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Abstract—The use of dimensional analysis to solve some problems of hydrodynamics associated with convec-
tive transport of a liquid medium is presented. In particular, this forms the basis of deriving equations of con-
tinuity, thermal conduction, diffusion, and motion of ideal (Euler) and viscous f luids (Navier–Stokes), with
some complements from the field of electrohydrodynamics. In addition, the problem of the presence of two
forces of viscous friction is solved, and the problems of sliding and deformation (in compression–extension
in a compressible f luid). Formulas for these forces are derived.
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INTRODUCTION

Problems of hydrodynamics and heat transfer can
be complicated by electric fields (electrohydrodynamics
(EHD)), include the notion of convective transfer [1]
when a physical quantity exhibits changes over time at
a point in space point (locally) and, alongside this, due
to liquid motion. The total change in the quantity
under study (let us set it as F(t, x(t), y(t), z(t)) per unit
time is determined by the total derivative of the com-
posite (scalar or vector) function in time [2]:

(1)

where  is the field of velocities whose com-
ponents are equal to the time derivatives of the coordi-
nates. Establishing an equation for the functions
F(t, x(t), y(t), z(t)) based on the physical grounds and
its implicit right-hand member remains a problem.
Some cases have been presented in which this problem
has been solved comparatively simply, using the
dimensional method. This derivation of the basic
hydrodynamic equations of liquid continuity, convec-
tive heat conduction, diffusion, and Navier–Stokes
viscous liquid motion is a particularly significant, as it
entails some serious difficulties associated with two
viscosity forces [2]. We focus our attention on these
equations, pre-formulating the problem and the pro-
posed approach briefly.

STATEMENT OF PROBLEMS AND ESSENCE 
OF THEIR SOLUTION

The questions touched upon are not only of meth-
odological interest but of scientific and educational
interest as well, as has been demonstrated many times
by the theory of similarity and dimension [3] in the
solution of various complex classical problems of f luid
mechanics [4–6]. The method of dimension and sim-
ilarity is used to solve many physical questions and
problems [7–10]. In particular, an advanced treatment
of the aspects of dimensional analysis and simulation
have been conducted [7] including a wide range of
examples for different domains of science and tech-
nology. Dimensional analysis is a basis for the com-
parison of systems on different physical scales [8] with
the intention of obtaining a key concept for natural
phenomena that are too vast to be reproduced under
laboratory conditions. It is known that a central posi-
tion in the theory of dimension and similarity is occu-
pied by the π-theorem considered in work [9] with a
focus on the problems typical for heat and mass trans-
fer in solid bodies as well as in laminar and turbulent
flows of f luids and gases. The elaborate treatment of
some aspects of dimensional analysis and simulation is
undertaken in [10] with many examples concerning
various transfer processes. The dimensional analysis is
used for the physical representation of the hydrody-
namic resistance force sustained by a solid body when
it moves in a liquid, as well as for the explanation of the
regularities of the f low of a f luid through tubes and
heat and mass transfer in solid bodies. The study [11]
describes the methods and history of the development

( , ) ( , grad) ,

ydF F F x F F z
dt t x t y t z t

F FF F
t t

∂∂ ∂ ∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂= + ∇ = +
∂ ∂

 
v v

( ), ,x y z

v v v v
41



42 GROSU, BOLOGA
of this knowledge area, including physical and engi-
neering applications and considers the problems of
mechanical science, hydro- and electrodynamics,
thermodynamics, and quantum physics, explaining
such notions as viscosity and diffusion using specific
examples. A connecting link between the hydrody-
namic field of velocities  and the field of the sought–
for quantity F is the operator of differentiation with
respect to the nabla coordinates ∇:

thus, the sought-for right-hand member of (1) must
contain quantities that reflect the dimension of total
derivative (1), including this operator, i.e., the solu-
tion of equation (1) will be, implicitly,

(2)

where γ and р are the mass density and pressure; the
ellipsis implies that other independent variables are
also available, with allowance taken for the nature of
the problem, such as, for instance, the electric field
intensity  from the EHD region. If the right-hand
member of (2) is zero, than the quantity F is constant,
as in the case of the isentropic f luid f low [2]:

If this is not the case, a solution to the mathematical
problem possessing physical meaning corresponds to
each function f. Thus, the method of testing functions
can be applied, which can be picked out maintaining
the dimensions of the right-hand member of (2) in
correspondence with the left-hand member. The
parameter μ (dimensional and dimensionless) is writ-
ten for generality, being a corrective parameter, and it
is defined more accurately on the physical grounds in
the course of the dimensional analysis. Presenting
equation (2) according to the theory of dimensions
and similarity [3] in the form of power multipliers,
among others with respect to the “nabla” operator ∇,

(3)

and equating the powers at the left and right of last
equation (3) in view of (2), we obtain a set of equations
and, solving it, find an explicit right-hand member of
(2). The obtained results and possible products (sca-
lar, vector, etc.) are analyzed, and the conclusions
concerning the structure of the right-hand member of
equation (2) and its aspect in large are made.

The summary of the proposed method consists in
equations (2) and (3) as well as in the above men-
tioned. Let us consider some examples.
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1. Mass Conservation (Continuity) Equation
We search for an equation for the total derivative of

the mass density of a homogeneous liquid in the gen-
eral form (2):

(4)

assuming that the density does not depend on an
external electric or gravitational field (these fields are
absent). The problem is initially solved according to
general pattern (2), (3) being restricted for the right-
hand member of (4) to the variables within the brackets:

(5)

Setting the indexes of power in the left- and right-
hand members of this equality as equal, we get the fol-
lowing system:

(6)

This system is consistent, but it has an innumerable
number of solutions for k = 1. Consequently, we can
assume k = 1 in equalities (5), thus transforming sys-
tem (6) into an indefinite one, and then into a definite
one with an acceptable set of unknowns: l = m = 1;
n = 0, as only this set leads to the results reasonable in
terms of physics. For this set of variables the right-
hand member of the sought-for relationship (5) admits
two forms of products structurally matched in dimen-
sions:  or . The first form at μ = –1
completely satisfies our search resulting in the com-
monly known mass conservation law:

(7)

Hence, there automatically follows the continuity
equation for its most common standard form:

where

is the mass f lux. To be certain that (5) is in fact a con-
tinuity equation, it can be sufficiently integrated in
terms of the Gauss theorem:

the mass conservation law in a clear integral form. The
second method helps to test immediately the expres-
sion (  as a trial function making sure that it
satisfies all the problem demands. It is easily seen that
other solutions, say , fail to meet the require-
ments.
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2. Equation of Convective Heat Conduction
The equation of convective heat conduction is an

equation which bounds the variation in the tempera-
ture of a liquid volume unit in a time unit with the
fields of velocities  and temperature T in the vicinity
of a selected f luid particle. In the simplified version of
derivation the variation in the heat amount of the vol-
ume unit inside the particle due to the reasons of this
change (heat conduction) will be proportional to the
heat conduction coefficient λ (μ ≡ λ) and some func-
tion that contains the operator ∇, temperature T, rate

, and pressure p. At this, we consider the following
force fields as negligible:

(8)

where ср is the specific heat capacity at the constant
pressure, and the complete derivative of the tempera-
ture with respect to time at the left of (8) according to
(1) is:

(9)

Dividing (8) by the product between the heat capacity
coefficient cp and the density γ in terms of (9) we sim-
plify equation (8) with some other physical meaning:

(10)

where there appears a new coefficient a with a dimen-
sion of m2/s which is called the heat conduction coef-
ficient as it characterizes the leveling rate of tempera-
ture (unlike thermal) fields:

(11)
Let us derive a dimensional equation for equation (10),
noting that the pressure p falls out of (10) as the corre-
sponding units of measure at the left of (10) are absent.
Then, assuming :

(12)

where a new unit of measure is introduced for the tem-
perature θ. Turning to equations (9) and (10) in terms
of (12) we get:

(13)

It is easy to see that there are no other variants for the
right-hand member of (13), which follows from the
uniqueness of solution for the indexes of power in (12).
The variant (∇×∇)T = rot(gradT) ≡ 0, which seems
consistent, is actually inconsistent (being of a vector
nature) and leads to the null equation. It remains for us
to add that if there are internal sources of heat in the
liquid, for example, in the form of electric current as in
the EHD problems, then, evidently, their power
should be added to the right-hand member of equa-
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tion (13). Thus, in the EHD problems (in the presence
of an external electric field) [6], equation (13) takes on
the more general form:

(14)

where σ is the specific electric conduction of the liq-
uid, and E is the electric field intensity.

3. Convective Diffusion Equation
The mass concentration of the diffusing substance

c in the carrying liquid phase plays the role of a sought-
for field, and on the analogy of (10), we can write:

(15)

where the diffusion coefficient μ ≡ D, also measured in
m2/s, is the transfer coefficient (analogous to the coef-
ficient a). It should be pointed out that in the prob-
lems on the electrical cleaning of a dielectric liquid
from semiconducting and conducting impurities using
an electric field [12] the notions of electrical diffusion
and the corresponding electrical diffusion coefficient
De were introduced, which should be accounted for in
(15) in the case of electrical cleaning. Pressure p does
not occur in expression (15) for the same reason as it
falls out of (10). Assuming in (16) the concentration
dimension θ and deriving the dimensional equation
for equation (19), we get:

(16)

where k denotes the measurement unit for the concen-
tration c. Thus, convective diffusion equation (15) in
terms of (16) takes the commonly known form:

(17)

4. Liquid Motion Equation
The equation of liquid motion is initially based on

Newton’s second law:

(18)
Replacing the particle mass m with its density γ, i. e.,
with the volume unit mass, and the acceleration with
the total acceleration according to formula (1), we
obtain:

(19)

where in the general case by  should be meant the
vector sum of all the densities of forces acting on this
liquid particle including the bulk forces of the external
fields of forces acting on the liquid. The essence of the
derivation of the motion equations consists in the
search for the explicit form of these forces. Thus, look-
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ing ahead we shall indicate that in the field of pressure
forces, their bulk density is

(20)

the only vector combination of the nabla operator and
pressure and the required dimension N/m3 . The sign “–”
has a clear physical meaning: the pressure force is
directed towards the decrease in pressure. Please note
one more specific property of the density of pressure
forces: it is formed in the course of liquid motion, so it
is determined by the hydrodynamic and force factors,
being a sought quantity in the hydrodynamic equa-
tions, alongside with rate and temperature. For the
sake of the consequence, formula (20) is derived below
according to general rules (3). The density of the grav-
ity field forces is defined by an obvious formula that
needs no comment:

(21)

In recent decades, the electric hydrodynamics that
studies the hydromechanical behavior of dielectric
and low-conductivity liquids in electric fields has
become well understood. In the case of EHD, the
medium–electric field interaction is ordinarily per-
formed by merely Coulomb forces similar to (21):

(22)

where ρ is the volume density of the free electric
charges in the medium, and  is the vector of the elec-
tric field intensity. The coulomb force (22) appears
particularly simple in the case of corona discharge,
i.e., under the conditions of unipolar electric conduc-
tion, when

(23)

where  is the current density, and k is the mobility of ions
of the corona electrode sign, that is, of the constituent of
carriers which supply current. Expressions (20)–(23) can
appear separately or together on the right hand of
equation (19), supplemented by the electric field
equations (Maxwell equations) in the case of electric
forces. These forces are not to be derived. In the sim-
plest case of an ideal liquid, the equation of motion is
derived, replacing the right-hand member of (19) by
expression (20), and so on. The main difficulty is that
the viscosity forces should be taken into account in the
case of a viscous liquid. Our aim is to solve this prob-
lem with the help of the dimensional method, and
though for the ideal liquid there is solution (19) with
automated right-hand member of (20), we will also
derive equations for this case using the proposed pro-
cedure.

4.1. Equations of the euler ideal liquid motion. It is
supposed that the liquid is under the action of the field
of pressure forces, thus, to write the motion equation
one should find the density of the pressure forces f in
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(19) acting on the volume unit. We obtain a general
equation of liquid motion:

The force of pressure from the liquid around the par-
ticle is searched in form (the partial derivative dimen-
sion is omitted):

(24)

Substituting the corresponding dimensions in this for-
mula one can easily obtain: m = 1, n = 1, and l = 0 to
arrive at a formula [20] for μ = –1, which is easily
found by integrating the formula with respect to the
volume and using the Gauss theorem. We derive
Euler’s equation for the ideal liquid motion from (24):

(25)

In electrical and gravitational fields the right-hand mem-
ber in (25) should be supplemented with the density of
the gravity forces  [2] and electric forces  [6]:

(26)

4.2. Viscous liquid motion equation. two viscosity
forces. We are derive the Navier–Stokes equation,
whose essence consists in the fact that it accounts for
the force of viscous friction between the liquid layers
in the following form:

(27)
where on the right-hand side, only the quantities that
are de facto inherent to the right-hand member of
(2 appear); μ ≡ λ is the dynamic viscosity coefficient.
According to the laws of dimensions we apply the
dimensions to (27) and find m, n, and, k, equal to the
corresponding indexes of power on the both sides of
the equality:

and obtain:

(28)

Thus, according to (27) the solution of the problem
is as follows:

(29)
the known expression for the liquid viscosity force. It
is easy to see that substituting pressure with density in
(27), we obtain the same result (29), which apparently
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points to a small dependence of viscosity forces on
pressure and density on the whole. However, to for-
mula (27) there corresponds another expression for
another twofold application of the operator ∇ leading
to the notion of the second viscosity [2, 4, 5] with the
other transfer coefficient ζ but with the same dimen-
sion as η:

(30)

The double vector product has the same dimension; it,
however, falls into two previous products according to
the known identical equation of vector analysis:

(31)
with no contribution to the motion equation, as they
are already included in formulas (29) and (30). Thus,
the problem is settled, and the resulting friction force
is determined according to formulas (29) and (30) by
the following:

(32)
and, thus, there is solved the question concerning two
viscosity forces: one is associated with the sliding fric-
tion between the liquid layers with respect to each
other and described by the velocity Laplacian, and the
other is caused by the friction appeared in the process
of the compression and extension of the liquid and
expressed through the velocity divergence, and, there-
fore, it is vanishing for an incompressible liquid.

A detailed mathematical derivation of this equation
on the basis of tensor analysis (see, for example, [4])
shows that in (30) ,

(33)

where ξ is the specific friction coefficient of the vol-
ume deformation at the absence of sliding (at η = 0)
and is called the second viscosity coefficient [2]. How-
ever, for the incompressible liquid, i.e., in the most
frequent case in practice the coefficient ξ is not
important, as it gets out of the common set of equa-
tions due to . In the general case there
is valid the Navier–Stokes equation in form [2]:

(34)

where the basic difficulties were overcome owing to
the dimensions. In (34)  is the volume density of the
external forces, for example, the gravitational or elec-
trostatic field.

CONCLUSIONS
(1) A general idea of applying the dimensional

analysis to derive equations of hydro- and electrohy-
drodynamics is presented.

(2) The equations of continuity, heat conduction,
diffusion, motion of ideal (Euler) and viscous
(Navier–Stokes) liquids are derived on this basis.

(3) The dimensional method was used to solve the
problem concerning the presence of two viscous fric-
tion forces: sliding and deformation (at compression
extension in the compressible liquid). The compact
formulas for these forces are derived.
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