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Abstract—A highly sensitive method is proposed for the simultaneous determination of dopamine and tyro-
sine using a Ti3C2 nano layer modified screen printed electrode. The electro-oxidation of dopamine at the
surface of the modified electrode was studied using cyclic voltammetry, chrono-amperometry, and differen-
tial pulse voltammetry. Under the optimized conditions, the differential pulse voltammetric peak current of
dopamine increased linearly with dopamine concentrations in the ranges of 0.5–600.0 μM, and the detection
limit of 0.15 μM was obtained for dopamine.
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INTRODUCTION

Dopamine (DA) and tyrosine (Tyr) are well known
as an extracellular chemical messenger called neu-
rotransmitter (NTM) and an essential amino acid in
biological systems, respectively. DA plays an import-
ant physiological role in the functioning of central
nervous, renal, hormonal, and cardiovascular systems
as an NTM [1–4], and it is an immune regulator under
septic conditions [5]. The loss of an NTM may result
in some serious diseases, such as Parkinson’s disease
and schizophrenia [6, 7].

Tyr is a vital constituent of proteins, which is indis-
pensable in human nutrition for establishing and
maintaining a positive nitrogen balance [8]. Addition
of Tyr to dietary and food products or pharmaceuticals
is sometimes necessary due to its scarcity in some food
materials. Trace-levels of Tyr can modulate and con-
trol acetylcholine receptors metabolic stability in mus-
cle cells [9]. A high concentration of Tyr in a culture
medium results in an increased sister chromatid
exchange, while the absence of Tyr could lead to the
impairing of protein synthesis, thus it causes develop-
ment of imbalance in biological systems. In pharma-
ceutical industry, Tyr can be converted to DA using
enzymatic reaction. To control the reaction progress,
a sensor may be needed to obtain the necessary

amounts of the end product (DA) and of the substrate
(Tyr).

Thus, various commonly usable analytical meth-
ods for DA and Tyr have been developed. Some exam-
ples of these methods are the ultrahigh performance
liquid chromatography tandem mass spectrometry
[10], chemiluminescence [11], spectroscopy [12], and
spectrofluorimetry [13].

All these techniques, however, require a compress-
ing system, temperature controlling systems, separa-
tion systems, and other spectro-photometric or elec-
tric detection systems. The electrochemical methods
have received special attention due to their unique
qualities such as a simple pretreatment procedure, less
time-consumption, better selectivity, good sensitivity,
and low cost [14–21]. In this sense, electrochemical
detection of DA and Tyr has received much interest
due to their importance for the central nervous system.
However, a significant problem for DA and Tyr deter-
mination is the fouling effect due to the accumulation
of reaction products on the electrode surface [22].
Thus, a promising approach to overcome problems
arising from fouling of the biological substrate is the
use of chemically modified electrodes [23–30].
Recently, MXenes (of the formula Mn + 1XnTx, where
M is a transition metal, X is C and/or N, and Tx
denotes –OH, –F, and =O surface groups), a novel
13
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family of two-dimensional metal carbides, have been
used which can be produced by the selective etching of
the A-group (generally group IIIA and IVA elements)
layers from the MAX phases [31–33]. MXenes have
already demonstrated their potential as promising
electrode materials for Li-ion batteries [34], superca-
pacitors [35], and sensors [36, 37] because of their
high electrical conductivity, a large surface area, a lay-
ered structure, remarkable chemical stability, and
environmentally friendly characteristics [38, 39].

A screen-printed electrode (SPE) is an attractive
alternative choice due to its miniaturized size, low
cost, easiness in fabrication, rapid responses, and dis-
posability, which makes it especially suitable for an
on-site analysis [40–45].

In this study, a highly sensitive electrochemical
method for the simultaneous determination of DA and
Tyr using Ti3C2 modified SPE (Ti3C2/SPE) is
reported. The proposed method is simple, sensitive,
easy, and economical for a routine analysis. The
authors consider that the proposed method would be a
potential step forward in the simul-taneous electrochem-
ical determination of DA and Tyr in biological fluids.

EXPERIMENTAL
Apparatus and Chemicals

The electrochemical measurements were per-
formed with an Autolab potentiostat/galvanostat
(PGSTAT 302N, Eco Chemie, the Netherlands). The
experimental conditions were controlled with the
General Purpose Electrochemical System software.
The SPE used (Drop Sens, Oviedo, Spain) consisted
of three main parts: a graphite counter electrode, a sil-
ver pseudo-reference electrode, and a graphite work-
ing electrode.

All solutions were freshly prepared with double dis-
tilled water. DA, Tyr, and all of the other reagents were
of the analytical grade and were used as obtained from
Merck (Darmstadt, Germany). The buffer solutions
(PBSs) were prepared from orthophosphoric acid and
its salts in the pH range of 2.0–9.0.

Synthesis of Ti3C2 Nano Layers
In the first step, titanium powder, aluminum pow-

der, and graphite powder with molar ratios of 3, 1.1,
and 1.9 were injected into a pellet mill over a period of
360 min, at 600 rpm to synthesize the nano layers.
MXene layers were inserted, and MXene was prepared
in the powder form with Ti3AlC2 formula.

Next, 60 mL of 40% purity hydrogen fluoride solu-
tion was added to 0.2 g of Ti3AlC2 powder and heated
at 25°C for 20 h. Afterwards, to prepare MXene with
Ti3C2 formula, the prepared suspension was centri-
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fuged and washed with deionized water, and the pre-
cipitate was dried at 55°C [46].

Preparation of Modified Electrode

To prepare Ti3C2/SPE a bare SPE was coated with
Ti3C2 nano layers as follows: 1 mg of Ti3C2 nano layers
was dispersed in 1 mL distilled water and ultrasoni-
cated for about 30 min. Next, 5 μL of this suspension
was coated on the surface of the SPE and dried at
room temperature.

Preparation of Real Samples

One milliliter of DA from an ampoule was diluted
to get 10 mL with 0.1 M PBS (pH 7.0); then, different
volumes of the diluted solution were transferred into
each of a series of 25 mL volumetric f lasks and diluted
to the mark with PBS. The DA content was analyzed
by the proposed method using the standard addition
method.

Urine samples were stored in a refrigerator imme-
diately after collection. Ten milliliters of the samples
were centrifuged for 15 min at 2000 rpm. The superna-
tant was filtered out by using a 0.45 μm filter. Next,
different volumes of the solution were transferred into
a 25 mL volumetric f lask and diluted to the mark with
PBS (pH 7.0). The diluted urine samples were spiked
with different amounts of DA and Tyr. The DA and
Tyr contents were analyzed by the proposed method
by using the standard addition method.

RESULTS AND DISCUSSION

Electrochemical Behavior of DA on Ti3C2/SPE

Due to the fact that the electrochemical behavior of
DA is pH-dependent, optimizing the pH of the solu-
tion is necessary for obtaining the best results. Hence,
the evaluations were performed at different pH values
ranging from 2.0–9.0, and the results showed that the
best results during the electro-oxidation of DA at the
surface of the modified electrodes could be obtained at
pH 7.0.

Figure 1 illustrates the cyclic voltammograms (CV)
of a 700.0 μM DA using the Ti3C2/SPE (curve a) and
an unmodified SPE (curve b). As it can be easily
noticed, the maximum oxidation of DA occurs at
210 mV in the case of Ti3C2/SPE, which is around 60
mV more negative than that observed in the case of the
unmodified SPE. The peak currents are also much
higher in the case of the analyses performed with
Ti3C2/SPE, thus indicating that the modification of
the SPEs with Ti3C2 nano layers greatly enhances the
LIED ELECTROCHEMISTRY  Vol. 58  No. 1  2022
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Fig. 1. CVs of: (a) Ti3C2 nano layers/SPE, and (b) unmod-
ified SPE in the presence of 700.0 μM of DA at pH 7.0.
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Fig. 2. CVs of Ti3C2/SPE in 0.1 M PBS (pH 7.0) contain-
ing 50.0 μM of DA at various scan rates. Numbers 1–7
correspond to 10, 30, 50, 100, 300, 500, and 700 mV s–1.
Inset: Variations of anodic and cathodic peak currents vs.
square root of scan rate.
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electrochemical behaviour of the electrode for the
analysis of DA.

Effect of Scan Rate
Increasing the scan rate leads to enhanced oxida-

tion peak currents according to the obtained results
from the study of the effect of potential scan rates on
the oxidation currents of DA (Fig. 2). In addition,
there is a linear relationship between Ip and the square
root of the potential scan rate (v1/2), which demon-
SURFACE ENGINEERING AND APPLIED ELECTROCH
strates that the oxidation procedure of the analyst is in
control of diffusion [47].

The oxidation process of DA is related to the con-
version of the catechol group in DA into o-quinone.
The electrochemical oxidization process of DA fol-
lows the two-electron/two-proton mechanism. The
reaction mechanism of DA on the modified electrode
surface is in Scheme 1.
Scheme 1. Possible reaction of DA on the electrode.
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Chronoamperometric Measurements vs. t−1/2 plots based on the experimental was found for dif-
Chronoamperometric measurements of DA at
Ti3C2/SPE were carried out by setting the working
electrode potential at 0.25 V for the various concentra-
tions of DA in PBS (pH 7.0) (Fig. 3). For chrono-
amperometric analysis of electroactive materials
under mass transfer limited conditions, the Cottrell
equation was used as borrowed from [47]:

(1)

where D is the diffusion coefficient (cm2 s–1), and Cb is
the bulk concentration (mol cm–3). The best fitting of I

− −= π1 2 1 2 1 2
bFAD ,I n C t
ferent DA samples, and the slopes of the straight lines
were next plotted against the concentrations of DA.
Using the resulting slope and the Cottrell equation, the
mean value of D was found to be 2.9 × 10–5 cm2/s.

Calibration Curve

Based on the resulting peak currents of DA when
using Ti3C2 nano layers/SPE, the quantitative analysis
of DA was done in water solutions. The Ti3C2/SPE, as
working electrode, was used in a range of DA concen-
trations in 0.1 M PBS via differential pulse voltamme-
EMISTRY  Vol. 58  No. 1  2022
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Fig. 3. Chronoamperograms obtained at Ti3C2/SPE in
0.1 M PBS (pH 7.0) for different concentrations of DA.
Numbers 1–5 correspond to 0.1, 0.25, 0.5, 1.0, and
1.5 mM of DA. Insets: (a) Plots of I vs. t −1/2 obtained from
chronoamperograms 1–5 and (b) Plot of the slope of the
straight lines against DA concentrations.
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Fig. 4. DPVs of Ti3C2/SPE in 0.1M (pH 7.0) containing
different concentrations of DA Numbers 1–9 correspond
to 0.5, 5.0, 20.0, 50.0, 70.0, 100.0, 200.0, 400.0, and
600.0 μM. Inset: Plot of the electrocatalytic peak current as a
function of DA concentrations in a range of 0.5–600.0 μM.
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try (DPV) due to the advantages of DPV including the
improved sensitivity and better performance in analyt-
ical applications (Fig. 4). According to the results,
there is a linear relationship between the peak currents
and concentrations of DA within the concentration
range of 0.5–600.0 μM, with the correlation coeffi-
cient of 0.9992. The detection limit was obtained to be
0.15 μM. Table 1 presents a comparison of Ti3C2/SPE
analytical performance of this work with other electro-
chemical sensors involved in the DA analysis studied
elsewhere [48–51]. As can be seen, the obtained here
results are comparable with those reported by others.
SURFACE ENGINEERING AND APP

Table 1. Comparison of the efficiency of some modified elec

Electrode Modifier Met

Glassy carbon MoS2/poly(3,4-ethylenedioxyth-
iophene)

DPV

Carbon fiber Reduced GO DPV

Glassy carbon l-Tyr covalently
functionalized GO
composite

DPV

Gold Reduced GO-Mn3O4 /Nafion-Au Ampero

Screen printed Ti3C2 nano layers DPV
Simultaneous Determination of Dopamine and Tyrosine

To the best of the authors’ knowledge, there is on
the modified Ti3C2/SPE for the simultaneous deter-
mination of DA and Tyr, and this is the first report on
this theme.

The electrochemical determination of DA using
bare electrodes suffers from the interference by Tyr,
because the oxidation potential for Tyr is fairly close to
that of DA. The determination of those two com-
pounds was performed by simultaneously changing
the concentrations of DA and Tyr, and recording the
LIED ELECTROCHEMISTRY  Vol. 58  No. 1  2022

trodes used in the determination of DA

hod Linear range, μM Detection limit, μM Ref.

80.0–1.0 0.52  [48]

224.82–1.5 0.77  [49]

500.0–1.0 0.28  [50]

metry 1450.0–1.0 0.25  [51]

600.0–0.5 0.15 This work
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Fig. 5. DPVs of Ti3C2/SPE in 0.1M PBS (pH 7.0) contain-
ing different concentrations of DA and Tyr: (from inner to
outer) mixed solutions of 5.0 + 0.5, 20.0 + 3.0, 50.0 + 7.5,
100.0 + 40.0, 200.0 + 125.0, and 400.0 + 275.0, respec-
tively, in which the first value is concentration of DA in
micromolar, and the second value is concentration of Tyr
in micro molar. (a) Plot of peak currents as a function of
DA concentrations, and (b) plot of the peak currents as a
function of Tyr concentrations.
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DPV data (Fig. 5). The voltammetric results showed
well-defined anodic peaks at potentials of 200 and
700 mV, corresponding to the oxidation of DA and
Tyr, respectively, indicating that the simultaneous
determination of these compounds is feasible at the
Ti3C2 nano layers/SPE as shown in Fig. 5. The sensitiv-
ity of the modified electrode towards the oxidation of DA
was found to be 0.0458 μA μM–1. This is very close to the
SURFACE ENGINEERING AND APPLIED ELECTROCH

Table 2. Determination of DA and Tyr in real samples. All co

Sample
Spiked Found

DA Tyr DA T

DA
tablet

0 0 5.0 –
1.0 5.0 6.1 4.
2.0 7.0 6.8 7.
3.0 9.0 8.3 8.
4.0 11.0 8.9 11.

Urine 0 0 – –
5.0 4.0 4.9 4.
7.5 6.0 7.6 5.

10.0 8.0 10.4 7.
12.0 10.0 11.9 10.
value obtained in the absence of Tyr (0.046 μA μM–1,
see Fig. 4), indicating that the oxidation processes of
these compounds at Ti3C2/SPE are independent, and,
therefore, the simultaneous determination of their
mixtures is possible without significant interferences.

Analysis of Real Samples

To assess the applicability of the application of the
modified electrode for the determination of DA and
Tyr in real samples, the described method was applied
in DA ampoule and urine samples. For the purpose of
the analysis the standard addition method was used,
and the results are given in Table 2. The observed
recoveries of DA and Tyr were satisfactory, and the
reproducibility of the results was demonstrated based
on the mean relative standard deviation (R.S.D.).

CONCLUSIONS

This work reports the construction of Ti3C2/SPE
and its application in the simultaneous determination
of DA and Tyr. The modified electrode exhibited
excellent electrocatalytic activity towards the detec-
tion of DA and Tyr co-oxidized at the electrode with a
wide potential difference. Thus, the electrode could
electrochemically discriminate the sensing of DA and
Tyr. To sum up, simultaneous as well as independent
electrochemical determinations of DA and Tyr are
possible without electrochemical interference from
each other.
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ncentrations are in μM (n = 5)

Recovery, % R.S.D, %

yr DA Tyr DA Tyr

– – 3.0 –
9 101.7 98.0 2.4 3.5
2 97.1 102.9 1.9 2.0
8 103.7 97.8 2.7 2.4
1 98.9 100.9 2.3 1.8

– – – –
1 98.0 102.5 1.7 3.3
8 101.3 96.7 2.6 2.4
8 104.0 97.5 2.0 3.3
1 99.2 101.0 3.1 1.9
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