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Abstract—An analytical equation describing the quasi-static deformation curve of metals with slight elasto-
plastic deformation is proposed. This equation yields high precision in plasticity problems. The components
of the equation are found from the experimental deformation curve.
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In many mechanics problems, it is necessary to
establish the relation between the stresses and strains
that arise in response to a load [1]. For engineering
calculations, as a rule, a polygonal approximation is
adopted. The deformation curve in extension is repre-
sented by a piecewise-linear dependence of the relative
stress  on the relative strain  Here
the yield point σy is assumed to be the stress corre-
sponding to the limit of proportionality; and εy is the
strain corresponding to the yield point.

In that case, the deformation curve may be
described in each interval  by the equation

where ak and bk are coefficients determined from the
experimental deformation curve. Six intervals are used
to describe the deformation curve of metals in one-
time loading presented in [2]. In other words, 12 coef-
ficients are calculated for the description of a single
curve. This method is employed in ANSYS software.

The number of coefficients a and b may be reduced
to two on the basis of a model in which the solid con-
sists of a set of identical microvolumes characterized
by different stress. Each microvolume undergoes lin-
ear strengthening on deformation. We assume that,
with change in the strain, the stress in the normal cross
section of the microvolume changes as follows

Here E is the elastic modulus; Es is the strengthening
modulus.

Suppose that there are no microvolumes in the nor-
mal cross section of the body. Then the stress in that
cross section is

where n is the number of microvolumes that experi-
ence elastic deformation. The other n – no microvol-
umes undergo elastoplastic deformation.

With increment dε in the strain of the body on
extension, each microvolume will experience the same
increment. The mean stress is then

Hence

The transition of individual microvolumes from
the elastic state to the elastoplastic state on deforma-
tion is random. Suppose that this process has a Pois-
son distribution. Then the mean number of elastically
deformed volumes in the given cross section when the
strain changes by ε – εy is

(1)
where λ is a constant characterizing the rate at which
the individual volume passes from state to the other.
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Hence, tensile deformation beyond the elastic limit
(ε > εy) may be described in the form

or

(2)

If we integrate Eq. (2), taking account of Eq. (1),
we obtain an analytical formula for the deformation

(3)
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where D = Es/E is the relative strengthening modulus;
B = λσy/E is a coefficient characterizing (accurately
except for some constant factor) the rate of transition
of an individual microvolume to an elastoplastic state
on loading

We may determine D and B from the experimental
curve by the least-squares method. In that case, they
may expediently be calculated by means of the genifit
function in Mathcad software. To that end, we pro-
ceed as follows.

1. On the basis of the experimental data, we write
expressions for the vectors

where  and  are the experimental values for
k points selected arbitrarily on the experimental curve;
superscript T denotes transposition of the vectors.

2. We write the vector of initial values of B and D
(for example, B = 5, D = 0.1)

3. We write the auxiliary vector

where the first element of column vector  cor-
responds to the function specified in Eq. (3); the sec-
ond to the partial derivative of the specified function
with respect to B; and the third to the partial derivative
of the specified function with respect to D.

4. We obtain the solution by means of the operators

This model may be verified by comparison of the
calculated and experimental data for some structural
steels, aluminum alloys, and titanium alloys. As an
example, the table presents the parameters of the defor-
mation equation for some metals. In Fig. 1, we show
deformation curves obtained from Eq. (3). The points
on the curve correspond to experimental data [2].

Thus, we have obtained an analytical description of
quasi-static deformation for a broad class of metals
and alloys with slight elastoplastic deformation at nor-
mal and elevated temperatures. The equations
obtained are simple to integrate, which is important in
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Fig. 1. Deformation curves of 18X2H4MA (1), X18H9T
(2), and 40X structural steels (a); VT1 (1) titanium alloy
and V95T (2) and V95 (3) aluminum alloys (b); and
18X2H4MA steel at elevated temperatures (c): 300°C (1),
400°C (2), and 500°C (3).
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plasticity problems, and contain only two experimen-
tal parameters.
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Translated by Bernard Gilbert

Parameters of the deformation equation for structural steels, aluminum alloys, and titanium alloys

Material Heat treatment Test temperature, °C
Parameters

B D

40X Annealing 20 11.29 0.0630
18X2H4MA Quenching at 950°C, 

tempering at 180°C
20 11.11 0.1640

200 1.32 0.0210
400 0.91 0.0083
500 0.53 –0.2280

X18H9T Quenching at 1050°C 20 3.20 0.0710
V95 Quenching, artificial aging 20 12.68 0.0260
V95T Quenching, artificial aging 20 3.69 0.0130
VTT Annealing at 700°C 20 2.19 0.0250
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