 –0.05114 –0.17653 –0.07842

33 0.00573 0.01029 0.00731

34 –0.01371 –0.00139 0.00264

2
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slot in a 12X18H10T stainless steel workpiece by an

R10 alloy end mill, when the mill diameter d = 16 mm;

the cutting depth t = 16 mm; and the milling width

B = 10 mm. The goal of optimization is to minimize

the time per operation.

The technological constrains are as follows.

—In terms of the tool life, F1 = T(v, Sz) – Tz, where

T(v, Sz) is the life according to Eq. (12) with the coef-

ficients in Table 2; and Tz = 90 min is the minimum

life.

—In terms of the roughness of the machined sur-
face, F2 = Raz – Ra(v, Sz), where Raz = 3 μm is the

specified surface roughness and Ra(v, Sz) is the rough-

ness determined by the tool life and supply.

—In terms of the drive power in the machine tool,
F3 = Nz – N(v, Sz), where Nz = 7.5 kW is the specified

drive power and N(v, Sz) is the power determined by

the tool life and supply.

We calculate the roughness on the basis of a power
law found in the literature

where

The power is related to the torque as follows

where M(v, S) is the torque according to Eq. (12).

In Fig. 7, as an illustration, we show the isolines
corresponding to the technological constraints in the
v–Sz coordinate plane.

The optimal point, corresponding to optimal
parameter value, is found as the intersection of the
corresponding isolines based on the technological
constraints, in accordance with [6]. Thus, in Fig. 7,

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
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2
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1
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The coded variables correspond to Eq. (14).

35 –0.02118 –0.02651 –0.02294

36 –0.00901 –0.07936 –0.04042

37 0.00834 0.01779 0.00697

38 –0.00041 –0.0026 0.00091

39 –0.04934 –0.08341 –0.04994

40 –0.00035 –0.00736 0.00027

41 0.0014 –0.00221 0.00333

42 –0.00966 –0.03472 –0.00864

43 –0.01682 –0.0069 –0.00912

44 0.0088 0.02135 0.00721

45 –0.01412 –0.06946 –0.01127

Term Polynomial function

Hard alloy

VK6M VK6–TiN R10

coefficients

2
4 3x x

2
4 5x x

2
4 6x x

2
5 2x x

2
5 3x x

2
5 4x x

2
5 6x x

2
6 2x x

2
6 3x x

2
6 4x x

2
6 5x x

Table 2. (Contd.)

Fig. 6. Isolines corresponding to the life T = 90 min of
VK6–TiN (1), R10 (2), and VK6M (3) hard-alloy end
mills in machining stainless steel workpieces.
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the intersection of the isolines for the tool life and sur-
face roughness is an optimal point.

This point may be found on the basis of the stan-
dard MATLAB fsolve function, which permits the
solution of a system of nonlinear equations

Here xo and xnn are the vectors of the optimal and

initial parameter values; funvsp is a user function con-
sisting of the functions F1 and F2 describing the tech-

nological constraints.

The optimal parameter values are [xo] = [74.4;

0.047]. In other words, the optimal cutting speed vo =

74.4 m/min; the optimal supply Szo = 0.047 mm/tooth.

CONCLUSIONS

A method has been proposed for calculating the
cutting characteristics in the end milling of stainless
steel workpieces—specifically, the cutting forces, tem-
perature, contact pressure, wear rate, wear, and tool
life. The method eliminates the need for special exper-
iments. In the method, the influence of softening of
the workpiece and tool material under the action of
the cutting temperature is taken into account. This
method may be applied to other machining methods
and conditions.

[ ] [ ]( )=o @ , .nfsolve funvspx x

The tool life and the torque are approximated by
polynomial equations

Polynomial models are recommended for calcula-
tion of optimization of the milling parameters.

The optimal parameter values are found as the inter-
section of isolines corresponding to the technological
constraints on the tool life and surface roughness.
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Fig. 7. Isolines corresponding to the technological con-
straints: (1) drive power N = 7.5 kW; (2) tool life T =
90 min; (3) surface roughness Ra = 3 μm.
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