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Abstract—The peculiarities of a liquid viscosity effect on the liquid electrodispersion from the end of capillary
through which the liquid is supplied to the discharged system or during the disintegration of a strongly
charged drop were studied in an analytical way. It was shown that, upon the electrodispersion of the electro-
conducting liquid with a low-viscosity, the latter emitted highly charged droplets, initially unstable with
respect to their own charge, breaking up into hundreds of even smaller and strongly charged ones, with a
corona discharge being ignited around them. As a result, a fan-shaped glow appeared at the top of the liquid
meniscus at the end of the capillary or at the top of the decaying charged drop. For the viscous electrocon-
ducting liquid, the series of successive disintegrations of the charged daughter droplets were immediately
interrupted owing to viscosity damping effect of self-charge-resistant droplets, and no corona discharge glow
was formed.
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INTRODUCTION
Capillary electrodispersion in liquids is extensively

used in science and engineering for the creation of
ion-cluster-drop beams in liquid mass-spectrometry
(to analyze heavy-volatile and organic substances). It
is used as well in liquid-metal sources of ions, in liq-
uid-metal epitaxy and lithography, for obtainment
refractory powders, for reactive cosmic engineering,
for fast scattering of dense aerodispersive systems, on
creation of monodisperse drop flows in thermonu-
clear synthesis, in drop-jet print, macroparticle accel-
erators, for insecticides spraying, fuel-lubrication
materials, lacquers, and paints. In addition, the phe-
nomenon of the charged drops' dispersion in the exter-
nal electric fields is used to interpret the geophysical
phenomena, such as Saint Elmo’s fire, waterspout
lights, initiations of the lightning discharge and its
gathering charges from separate clouds’ drops to
maintain its own existence. In particular, the charged
drops’ oscillations in the external electric fields induce
radio radiation from the thunderstorm clouds [1].

Over the past dozens of years, attempts have con-
stantly been made to develop classification of the
observed modes of the electrodispersed liquid both on
experimental [2–6] and theoretical bases [7]. By the
present time, a few tens of modes were defined (and
their number is still increasing), since the electrodis-
persion phenomenology varies during the change in

any physicochemical property of the dispersed liquid,
upon the change of the working liquid, or the change
in the parameters of the device and the external envi-
ronment. In this connection, it seems useful to inves-
tigate the peculiarities of the drops' formation at reali-
zation of the electrostatic instability.

At the beginning of the 20th century, at the onset of
the gas discharges study, J. Zeleny carried out the first
experiments [8–10] of examining the electric dis-
charges from the liquid meniscus at the vertex of cap-
illary through which the liquid was supplied to the dis-
charge system. In a few years, the experiments of
Zeleny on the electric charges from the liquid elec-
trode were repeated by English [11] with the use of a
more perfect equipment and having a more complete
knowledge on the gas discharges. On the whole, he
supported the conclusions of Zeleny.

In [8–11], the electric discharge from the liquid
meniscus was accompanied by the emission of
strongly (exceeding the Rayleigh limit [12, 13])
charged drops, around which the corona discharge
ignited and the glow appeared. The glowing drops
formed a luminous fan-region (if observed from side-
ways) round the meniscus top. That is why Zeleny
referred to this phenomenon as a “fan” glowing. Later,
in other experiments (performed in connection with
Saint Elmo’s fire study), the fan glow was also
observed in the region of the strongly charged drops
604
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Fig. 1. Device scheme for electrodispersion of liquid: (a) General view of meniscus of a low viscous liquid at the capillary vertex,
(b) separating a droplet in the external electrostatic field.
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sunken upon weakly conducting objects [14, 15]. It
was found that the phenomenology of the glow forma-
tion upon the liquid meniscus discharge depends on
the liquid viscosity. Thus, it generates only at the elec-
trodispersion of low viscous liquids (spiritus or water),
starting directly from the meniscus vertex at the end of
capillary, through which liquid is supplied to the dis-
charge system. It can appear as well at the top of a
strongly charged drop, at a distance of an order of
diameter of the emitted daughter droplet [8, 10]. The
fan-glow is formed directly at the meniscus vicinity (a
drop) due to the electrostatic disintegration into sev-
eral hundred daughter droplets of strongly charged
(exceeding the Rayleigh limit [12, 13]) daughter drop-
lets that, in turn, also disintegrate, and due to ignition
of corona discharge glowing around them. For the vis-
cous liquids, a thin jet of liquid is thrown from the
meniscus vertex, which disintegrates into separate
strongly charged droplets that, in turn, are divided into
parts of comparable sizes, stable to the electrostatic
disintegration (because of the strong damping effect of
the liquid viscosity) [16], and no fan glowing appears.
The length of the jet is determined by viscosity of the
liquid. For instance, that for glycerol is an order of tens
of the capillary diameters [9].

In connection with the aforementioned by the
example of the schematic device for the liquid electro-
dispersion (Fig. 1a), let us discuss the regularities of
drop formation of light viscous and extremely viscous
liquids.

PROBLEM FORMULATION

The electroconducting incompressible liquid with
mass density ρ and coefficient of kinematic viscosity v
is supplied to the discharge system through R capillary
radius under P pressure. The length of capillary,
together with the liquid meniscus at its vertex, is L.
The volume liquid consumption is χ. The absolute
temperature of the system T is accepted as constant.
Between the capillary and counter-electrode the con-
stant difference of potentials ϕ is maintained so that
the electrostatic field intensity between the f lat elec-
SURFACE ENGINEERING AND APPLIED ELECTROCH
trodes is  and the liquid meniscus turns out
to be superficially charged. Let us accept that the elec-
tric field intensity in the vicinity of the meniscus vertex
(at the point of the droplet separation) will be

.

The droplet separates from the meniscus under the
electrostatic field, which acts from the side of the
external electrostatic field and the field of the menis-
cus charge, when the charge of the droplet is sepa-
rated. The calculation scheme of the droplet separa-
tion regularities from the liquid meniscus is described
in detail in [17, p. 53, problem 1]. The surface tension
force (the Laplace force) in radius constriction keeps
the drop (Fig. 1b) [18]. The calculations [13] show that
the separated drop charge is higher than the critical
one according to Rayleigh, and it disintegrates during
the time of the period of the main mode oscillations of
the thrown droplet, throwing about a hundred strongly
charged daughter droplets smaller by two orders,
which, in turn, disintegrate in accordance with the
same law. As a result, a polydisperse in sizes and
charges f lare of electrodispersion, is formed (Fig. 2)
for devices used for dispersion of paintwork materials,
chemical poisons, and fuels. During disintegration,
the strongly charged drop loses  of its charge
and approximately 0.05% of its mass and becomes sta-
ble with respect to its own charge [19]. However,
because all emitted droplets pass similar accelerating
difference of potentials and obtain similar energy,
small droplets will have a higher rate compared to the
large ones with the lesser charge than Rayleigh’s.
Therefore, the strongly charged small droplets will
catch up the large droplets, whose charge is less than
critical according to Rayleigh’s, and they will addi-
tionally charge them and lead them to a new
Rayleigh’s disintegration (Fig. 3).

In a stationary mode of work of the device for the
liquid electrodispersion, the amount of the liquid that
flows into the meniscus per unit of time χ must equal
the liquid consumption for the electrodispersion

, where  is the droplet radius and N is the
number of droplets emitted from the meniscus vertex
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Fig. 2. General scheme of the device for electrodispersion
used in practice.

ϕ

Fig. 3. Scheme of additional charging of slow big drops by
small, fast, and strongly charged.

Fig. 4. General view of meniscus of a high viscous liquid at
the end of capillary, separating a jet in the external electro-
static field.
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per a unit of time. Under these conditions, the charac-
teristic time between the separation of two sequential
droplets Δτ0 will be determined as a ratio of the time
unit to N. From a strict theoretical viewpoint, this time
must be much more than a unit divided into the incre-
ment of instability development in γ constriction,
which binds meniscus with the separating droplet.
Here, .

To correctly comprehend the viscosity effect on the
regularities of the liquid dispersion, we must take into
account that, at a constant value of the liquid kine-
matic viscosity coefficient, it can manifest itself both
as extremely and lightly viscous, depending on geo-
metric sizes of the region it occupies. Let us consider
that, during the motion of the liquid along the capil-
lary, the viscosity effect (per friction force balance on
the capillary and the f low inertia force) will depend on
capillary radius R and liquid density ρ: for a thin cap-
illary, the friction force will exceed the inertion force,
while it is just the opposite for a thick capillary. There-
fore, let us dedimensionalize the coefficient of the liq-
uid kinematic viscosity v to R ρ and the coefficient of
liquid surface tension σ. To the same dedimensional-
izing (in the SGSE system of physical units), all of the
rest physical values will be subjected, which will be
met in the problem. The problem dimensionless vis-
cosity is as follows: 

As is seen, the value of the dimensionless viscosity
depends on v, R, ρ, and σ. For the light viscous liquid,
the drop separation occurs directly from the meniscus
vertex (Fig. 1b). The droplet separates from the menis-
cus vertex, where the field intensity is maximum

, and it is connected by the constriction (in
the form of cateonoid) with the meniscus [13, 18]. The
constriction breaks at its most narrow place with the
radius , where  < r [18].

For the viscous liquids, all other things being equal,
the unsteady development increment in the constric-
tion will be substantially smaller, and the instability
development time, respectively, greater [20, 21]. As to
the liquid, it will keep on f lowing, and a protrusion
will form at the meniscus vertex, behind which the 2r
thick jet will come out of the meniscus under the effect
of the internal pressure in the liquid and due to the
external electrostatic field. The separation of the drop-
let will occur from the vertex of the jet, where the elec-
tric field intensity will increase compared to 3E0 due to
a charge induced by the 3E0 field at the jet vertex (the
longer the jet, the higher the induced charge value).
The vertex of the jet will be separated under the exter-
nal electrostatic field with the charge on it due to the
development of capillary waves instability in the
charged jet, as is schematically shown in Fig. 4.
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Thus, the effect of the liquid viscosity per an incre-
ment value of the axisymmetric jet instability must be
considered. In other words, the problem is to be solved
on the instability of the charged axisymmetric jet of
the viscous incompressible liquid.
LIED ELECTROCHEMISTRY  Vol. 58  No. 6  2022
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PROBLEM DEFINITION
A continuous cylindric jet of R radius of viscous

incompressible electroconducting liquid with density
ρ, coefficient of kinematic viscosity v, and coefficient
of surface tension σ moves along the symmetry axis at
a rate of .

We shall assume that the jet is maintained at a con-
stant electric potential Φ* and the electric charge is
distributed across its surface with a superficial charge
density χ0. Let us pass into the inertial system of coor-
dinates, which moves together with the jet at its rate

. In such a system of calculation, the field of rates of
the liquid f low in the jet  is determined by ther-
mal waves [22]. The capillary waves’ amplitude on the
jet surface will be a small value, on the order of magni-
tude of tens of shares of angstrom for any liquids: from
cryogenic to liquid metals. Indeed, in a liquid, there is
always a thermal (generated by the thermal motion of
its motion) amplitude capillary wave motion 
where κ is the Boltzmann constant and T is the abso-
lute temperature [22]. The surface charge density on
the jet disturbed by the capillary wave motion of the
thermal amplitude will be χ(ϕ, z, t).

The calculations will be performed using the cylin-
drical system of coordinates r, ϕ, z, whose ort  is ori-
ented along the symmetry axis of the jet (its surface is
not disturbed by the capillary wave motion).

The equation of the jet surface disturbed by the
capillary wave motion shall be written as follows:

We shall solve the problem on the stability of
axisymmetrical waves on the charged jet.

The mathematic formulation of the problem is as
follows:
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In Eq. (1), , , and  are the field of
rates components;  and P0 are the hydrody-
namic and atmospheric pressures;  and 
are the pressures of the electric field and the surface
tension forces; and  is the electric potential.

LINEARIZATION OF THE PROBLEM

We shall solve the formulated problem using the
dimensionless alternatives, in which R = ρ = σ = 1, in
the linear approximation according to .
Problem (1), if all of the previous physical values are
designated as earlier, will be written as follows:

(2)

In Eq. (2),    and  cor-
rections—induced by the capillary waves on the jet
surface—of the first order of smallness on small
parameter  to the electric potential,
hydrodynamic pressure, and pressures of the electric
and capillary forces, respectively.

Let us make an expansion in a small parameter of
the expressions for the Laplace pressure

 (where  is the ort of normal
to the jet surface) and the pressure of the electric field

 and, for the values of the first
order of smallness and  that enter into
(2), we shall obtain the following ratios:
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SCALARIZATION OF LINEAR PROBLEM
We shall solve the system of equations (2) and (3)

using the method of operator scalarization [23],
decomposing the fields of rates  for a sum of
three orthogonal vector fields using vector differential

operators :

(3)

In Eq. (3),  are the sought scalar functions;

 are the operators that are hermite conjugated to

operators .
Since the equilibrium form of the jet is axisymmet-

ric, to select  is convenient in the form of:

The components of the fields of rate  will be
expressed via the scalar functions :
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tem of scalar equations with respect to the sought
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Since , , and  describe small
deviations from the equilibrium state, then, to follow
their evolution in time, assume that their time depen-
dence is determined by the following exponent:

where S is the complex frequency in a general case.

DISPERSION EQUATION DERIVATION
We shall seek solutions of (4) and (5) in the cylin-

drical system of coordinates, which satisfy the above
conditions of restriction, in the following form:

(8)
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Fig. 5. Dependence of dimensionless multiplier G(k) on
dimensionless wave number k.

4

2

2 4 k

G
(k

)

(9)

In Eqs. (8)–(9),  is the wave number;
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tions of Bessel of the first and second type in [24]; С(i),
where i = 1, 2, 3, 4, and D are the coefficients of
expansions that depend on k.
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where  is the Diraque delta-function [25, p,
902]; it is simple to obtain connection with coeffi-
cients

C(4) and D:
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Substituting solutions of (8) with account for (9)
and (11) in the boundary conditions of (7) and using
the ratios of (10), we shall obtain the equation system
with respect to the unknown coefficients D and C(i),
(i = 1, 2, 3):
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The dashes above the Bessel functions denote the
derivatives on the argument, which can be expressed
via the Bessel functions of the same and neighboring
orders.

The system of uniform linear equations (12) has a
nontrivial solution if its determinator is equal to zero

, where the elements aij are determined by
the following ratios:

(13)

Revealing the determinator of the fourth order with
the elements (13), we shall obtain the dispersion equa-
tion, which connects the complex frequencies s of
axisymmetric waves on the jet surface with a wave
number k:

(14)

The graphs of functions G(k), H(k), and ω0(k) are
shown in Figs. 5–7.

In the absence of the electric charge on the jet (w = 0),
this equation coincides with the dispersion equation
for the uncharged jet of a viscous incompressible liq-
uid [21, p. 631].

For the ideal liquid (v = 0), the term of equation (14)
proportional to viscosity is out, and equation (14) is
simplified:

and its solutions are written as follows:

(15)

When  is negative, solutions (15) describe the
frequencies of the capillary waves that run along the
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Fig. 6. Dependence of dimensionless multiplier H(k) on
dimensionless wave number k.
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Fig. 7. Dependence on dimensionless wave number k of
dimensionless oscillation frequency of ideal liquid ω0(k)
calculated at w = 1; 2; 3; 4. Various thickness curves are
located from the top downwards with increase in charge
parameter w.
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Fig. 8. Dependences on dimensionless increment of
axisymmetric waves on the jet of a low viscous liquid γ(k)
on dimensionless wave number k calculated at w = 1 and
various values of dimensionless coefficient of kinematic
viscosity v = 0.125; 0.2; 0.3. Various thickness curves are
located from top downwards with increase in viscosity.
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jet. If , then (15) determine their increment

of the amplitude increasing γ (at ) and
their decrement decreasing of amplitude η (at

).
In the presence of viscosity in a liquid, its damping

effect decreases the frequencies of the capillary waves
or their increments and increases the decrement.

Let us consider the case of a low-viscous liquid,
when condition l @ k is performed (note that

, which means that ) in this
case; then, for the long waves on the jet, whose length
is much larger than its radius (k ! 1), the ratios of [21,
p. 636] are fulfilled:

and equation (14) takes the form of

(15a)

and its solutions:

(16)

The graphs of dependences of dimensionless incre-
ments of instability of capillary waves on the jet on
dimensionless wave number for various small values of
the coefficient of kinematic viscosity of a liquid (0.125;
0.2; 0.3) calculated using (16) are shown in Fig. 8 (the
curves go from top downward with viscosity increase).
The value of the coefficient of the kinematic viscosity
v = 0.125 is relevant to water. It is easy to see that the
increase in viscosity reduces the increments and shifts
the position of a maximum increment towards longer
waves.

At a high viscosity of the liquid, when the damping
effect decreases the frequency of the periodic motions
of the liquid and their increments of instability and
increase in decrements, when  (or

 at v increase), equation (14) reduces to

(17)

The graphs of dependences of a dimensionless
increment of instability of the capillary waves on the
jet on the dimensionless wave number for various high
values of the kinematic viscosity of a liquid (100; 150;
200) calculated using (17) are shown in Fig. 9 (the
curves go from top downwards with the viscosity
increase). The value of the coefficient of the kinematic
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SURFACE ENGINEERING AND APP
viscosity v = 100 is relevant to glycerol. It is easy to see
that the viscosity increase decreases the increments.
The position of the maximum increment in the indi-
cated region of the values of coefficients of kinematic
viscosity almost remains unchanged.
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Fig. 9. Dependence of dimensionless increment of
axisymmetric waves on the jet of high viscous liquid γ(k)
on the dimensionless wavenumber k, calculated at w = 1
and various values of the dimensionless coefficient of kine-
matic viscosity v = 100; 150; 200. Various thickness curves
are located from the top downwards with increase in vis-
cosity.
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Comparison of Figs. 8 and 9 shows that the change
in the liquid viscosity approximately by a thousand
times (just like for transition from water to glycerol)
also leads to a decrease in dimensionless increment of
instability by approximately a thousand times, which
explains the difference in phenomenology of the elec-
trostatic decay of low- and high viscous liquid.

SHORT AND CONTINUOUS LONG JETS
It is noteworthy that calculations performed in this

work were meant for the jets of continuous length,
whereas real jets have a finite length. If a jet of a high
viscous liquid is more or less long and it can be mod-
eled as continuous long (neglecting the edge effects),
then the jet of a low viscous liquid prior to the disinte-
gration passes a negligibly small distance and it cannot
be considered as continuous long. However, it should
be taken into account that there are several model
approaches in problems concerning jets. In one devel-
oped by Rayleigh [26] at the end of the 19th century,
later improved by Basset [27] and Weber [28], a con-
tinuous long jet is described with capillary waves run-
ning along it with a real wave number, and their fre-
quencies in a general case are complex, and occur-
rence of the imaginary part of the frequency means the
wave instability. The greater part of the theoretic stud-
ies of the jet instabilities is performed in the framework
of this very approach. In the second approach, which
appeared in the middle of the 20th century [29–30],
the wave number is considered to be complex and fre-
quency as real. As a matter of fact, the second
approach was closer to reality, for real jets are f lowing
from the capillary (pipe) and decay at the finite dis-
tance from the end of the capillary, when the wave
number becomes imaginary.

It is noteworthy that all experiments are carried out
using the jet with a finite length, and the majority of
SURFACE ENGINEERING AND APPLIED ELECTROCH
theoretical researches are performed for the continu-
ous long jets (see, e.g., reviews [31, 32]). The results of
these experimental and theoretical studies performed
using different approaches can be compared with each
other, and this comparison is fruitful. The reason, as
shown in [30], is that the dispersion equations
obtained above in particular approaches are formed
from each other by a simple linear transformation.

CONCLUSIONS

It was shown that the electrodispersion of low- and
high-viscous electroconducting liquids is realized
using different physical scenarios, although the imi-
tated drops in both cases carry a charge, more than
critical in a sense of realization of the electrostatic
instability. For the low viscous liquids, the separated
drop throws two hundred daughter smaller by two
orders strongly charged droplets, each of which, in
turn, is unstable with respect to its own charge. Owing
to the presence of high intensity of the electrostatic
field of the intrinsic charge, the corona discharge
ignites near each of the droplets. As a result, at the
drop vertex of a low-viscous liquid, a fan glow appears.

By another scenario, the electrostatic instability of
a high-viscous liquid of a charged drop is realized:
because of the damping effect of a liquid viscosity,
such a drop separates a finite number of daughter
droplets, each of which disintegrates into two daughter
droplets that are steady to their own charge and the fan
glow does not occur. Hence, the decay phenomenol-
ogy of the low- and high-viscous liquids is different.

All the aforementioned relates to the electrocon-
ducting liquid, when the relaxation maxwell time of
the electric charge is far less than the characteristic
time of separation of the emitted drop from the menis-
cus. For the low conducting liquids, the emitted drops
will carry a charge less than critical to realize the elec-
trostatic instability (because of low electroconductiv-
ity), and the fan glow at the meniscus vertex does not
occur even for the low viscous liquids.
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