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Abstract—In asymptotic calculations of the first order of smallness in the dimensionless amplitude of water
droplet oscillations, the effect of the dynamic surface tension on the oscillation parameters was investigated
using a model of an ideal incompressible liquid. It was shown that the effect of the dynamic surface tension
strongly manifests itself at frequencies of external influences that are inversely proportional to the water relax-
ation time. At such frequencies, under the action of external influences, the electrical double layer is
destroyed (the ordering of water molecules in the near-surface layer is disrupted). As a result, the free energy
of the surface increases, and so does the liquid surface tension. The dynamic surface tension affects the acous-
tic radiation from the droplet by altering the coefficient of surface tension. The contribution to the electro-
magnetic radiation of the oscillating droplet is made by the disruption of the order of near-surface water mol-

ecules in the electrical double layer.
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INTRODUCTION

The dynamic surface tension occurs in polar lig-
uids and is characterized by a change in the coefficient
of surface tension under short-term or periodical
short-term force impacts on the droplet surface [1].

The physicochemical nature of the discussed pro-
cess is related to the formation of an electrical double
layer at the droplet surface. The essence of this phe-
nomenon is that water molecules are dipoles, and the
free surface of water in the near-surface layer orients
the dipole molecules with negatively charged poles
outward from the bulk of the droplet [2, 3], which has
been repeatedly confirmed in experiments. As a result,
the poles of electric dipoles with a positive charge are
directed inside the droplet and attract negative ions
from the bulk of the droplet. As a consequence, in the
near-surface layer of the liquid with a thickness of
about tens of nanometers, a diffuse space electric
charge appears. Since this process occurs sponta-
neously, the surface free energy decreases. Thus, the
formation of an electrical double layer gives rise to a
certain order in the orientation of dipole molecules
(dipoles are known [3] to be ordered by both dipolar
and quadrupolar interactions of molecules) and to a
decrease in the surface energy and in the coefficient of
surface tension. It was experimentally observed that
the maximum value of dynamic surface tension (with
complete disorder of near-surface dipoles) is 25%
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higher than its equilibrium value reached at maximum
order [4]. There are numerous publications dedicated
to dynamic surface tension (see, e.g., [5—8]).

External force impacts disrupt the ordered struc-
ture of the electrical double layer, increasing the sur-
face energy and, consequently, the coefficient of sur-
face tension.

A high-frequency capillary wave propagating along
the liquid surface will disrupt the order of dipoles
because the liquid particles under the surface wave are
in a circular motion [9, p. 57]. This, in turn, leads to an
increase in surface tension. The phenomenon of spon-
taneous restoration of order is called relaxation, and
the characteristic time for the system to return to an
equilibrium state is the characteristic relaxation time.

To account for the dynamic surface tension, let us
use the well-known Maxwell’s formula [5], where the
coefficient of surface tension of a liquid, o, takes into
account the surface tension in the state of order of
near-surface molecules and in the state of their com-
plete disorder:

O 100,047,
60=0 -7 =07
1-io,T, 1-io,T,
O, = 0., — Oy. (D)
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Here, i is the imaginary unit, T, is the characteristic
relaxation time (the time it takes for the momentarily
deformed near-surface layer of the liquid droplet to
return to its equilibrium state), G, is the coefficient of
surface tension of the equilibrium structure of the
droplet (at zero frequency of external influence), G, is
the maximum value of the coefficient of surface ten-
sion at very high frequencies (when the ordered struc-

ture of the electrical double layer is disrupted), and G,

is the correction to 6, for the deviation of the near-sur-
face layer of the droplet from the equilibrium state due
to the relaxation effect.

It is obvious that accounting for dynamic surface
tension will complicate the spectrum of capillary
oscillations of the liquid droplet.

In light of this, it seems reasonable to investigate
the effect of dynamic surface tension on capillary-
wave motions of the conducting surface of the droplet.

PROBLEM STATEMENT

Let us consider a stationary spherical droplet with
radius R of an ideal, incompressible, perfectly con-
ducting liquid with mass density p,, carrying electric
charge Q. The coefficient of surface tension of the
interface between the media is denoted by . The
external medium is an ideal incompressible dielectric
medium with permittivity €., and mass density p,.

The thermal motion of liquid molecules gives rise
to a capillary wave motion with a very small amplitude
(0.1 nm [10]) on the droplet surface. However,
because of the impacts of external forces (coagulation,
fragmentation, collisions, friction against air, etc.),
the capillary wave amplitude can significantly exceed
this value [11].

Let us analyze the problem in a spherical coordi-
nate system with the origin at the center of mass of the
sphere using an axisymmetric formulation.

The motions of the liquid in the droplet and in the
external medium are assumed to be potential, and the

velocity field V,(r,6,7) can be expressed through the
gradients of hydrodynamic potentials y (r,0,7) [9]:

I7](’”’631‘) = V\l’j(ra eat):
j=12.
Here, the subscriptsj = 1 andj = 2 refer to the droplet
and the medium, respectively.

The distortion of the equilibrium spherical shape
E(0, 1) that is caused by the capillary motion is
assumed to be small along with the velocity fields of
the liquid flow in the droplet and the medium,

V.(r,0,1), and the hydrodynamic potentials, y ;(r,9,7).

(2

The equation of the interface between the droplet
and the medium at arbitrary time t is written as

r(0,) = R+ &(6,1),
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where the amplitude of the surface wave motion of the
droplet is much smaller than its equilibrium radius:

max [§|/R < 1.

When modeling the droplet as a perfect conductor, it
is assumed that the rate of redistribution of surface
charge significantly exceeds the flow velocities of the
liquid within it. Then the electric field in the vicinity
of the droplet, which is created by its uniformly dis-
tributed charge, is considered quasi-stationary and

described by the electric potential @ (r,6,7) related to
the field intensity E (r,6,¢) by the relation

E(r,0,t) =-V®(r,0,1). (3)

The electric potential along the perturbed surface is
denoted as @y.

MATHEMATICAL FORMULATION
OF THE PROBLEM

The mathematical formulation of the problem of
capillary oscillations of a charged droplet consists of
the equations of motion for the internal and external
media of the droplet (Euler’s equations):

dv,(r,0,t
/Eﬁ )z_ijVPj(r,G,t); @)
(J=12);
the continuity equations
divV,(r,0,1) = 0; (j =1,2); (5)
and Maxwell’s equations
rotE =0; divE =0. (6)

The use of Eq. (2) allows one to transform equality (5)
into Laplace’s equations for the hydrodynamic poten-

tials y ;(r,0,7)

Ay(r,6,0) =0; (j=12); (7)

Substitution of relation (3) into Egs. (6) gives that
the first equation in system (6) is satisfied identically,
and the second is reduced to Laplace’s equation for

the electric field potential @ (r,0,7):
AD(r,0,1) = 0. ®)
From Egs. (4), the expressions for the pressures in
the droplet, P, (r,6,7), and in the external medium,
P, (r,0,1):

oy, (r,8,1)
o
where F; are the constant pressures inside (j = 1) and
outside (j = 2) the droplet.

In addition, it is necessary that the sought poten-
tials y,(r,0,7) and @ (r,0,7) should satisfy conditions

P (r,6,1)= R, —p (j=12);
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of boundedness (natural boundary conditions) at the
origin and at infinite distances from the droplet:

r— 0:y,(r,0,1) = 0; )
(10)

At the interface between the media, r = R + £(6,7),
the hydrodynamic and electrostatic boundary condi-
tions should be satisfied:

r — ool Yy(r,0,1) > 0; D(r,0,7) — 0.

the equality of the normal components of the
motion velocities of the internal and external media:

ﬁ] XVWI (I‘,e,t) = ﬁxz XV\'Iz (r,e,t)
=nxVy(r,0,t); #=n =—h;

the kinematic condition:

@zﬁxw(r,m;

the dynamic condition for the normal component of
the stress tensor:

P (r,0,t) = P,(r,6,t) + P,(r,0,t) = P;(r,6,¢) = 0;
P, (r,6,1) = Zﬂ(m (r.0.1)"
T
P, (r,0,t) = odivi(r,0,1)

and the condition of the constancy of the electric
potential on the droplet surface:

O(r,0,1) = O,.

Let us supplement the problem formulated above
with the additional integral conditions for the conser-
vation of the droplet volume and the absence of
motion of its center of mass:

jﬂmgmww¢=%m%jﬂwmm&mwm&
4 4

V=[0<r<R+&6,),050<m0<¢<2m;
and the constancy of the total charge of the droplet:

‘Eﬂ¢ﬂﬁQﬂXV®UﬁJMS=Q;
4T <
S=[r=R+&®6,1),0<0<m0<¢<2n.

In the above expressions, #; is the external normal
vector to the droplet, #, is the external normal vector
to the external medium, P (r, 0, 7) is the pressure of
electric forces, and P4(r, 0, f) is the pressure of surface
tension forces.

Let us seek the solution to formulated problem (7)—
(11) using classical methods of perturbation theory
[12] in the linear approximation in the small parame-
tere = |§| / R < 1, which is the ratio of the amplitude of
capillary oscillations to the droplet radius. By the
direct perturbation method, the perturbation of the
equilibrium shape £(9, 7), the potentials yi(r, 0, 1) and
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®(r, 0, 1), and the pressures P(r, 0, 1), P(r, 0, 1), and
Py(r, 0, 1) are represented as asymptotic expansions:

&0, =£"0,n + 0E”);
v, (6,0 =y (0,0 +0E"); j=12
@(r,0,1) = (r,0) + " (r,0,1) + OE?);
P(r,6,0) = P, 0,0 + P(r,0,1) + OE?);
P(r,0,1) = PO(r,0) + P (r,0,1) + O’);
P,(r,0,t) = P,r,0) + P, 0,) + O€?),

where the superscript denotes the order of smallness in
¢ for the corresponding components.

ANALYSIS

In the general case, let us decompose the complex
frequency of oscillations of the #nth mode of the drop-
let into real and imaginary parts,

o, =Rew, +ilmw, =, +in,,

and solve the problem using standard methods (see,
e.g., [13]). The frequency is assumed to be complex
because, in a droplet of a polar liquid, such as water,
capillary surface waves disrupt the order of molecules
in the near-surface layer and alter the free energy of
the water surface, leading to damping. In the end,
using Eq. (1), one can derive the dispersion equation
for capillary oscillations of the droplet, taking into
account dynamic surface tension:

2 2

. G .
@+Pl—%&%+—ﬂj—hﬁ=Qn220D

o T

r r

,zzﬂn(n—l)(n+l)(n+2).
"R (pi(n+1) +pon)

2 _%n(n—l)(n+1)(n+2)[l_ w }
(n+2)]

n0 —

R (p(n+1)+p,n) n+2
T
416,R’

where the subscript 0 refers to the equilibrium state of
the droplet surface; » is the mode number; ®, is the
complex frequency of oscillations of the nth mode of
the charged droplet with the disrupted ordered struc-

ture of the electrical double layer, Re w, = w, is the
natural frequency of oscillations of the charged droplet
with the disrupted ordered structure of the electrical
double layer; 1 is the damping ratio; W'is the Rayleigh
parameter [14], characterizing the stability of the
droplet with respect to its own charge; ®, is the fre-

quency of oscillations of the nth mode, w,, and w,, are
the frequencies of oscillations of the nth modes of the
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Fig. 1. Dependences of the real component Re (1)5(2]) of the
complex frequency of oscillations of a charged droplet on
the Rayleigh parameter Watn=10;e,,=1;p; =1 g/cm

pr=13x10" g/cm ;69 = 73 dyn/cm; 6o, = 91 dyn/cm;
c* = 18 dyn/cm; 1, = 1 X 10~ s; and R = (1) 0.05, (2)
0.075, (3) 0.1, (4) 0.125, and (5) 0.15 cm.

charged and uncharged droplets, respectively, with the
equilibrium structure of the near-surface layer of the
liquid.

It is easy to see that the second and fourth coeffi-
cients of the dispersion equation are imaginary, and
the consideration of dynamic surface tension leads to
an increase in the order of the dispersion equation in
comparison with the equation written without consid-
ering relaxation. This is due to the appearance of
damping of capillary oscillations of the droplet
because of the relaxation of surface energy (coefficient
of surface tension) toward their equilibrium values
during the restoration of the electrical double layer.

For numerical illustration, let us turn to naturally
occurring droplets: clouds, fogs [15, 16]. Let us evalu-
ate the characteristics of oscillations for the tenth
mode (n = 10), as the period of their oscillations is
close to the characteristic relaxation time.

To find numerical solutions, let us take the following
average physicochemical characteristics of water drop-
lets: 6, = 73 dyn/cm, p, = 1 g/ecm?, Q =2 x 107 statC,

o = 1, 0, =91 dyn/cm, ¢, = 18 dyn/cm, p, = 1.3 %
103 g/cm’, and T,= 1 X 10*s.
Analysis of the numerical solutions showed that the

first root 03510) determines purely aperiodic decay, while

the second and third roots 0)%) and (1)5?,) describe slowly

decaying oscillations of cloud droplets (in this case,
the damping decrement is four orders of magnitude
lower than the frequency of intrinsic oscillations), and

very fast decaying oscillations of small raindrops (n%)
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is one to two orders of magnitude lower than Re u)%)).
Simultaneously, an increase in the droplet size leads to

an increase in the ratio ‘n%)‘ / Re 0)5{)) , so that the oscil -

lations of large raindrops are aperiodic. From the
obtained numerical solutions, it is evident that a
decrease in droplet size, considering the effect of
dynamic surface tension, leads to an increase in the
natural frequencies of oscillations in comparison with
the frequencies determined without considering relax-
ation (see [13]). From this, it can be concluded that
the damping oscillations of cloud droplets that are
induced by surface tension relaxation correspond to

high frequencies Re w,,T, > 1.

To illustrate the dependences of the characteristics
of damping droplet oscillations, let us separate the real
(/)

component Re®,” and the imaginary component

Im Q)E,j ) of the analytical expressions for the frequency.
The solutions to Eq. (12), obtained using the
MATHEMATICA software, have the form

Reoo =0 Rewf,z) Ioco+£oc1,
Re(l)f) —%ao —?0(1,

Im(’)fql) = TIE,I) = (Xl + Oy +0‘1):

Imo? = Imaf =n® = —(&+%+%);
3 2 2
1
s, (848,
0= 1> W =T 0=7
3(8,+8,)3 32
8o =% — X2 & =20 — o +27s

8, =333 — 40 — 4its +18%xxs — 273

2
1 . 2 G* 12, 0)0
i =—5 X =Wy +— 00 Y3 =—"

r 0 r

Figures 1 and 2 depict the dependencies of the real

part Re 0)5(2)) of the complex frequency on the uncom-
pensated charge on the droplet (on the Rayleigh
parameter W) and its radius, respectively, according to
(20). These dependences are qualitatively expectable
from the general trends in electrohydrodynamics: the
frequency is seen to decrease with increasing charge
and droplet radius.

Figure 3 shows the dependences of Re 0)%) on the

characteristic relaxation time T, and radius. It can be
observed that the dependences on T, at all considered
droplet radii are approximately linear for 7, < 0.1 ms
and T, > 0.1 ms, but with significantly different slopes:

in the first case, the dependence of Re 0)5(2)) on T, is
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Fig. 2. Dependences of the real component Re 0)1(2]) of the
complex frequency of oscillations of a charged raindrop on
its radius R at the same parameters as in Fig. 1, except W=
(1)0.1,(2) 0.3, (3) 0.5, (4) 0.7, and (5) 0.9.

much stronger. That is, the dependence of Re 0)%) on
the characteristic relaxation time 7, at short T, is more
significant. If one also takes into account the disrup-
tion of the order of water molecules in the near-surface
layer under short-term force influence and the
increase in the coefficient of surface tension of water
in this region, everything becomes clear.

Figures 4 and 5 present the dependences of the
damping decrement caused by the relaxation of sur-
face tension on the charge (Rayleigh parameter) and
droplet radius. The decrease in the damping decre-
ment with an increase in charge to values close to crit-
ical for the droplet instability relative to its own charge
is caused by the decrease in the oscillation frequency
as the droplet charge approaches the critical value
[13]. The growth of the damping decrement with an
increase in droplet radius and a decrease in droplet

charge, with the dependence n%)(R, Q) approaching a
slowly increasing asymptote, is likely to be a result of

the combination of two trends: nS? increases with

increasing R, but decreases with decreasing Q.
Figure 6 shows the dependence of the damping

decrement n%)of capillary oscillations of a droplet with
radius R = 1.1 mm due to the relaxation of surface ten-
sion on the characteristic relaxation time t,. One can
see that, with a decrease in T,, the damping decrement
rapidly increases, corresponding to an increased role
of disrupting the order of water molecules in its near-
surface layer at small T,.

Figures 7 and 8 illustrate the time dependences of
the amplitude M,,(7) of the disturbance of the equilib-
rium spherical shape of a charged droplet with a radius
of R =1.283 mm and a charge of Q = 7 x 10~* statC
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Fig. 3. Dependences of the real component Re 0)%) of the
complex frequency of oscillations on the characteristic relax-
ation time 7T, at the same parameters as in Fig. 1, except R =
(1)0.5,(2)0.51, (3) 0.52, (4) 0.53, and (5) 0.54 mm.

during damped capillary oscillations due to the relax-
ation of surface tension.

Figure 7 demonstrates that the shape of the curves
and the damping rate strongly depend on the small-
ness of the assumed value of the characteristic relax-
ation time 7T,. They vary from very rapid damping for
curve I (T, = 1073 s) to rather slow damping (T, = 1073 s).
Figure 8 shows the curves from the small vicinity of the
point ‘nﬁé)‘ / Re 0)%) =1 (1, = 10~*s) where damping is
fast. Curves 2in Figs. 1 and 2 are identical.

0.1 0.3 0.5 0.7 0.9
/4

Fig. 4. Dependences of the damping decrement ng(z)) of
capillary oscillations of a charged raindrop on the Rayleigh
parameter W at the same parameters as in Fig. 1, except
R=(1)0.05,(2) 0.075, (3) 0.1, (4) 0.125, and (5) 0.15 cm.

No.2 2024



216

6.5
6.0 2
N
_ 55F73
|
S 50} 4
= asf
4.0 F
5
35F
0.05 0.1 0.15 0.2 0.25
R, um

Fig. 5. Dependences of the damping decrement n%) of
capillary oscillations of a charged raindrop on its radius R
at the same parameters as in Fig. 1, except W= (1) 0.1, (2)
0.3, (3) 0.5, (4 0.7, and (5) 0.9.

Figure 9 presents the dependence of the amplitude
M,y (%) of the disturbance of the equilibrium shape of a
charged droplet with a radius of R = 1.283 mm and a
charge of Q = 7 x 10~* statC on the characteristic
relaxation time T,, calculated at various moments of
real time.

Let us intersect the curves in Fig. 9 by vertical lines
corresponding to specific values of T, to obtain a repre-
sentation of the change in the oscillation amplitude
over real time at the given values of 1,. It is sen that, at
short t,, the amplitude of capillary oscillations drops
to zero within half a period of oscillation.

ELECTRICAL DOUBLE LAYER,
ITS DESTRUCTION AND RESTORATION

Based on the above graphs (see, e.g., Figs. 7-9),
one can see the following picture of the time evolution
of the boundary electrical double layer. The electrical
double layer at the surface of a polar liquid forms
spontaneously with the appearance of the sponta-
neous orientation of near-surface dipoles with nega-
tively charged ends directed outward of the liquid
because this process is accompanied by a decrease in
the free energy of the liquid surface (it was experimen-
tally determined that the coefficient of surface tension
of the liquid decreases [4, 8]). Positively charged ends
of dipoles attract negative ions from the bulk of the lig-
uid and induce additional orientation of dipole mole-
cules, resulting in a stable structure rigidly attached to
the surface and diffuse on the side of the liquid.
During a short-term (when the interaction time is
approximately equal to the characteristic relaxation
time) force impact on the liquid surface, this electrical
double layer is disrupted, this disruption os contrib-
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Fig. 6. Dependences of the damping decrement n%) of cap-
illary oscillations of a droplet with a radius of R= 1.1 mm on
the characteristic relaxation time T, at the same parameters as
in Fig. 1, except W= (1) 0.1, (2) 0.5, and (3) 0.9.

uted by the mechanical energy of the wave, the free
energy of a unit surface increases, and so does the
coefficient of surface tension (which is determined by
the surface density of free energy [17, p. 351]). An
example of a force impact on the liquid surface can be
a high-frequency capillary wave running along the sur-
face (or standing, as in the case of a droplet), disrupting
the order of dipoles at the liquid surface [9, p. 57].

5

£ 3

s 3) \
6L
9}

Il
02 04 06 038 1.0 1.2
t, us

Fig. 7. Time dependences of the amplitude M;((7) of the dis-
turbance of the equilibrium shape of a charged droplet with a
radius of R=1.283 mm and a charge of Q =7 X 10~ statC at
n=10;e=1;p; = 1 g/cm’; py = 1.3 x 1073 g/em?; 6 =
73 dyn/cm; 6o = 91 dyn/cm; 6* = 18 dyn/cm; and T, =
(D1x107°,(2)1x 1074 and (3) 1 x 1073 s.
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_2_ 1 L I] L L L

0.2 0.4 0.6 0.8 1.0 1.2
t, us

Fig. 8. Time dependences of the amplitude M;((7) of the dis-
turbance of the equilibrium shape of a charged droplet with a
radius of R = 1.283 mm and a charge of Q =7 X 10~ statC
during damping capillary oscillations at the same parame-

ters as in Fig. 1, except (1) ‘n%)‘/Rem%) =07 at 1, =
1366 x 104, 2)nfg)| /Reeff) = 1at,=1x 10~*s,and

) nff|/Reoff) = 1.3 atr,=0.791 x 107*s.

Within the time T,, the order of dipoles (equilib-
rium structure of the near-surface layer of the liquid)
is restored. Then the described process resumes.

ACOUSTIC AND ELECTROMAGNETIC
RADIATION OF AN OSCILLATING
CHARGED DROPLET

When discussing the radiation of an oscillating
droplet, it should be noted that acoustic radiation can
change only with a change in the coefficient of surface
tension of the liquid, approximately proportional to

Jo. As for electromagnetic radiation, the issue is
somewhat more complex. The droplet is charged, and
the liquid (at least in the near-surface layer) consists of
polar molecules creating an electric field around
them. When the order in the orientation of molecules
is disrupted, the electrostatic field created by them
disappears, leading to the generation of an electro-
magnetic pulse. The question arises about estimating the
intensity of such radiation at least in order of magnitude.
The only thing that can be said about such radiation is
that it should be quadrupolar because the parallel orien-
tation of water dipoles on its surface is due to the interac-
tion of water quadrupoles with dipoles [3], and its fre-

quency should be on the order of T;l .

The intensity of regular electromagnetic radiation
due to oscillations of a charged droplet has long been
calculated [18, 19].
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Fig. 9. Dependences of the amplitude M (?) of the distur-
bance of the equilibrium shape of a charged droplet with a
radius of R=1.283 mm and a charge of Q =7 X 10~ statC
on the characteristic relaxation time T, at the same param-
eters as in Fig. 7, except = (1) 0, (2) 0.05, (3) 0.2, (4) 0.4,
(5) 0.6, (6) 0.8, (7) 1, and (&) 1.2 ms.

CONCLUSIONS

The coefficient of dynamic surface tension may
depend on the frequency of external influences on the
water surface. It was found that the orientation of
dipoles in the near-surface layer of the liquid weakly

responds to force impacts with frequencies ® < T,

r oo
but when subjected to a frequency m ~ Tr_l, the
ordered orientation of water dipoles in the near-sur-
face layer is disrupted, leading to an increase in the
coefficient ofd surface tension of the liquid.
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