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Abstract—In asymptotic calculations, the equilibrium shape of a charged drop is found in a non-uniform
electrostatic field created by an extended spheroid modeling a rod supported at a constant electric potential.
It has been found that the size of the small axis of the spheroid (thickness of the rod) that creates the field
markedly affects the equilibrium shape of the charged drop. The distortion of the spherical shape of the sur-
face of the charged conducting drop of an ideal incompressible liquid in a non-uniform electrostatic field of
the rod can be approximately described by the superposition of the excited second and third modes, the
amount of which is determined by the required degree of precision of the description.
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INTRODUCTION
The problem of calculating the equilibrium shape

of a charged drop in non-uniform electrostatic fields is
of interest for multiple academic, technical, and tech-
nological fields of study. It is particularly fascinating in
reference to the problems of the contactless determi-
nation of the physicochemical properties of liquids [1]
and experimental verification of the Rayleigh-crite-
rion [2] realization of electrostatic instability of a
strongly charged drop [3–6], since in most types of
electrostatic suspensions, the non-uniform electro-
static fields are used for holding and positioning the
charged drop. This problem is also intriguing from the
view point of the analysis of the laws of the evolution
of a cluster-drop phase of ion beams in liquid-metal
sources and liquid mass spectrometers [7, 8]. The crit-
ical conditions of the realization of instability of the
charged electroconducting drop also depend on the
drop’s equilibrium shape [9]. This study is devoted to
the solution of the above problem.

Let us take the case of an external non-uniform
field created with a rod of finite length and thickness
that is supported at a constant potential (or a rod that
is charged) as an example of what is realized most
often in practice (see, e.g., [6]). A similar problem was
already studied in [10], however, the non-uniform
electrostatic field was modeled with the field induced
by a fraction of an extremely thin filament (the analyt-

ical expression for the potential of the filament; see,
e.g., [11, p. 227, problem 74]).

In practice, the electrostatic field of a rod with
finite length and thickness has a complicated configu-
ration, and there is no accurate analytical expression
needed for its rigorous solution. Below, we model the
electrostatic field of the rod using the field of a
strongly prolate charged conducting spheroid [12,
p. 40]. The large and small semiaxes of the spheroid
[characterize the length and thickness of the rod, cor-
respondingly, which will allow us to analyze the effects
of these parameters on the obtained solution.

It should be mentioned that the combination of the
rod electrode and a counter electrode in the form of a
plane ring is typical for many apparatuses and devices
for the electrodispersion of insecticides, gasoline and
lubricants, and coating compositions (see, e.g., [13–
15] and references therein).

PROBLEM SETTING
Let us examine a spherical drop with radius R of an

ideal incompressible, ideally conducting liquid with
density ρ, surface tension coefficient σ, and carrying
charge Q. Let the drop center be located on the longi-
tudinal symmetry axis of a conducting rod with a
length of 2a and a diameter of 2b at distance L from its
butt-end. The rod is supported at a constant potential ϕ0.
157
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Fig. 1. Relative position of rod and charged drop.
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Since the external electrostatic field disturbs the
spherical shape of the drop, let us determine the shape
of its equilibrium surface. We solve the problem within
the spherical coordinates (r, θ, ϕ) with the coordinate
origin in the center of the drop masses. Axis OZ, whose
positive direction is the starting point for the calcula-
tion of angle θ, we consider to coincide with the longi-
tudinal symmetry axis of the rod, which is directed
from the center of the drop mass to the rod (Fig. 1).

The system of calculation is non-inertial, due to
the accelerated motion of the charged drop as a unit in
the external electric field.

The equilibrium shape of the drop r(θ) is deter-
mined from the condition of a balance of pressures on
the surface of the drop:

(1)

In (1) P0 is hydrostatic pressure; Patm is ambient
pressure;  is inertial pressure connected with the
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noninertiality of selected frame of reference;  is
electrostatic pressure and  is capillarypressure,
which are expressed by the following formulas:

Here  is the intensity of electrostatic field
near the drop;  is a normal vector to the drop sur-
face, which is determined using the following formula:

To calculate the electric pressure onto the drop sur-
face we need to determine field potential  in the
vicinity of the drop. This potential will be a superposi-
tion of potential  external with respect to the
drop, which is created by the rod, on potential 
created by the drop’s self-charge.

The analytic expression of the rod potential that is
modeled by the potential of the conducting spheroid
will be obtained in the following way, namely, in the
known [12, p. 40] expression for the potential of the
charged conducting spheroid we replace the charge
through the potential and electrical capacity of the
spheroid. As a result, in the Cartesian system of coor-
dinates, which is connected with the spheroid center,
the analytic expression for the potential will take the
following form:
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where a and b are large and small semiaxes of the � �34

spheroid.

Let us assume that the drop ideally conducts, i.e.,
we imply that the characteristic hydrodynamic time is
much longer than the drop charge relaxation time. The
surface of the drop will be accepted as equipotential
and the boundary problem will be formulated for the
determination of the potential near the drop surface:

Let us add three more conditions to the problem
set: conservation of the drop volume, immobility of its
center of masses in the selected system, and conserva-
tion of the drop charge:

=ΔΦ = Φ = → ∞ Φ →
θ

� �

( )( ) 0; ( ) const; : 0.r rr r r
where κ is the density of the charge on the surface of
the drop:

For simplicity of calculation let us proceed to
dimensionless variables, accepting R = ρ = σ = 1. We
leave the previous designations in the dimensionless
physical values.
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The values of hydrodynamic and electric potential,
as well as the intensities of the electric field and of the
field of rates are expressed in the shares of their typical
scales:

The equilibrium shape of the drop r(θ) will be
sought as a superposition of the spherical shape of the
surface and its minor dimensionless distortion h(θ):

 The distortion is presented in the form
of an expansion on the Legendre polynomials:

(3)

Since the self-charge of the drop in itself does not
disturb its sphericity, the distortion of the shape of the
equilibrium surface of the drop will be determined by
the pressure of the electrostatic field near the drop.
Therefore, we can write the following estimates for the
orders of values:

In dimensionless variables the estimation of the
value of the external field and the potential will resem-
ble the following:

where  is a dimensionless parameter.
We consider small deviations of the drop from a

spherical shape, assuming ε to be a minor parameter of
the problem and taking into account the terms of sum
up to the value of the order of ε1 inclusive.

Estimating the values for pressure falling under
dynamic condition (1), we obtain that hydrostatic
pressure P0 and ambient pressure Patm are of the order
of ε0, since they are independent of the shape of the
surface of the drop. Let us accept that the characteris-
tic time of formation of the equilibrium surface of the
drop is much less than the time of a significant shift of
the center of masses of the drop in an external electric
field. Since inertial pressure  is induced pri-
marily by the interaction of the drop charge with the

external field, it will have the form  (as
the presence of the charge on the drop causes no dis-
turbance of its spherical shape, i.e., Q ~ ε0). We do not
consider corrections to the inertial force on the part of
other effects, because they are negligibly small in com-
parison with the above effect. The pressure of the cap-
illary forces is defined by the size of the drop and the
shape of distortion of its surface; therefore, it has com-
ponents of the zeroth and first orders
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 From now on in the text, the
above indices will designate the orders of size of the
values for ε.

The potential  that designates electric pressure

will have three components:  +

 Here  is potential, which is cre-
ated by the self-charge of undistorted drop;  is
potential created by the charges induced by the exter-
nal electrostatic field in a spherical drop; and  is
a component that is connected with the field alteration
caused by the distortion of the spherical shape of the
drop. Similarly, electric pressure is also presented as
the following expansion:

PROBLEM OF THE ε0 ORDER
This problem describes a spherical charged drop in

the absence of an external field and is expressed by the
following equations:

Solving this problem, we obtain an expression for the
component of the electric potential of a self-charge of
the spherical drop:

(4)

PROBLEM OF THE ε1/2 ORDER
Let us proceed to the problem of the ε1/2 order,

which describes the redistribution of the drop charge
in an external electrostatic field:
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Here, potential  consists of the external (for
the drop) potential of the rod  and the compo-
nent, which has a relevant order of smallness, of the

drop potential   The
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Table 1. Coefficients Fk in expansion in a series on the Legen-
dre polynomials of the electric field potential created by the rod
on the drop surface, calculated at L = 2, b = 1, ϕ0 = 1 (in
dimensional units ϕ0 = 454 V for R = 1 mm, σ = 23 dyn/cm)

Fk a = 10 а = 30 а = 100

F0 0.396 0.418 0.435
F1 0.739 × 10–1 0.586 × 10–1 0.466 × 10–1

F2 0.197 × 10–1 0.150 × 10–1 0.117 × 10–1

F3 0.646 × 10–2 0.496 × 10–2 0.390 × 10–2

F4 0.236 × 10–2 0.185 × 10–2 0.146 × 10–2

F5 0.922 × 10–3 0.732 × 10–3 0.582 × 10–3

F6 0.375 × 10–3 0.303 × 10–3 0.242 × 10–3

F7 0.157 × 10–3 0.129 × 10–3 0.103 × 10–3
potential that is created by the,  is known

(see (2)); however, in the 1spherical system of coordi-
nates that is connected with the center of the drop
masses. It will be rewritten as follows:
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It is noteworthy that potential  is a solution
of the Laplace equation and fulfils the condition of
decreasing to zero at infinity. Taking this into account,
from the boundary problem obtained above, we obtain
a problem for the relevant component of the drop
potential 

(6)

(7)

(8)

A solution of the Laplace equation (6) that decreases
with distance for potential  resembles a Legendre
polynomial expansion 

(9)

Substituting the obtained  (9) into the con-
dition of equipotentiality (7), we get:
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must represent potential  as an expansion of
Legendre polynomials:

(11)

(12)

where potential  is defined by formula (5), and
coefficients Fk depend on parameters of the rod field
ϕ0, a, b and distance to the rod end L. The analytical
calculation of Fk is fairly difficult because of the bulk-
iness of the potential under study  therefore it is
worthwhile to use the numerical estimates of the above
coefficients. This approach requires to terminate
infinite series (11) on a finite quantity of terms. Table 1
lists the values of coefficients Fk at different rod
lengths. It is seen that with increases in the number of
modes k at any length of rod, the coefficients rapidly
decrease; therefore, the use of a finite quantity of
terms in (11), instead of an infinite series, is reason-
able. (We can note that with increases in the rod’s
length, coefficients Fk decrease insignificantly.)

Table 2, shows coefficients Fk calculated at a larger
distance from the rod’s end to the drop. Comparing
the data of the two tables, we can conclude that the

rate of decrease of the coefficients is  i.e., at

a longer distances from the rod end, the series meets
even faster.

Let us estimate the value of a relative error δ, which
is made during the replacement of the exact value of
potential Φr on the surface of sphere r = 1 through its
approximate value, which we write as a finite sum:

We determine relative error in accordance with the
following expression:
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Table 2. Coefficients Fk in expansion in series on Legendre
polynomials of potentials of electric field that is created by
the rod on the drop surface, which are calculated at L = 5,
b = 1, ϕ0 = 1 (in dimensional units ϕ0 = 454 V for R = 1 mm,
σ = 23 dyn/cm)

Fk a = 10 a = 30 a = 100

F0 0.267 0.313 0.350
F1 0.264 × 10–1 0.225 × 10–1 0.184 × 10–1

F2 0.314 × 10–2 0.241 × 10–2 0.189 × 10–2

F3 0.429 × 10–3 0.322 × 10–3 0.251 × 10–3

F4 0.641 × 10–4 0.482 × 10–4 0.376 × 10–4

F5 0.102 × 10–4 0.769 × 10–5 0.601 × 10–5

F6 0.168 × 10–5 0.128 × 10–5 0.100 × 10–5

F7 0.285 × 10-–6 0.218 × 10–6 0.171 × 10–6
Figure 2 shows the dependences of relative error δ
from angle θ at different values of km, which indicate
that the highest discrepancies between the precise and
approximate values of the potential are found in points
θ = 0 and θ = π.

Accepting as a criterion of accuracy of expansion
the angle maximum value of a relative error and esti-
mating its value in relation to parameters of a, b, and
L, makes it possible to define the number of items that
are necessary to be taken into account in the potential
expansion. According to Fig. 3, to achieve accuracy in
the approximate calculations of values ~0.01, it is
enough to take into account the first four items in
expansion (11), i.e., km = 4. Thus, the external potential
on the spherical surface can be presented as a finite sum:

(13)

From the condition of equipotentiality (10), we can
find the coefficients of  in expansion (9) in the

form of  and taking into account the condi-
tion of charge conservation (8) we can calculate

potential 
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Fig. 2. Dependence of a relative error of potential δ on the
angle at different quantity of considered polynomials kmax
and the following values of parameters: L = 2, a = 30, b = 1.
Solid line represents kmax = 2, dashed line represents
kmax = 3, and dash-and-dot line represents kmax = 4.

0.016

0.012

0.008

0.004

δ

θ0 π
4

π
2

3π
4

In calculations, it is accepted that the characteristic
time for the formation of the equilibrium shape of the
drop surface (hydrodynamic time) is substantially less
than the time for the significant shift of the center of
masses of the charged drop under the external electric
field (kinematic time); i.e., 

when m is the drop mass, which gives:

Fulfilling this condition, we assume that the dis-
tance L from the drop center to the rod’s end remains
unchanged.
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Fig. 3. Dependence of maximal-angle potential error δ on
the thickness of rod at a various quantity of kmax polyno-
mials taken into account and the following values of
parameters L = 2, a = 30. Solid line represents kmax = 2,
dashed line represents kmax = 3, and dash-and-dot line
represents kmax = 4.
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PROBLEM OF THE ε1 ORDER
In the first ε order of smallness we obtain the fol-

lowing problem:

(15)

(16)

(17)

(18)

(19)

Consideration of (16) allows us to specify the low value
of a summation index in (3) for the distortion of h(θ):
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and write down (19), taking into account (20) via
amplitude an, in the following form:
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The boundary problem for finding potential  is
solved similarly to that considered above; i.e., we pres-
ent the potential from the Laplace equation as an
expansion according to Legendre polynomials:
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Substituting the general view of potential  (22) in
conditions (15) and (17) taking into account (20) for
distortion of equilibrium surface, we determine coeffi-

cients  and get the expressions for potential 
via amplitudes of distortions an:
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The total potential of the electric field near the drop,
in an approximation of up to the first order of magni-
tude up to ε inclusive, will look like the following form:
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Electrostatic pressure  is calculated with regard to
expressions (4), (5), (14), (23), using formula (18). The
absence of the angle dependence in potential 
(see (4)) and the condition of the equipotentiality of
drop surface in (7) result in a simplified expression for

pressure 

(24)

In the last item, which can be written as follows:

the need arises to present a normal component of the
external electric field intensity on the spherical surface
in the form of a series of Legendre polynomials:

(25)

(26)

Since the analytical calculation of coefficients Sl is
difficult due to their bulk, we must use numerical esti-
mations, and, hence, restrict expansion (25) using a
finite number of polynomials:

(27)

where  is an approximate value of field inten-
sity.

The dependences of the relative error

of the approximate presentation of

the normal component of intensity on angle θ are
quantitatively similar to those presented in Figs. 2, 3.

The calculations show that to achieve the value of
the relative error γ < 0.01, we must take into account
lm = 8 of polynomials in expansion (27). This value
exceeds km = 4, which was obtained in the estimation
of the error of expansion (13). Therefore, for unifor-
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Fig. 4. Equilibrium shapes of drops in the fields of rods
with different thicknesses calculated at L = 2, a = 30. Q =
Qcr/2, ϕ0 = 9 (in dimensional units ϕ0 = 4.1 kV for R = 1 mm,
σ = 23 dyn/cm). Solid line represents b = 0.3, dashed line rep-
resents b = 0.5, and dash-and-dot line represents b = 1.
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mity, we accept that km = lm = 8, with the accuracy of
expansion (13) increasing even more.

Using (27), we can bring expression (24) for the
electric field pressure, considering expressions (4),
(14), (23), to the following form:

(28)

where  are coefficients of Clebsch–Gordan
[16], and Fk and Sk are numerical coefficients, which
are determined by formulas (12) and (26), using (5).

Substituting (28) and (21) into the condition of bal-
ance of pressures, we obtain the expressions for ampli-
tudes an in the expansion of equilibrium shape of the
drop (20):

(29)

The amplitude of distortion an = 0 at n ≥ km and
n < 2. Taking this into account, the equilibrium form
of the drop surface r(θ) (20) will be written as follows:

(30)

ANALYSIS OF EQUILIBRIUM FORMS
Let us proceed to the analysis of the equilibrium

form of the drop. The range of possible values of self-
charges on the surface of a stable spherical charged
drop will be determined based on the Rayleigh crite-
rion. It is known [2] that for the stability of the drop
with respect to its self-charge, condition

 must be fulfilled. This gives us

 or in the dimensionless form

 The presence of the external electrostatic
field will certainly affect the drop’s stability [13–14,
17–18]. However, for construction of the equilibrium
shapes of the drop, we use, e.g., the value of the charge

 as a typical value.
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We set the value of the rod potential ϕ0 (which
characterizes the value of the external non-uniform
field) in dimensionless variables at the maximum pos-
sible (at the accepted geometrical dimensions of the
rod), so that they simultaneously remain within the
scope of assumption of the smallness of distortion.
Accepting that  for distances L which
are used in calculations, as well as for the values of
length and thickness of the rod (of large and small
spheroid semiaxes a and b) we obtain an estimation of
the value of the rod potential ϕ0 ≈ 9. Considering R =
1 mm ethanol drop with the surface tension coefficient
of σ = 23 dyn/cm, this value of the dimensionless
potential is relevant to the dimension value of the
potential of 4.1 kV.

Figure 4 shows the equilibrium shapes of the drop
in the field of rods with various thicknesses. The cal-
culations show that examining thin b ≤ R long rods
reveals that the distortion value increases with the rod
extension.

Figure 5 shows the equilibrium shapes of the drop
surface in the field of rods with different lengths. Note
that the total value of the distortion decreases with an
increase in the rod’s length.

To explain this tendency, Fig. 6 shows the depen-
dences of the value of field intensity of the rod at dis-
tance H from its end at rod’s length a; the dependences
are calculated according to the precise expression of
potential (5). It is seen that at values of H of the order

θ ≤max ( ) 0,2h
EMISTRY  Vol. 54  No. 2  2018
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Fig. 5. Equilibrium forms of drop in the fields of rods with
various lengths calculated at L = 2, b = 1, Q = Qcr/2, ϕ0 =
9 (in dimension units ϕ0 = 4.1 kV for R = 1 mm, σ =
23 dyn/cm). Solid line represents a = 100, dashed line rep-
resents a = 30, and dash-and-dot line represents a = 10.
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Fig. 6. Dependences of the value of electrostatic field
intensity near the rod’s end on its length, calculated at b = 1,
ϕ0 = 9 (in dimensional units ϕ0 = 4.1 kV for R = 1 mm,
σ = 23 dyn/cm). Solid line represents H = 0.5, dashed line
represents H = 0.25, and dash-and-dot line represents H =
0.05, dotted line to H = 0.
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Fig. 7. Dependences of parameter λ on the value of charge
on the drop at different amounts p of polynomials taken
into account in expansion of equilibrium shape of the drop
calculated at L = 2, a = 10. b = 1, ϕ0 = 9 (in dimensional
units ϕ0 = 4,1 kV for R = 1 mm, σ = 23 dyn/cm). Solid line
represents p = 5, dashed line represents p = 6, dash-and-
dot line represents p = 7, abd dotted line represents p = 8.
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of or greater than b, the longer rods correspond to
smaller values of the field intensities at a preset dis-
tance H. It would seem natural to expect that since
with an increase in the length of spheroid (which mod-
els the rod) its electric capacity increases, meaning
that to maintain the rod potential constant involves an
increase in its charge and, as a consequence, a growth
in intensity of the field created. However, the above
statement is valid just for the area near the end of the
spheroid which can approximately be described by the
ratio H  b. As to the region of H ≥ b, the opposite ten-
dency is observed, which is a consequence of the redistri-
bution of the self-charge of the rod during its extension.

Tables 3 and 4 list the values of coefficients  in
expansion (30). It is easy to see that an monotonically
decreases with an increase in the number of mode, and
comparing the data of Tables 3 and 4 we can see that
the rate of decrease enhances with an increase in H.
Thus, if we pursue a certain degree of precision in
describing an equilibrium shape of the drop, we can
decrease a quantity of items in the sum (30) by limiting
its polynomials up to the order of p < 2km, inclusive.

Let us estimate what values of the drop charges
make this possible. For this, we introduce a parameter,
which characterizes the ratio of the amplitudes’ sum of
rejected modes to a similar sum of the modes taken
into account:

!

na
SURFACE ENGINEERING AND APP
Figure 7 shows the dependences of value λ on the
charge on the drop at different amounts of p polyno-
mials taken into account in expansion (30). It is seen
that for the description of the equilibrium shape with a
certain preset accuracy, it is possible to restrict the
amount of polynomials that are taken into account by
value p < 2km (remember it has been accepted above
that km = 8). For example, in case we need a descrip-
tion of the equilibrium shape of a drop surface with an

= + =
= ∑ ∑λ

2

1 2
( ) .

mk p

n n
n p n

p a a
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Table 3. Amplitude of distortion modes of equilibrium drop
shape in the field of rods with different lengths calculated at
L = 2, b = 1, Q = Qcr/2, ϕ0 = 9 (in dimensional units ϕ0 =
4.1 kV for R = 1 mm and σ = 23 dyn/cm)

ak a = 10 a = 30 a = 100

a2 0.821 × 10–1 0.512 × 10–1 0.323 × 10–1

a3 0.393 × 10–1 0.244 × 10–1 0.154 × 10–1

a4 0.249 × 10–1 0.154 × 10–1 0.976 × 10–2

a5 0.180 × 10–1 0.112 × 10–1 0.706 × 10–2

a6 0.139 × 10–1 0.869 × 10–2 0.547 × 10–2

a7 0.109 × 10–1 0.680 × 10–2 0.429 × 10–2

a8 0.479 × 10–2 0.298 × 10–2 0.187 × 10–2

a9 0.391 × 10–2 0.244 × 10–2 0.154 × 10–2

a10 0.341 × 10–3 0.199 × 10–3 0.122 × 10–3

a11 0.418 × 10–4 0.249 × 10–4 0.154 × 10–4

a12 0.611 × 10–5 0.376 × 10–5 0.236 × 10–5

a13 0.990 × 10–6 0.630 × 10–6 0.400 × 10–6

a14 0.170 × 10–6 0.112 × 10–6 0.716 × 10–7

a15 0.292 × 10–7 0.197 × 10–7 0.128 × 10–7

a16 0.450 × 10–8 0.313 × 10–8 0.205 × 10–8
accuracy of ≤5% for the rod parameters presented in
Fig. 7, we can be restricted in (30) by taking into
account the items of up to P8(cosθ), inclusive.

The calculations show that in a non-uniform field
of the rod, the contribution to the equilibrium shape of
the drop of the two or three first modes substantially
exceeds the contribution of all the remaining modes
only when the charges of the drop are close to a critical
value. However, this case is beyond the scope of appli-
cability of the calculation performed, since at those
values of the charge, the assumption of the smallness
of the value of distortion  becomes
invalid. If we consider the dependences of ε on the
value of the charge on the drop, we shall obtain that
the application area of the solutions for (29) and (30),
as the values of parameters of the system accepted in
calculation will be limited by the value of the self-

charge of the drop: 

Thus, we can infer that the equilibrium shape of the
surface of a conducting drop of an ideal liquid in a
non-uniform electrostatic field of the rod can be
approximately described by the superposition of sev-
eral first Legendre polynomials (whose amount
depends on the required precision of the description)
with amplitudes determined by (29).

MODELING OF EXPERIMENTAL DATA

In [6], the disintegration of an ethanol drop was
observed experimentally in a non-uniform electro-
static field of a thin corona pin and plane counter-
electrode. Initially, an uncharged drop fell through the
ion cloud created by the corona discharge from the pin
point and was charged in it, being subjected to electro-
static instability. The unstable drop emitted a liquid jet
that disintegrated into separate droplets with lengths
much longer than the diameter of the drop. It was pos-
sible to observe the realization of typical instabilities of
several first modes of oscillations of the jet surface. In
particular, we could observe axisymmetrical, whip-
shaped, and electrostatic [19–21] modes of jet disinte-
gration [22, 23]. Note that the jet was directed not to
the side of the maximum non-uniformity of the field,
i.e., towards the rod, but instead, to the opposite side,
to the plane counter-electrode.

In experiments [6], the charge of the drop was not
controlled, however, in accordance with the experi-
mental conditions the charge could reach the rate of
the order of hundredths of the critical value by
Rayleigh [2]. The non-uniform electrostatic field was
created by a d ≈ 0.57 mm pin and with the length of the
order of 10 cm. The distance between the pin’s end
and the falling drop with diameter of d ≈ 2 mm was

ε ≡ θmax ( )h

< cr
3 .
4

Q Q
SURFACE ENGINEERING AND APPLIED ELECTROCH
10 mm. The potential fed to the pin varied from 33 to
41 kV. In the dimensional variables used in this work,
the values of the experimental parameters are as fol-
lows: ϕ0 = 7.25–90.1, a = 50, b = 0.29. The equilib-
rium shape of the uncharged drop in such a field,
according to the model under study appears to be an
egg-shaped distorted sphere (Fig. 8).

This result qualitatively agrees with the photos pre-
sented in [6]. However, those photos also show that
the drop has its own non-compensated charge of the
same polarity with the pin electrode. Experiments [6]
illustrate that the jets emitted from the drop at the
electrostatic instability are directed not towards the
most non-uniform electrostatic field (to the rod), as it
EMISTRY  Vol. 54  No. 2  2018
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Table 4. Amplitudes of distortion modes of equilibrium
shape of drop in the field of rods with different lengths cal-
culated at L = 5, b = 1, Q = Qcr/2, ϕ0 = 9 (in dimensional
units ϕ0 = 4.1 kV for R = 1 mm and σ = 23 dyn/cm)

ak a = 10 a = 30 a = 100

a2 0.948 × 10–2 0.685 × 10–2 0.459 × 10–2

a3 0.440 × 10–2 0.317 × 10–2 0.211 × 10–2

a4 0.279 × 10–2 0.201 × 10–2 0.135 × 10–2

a5 0.203 × 10–2 0.146 × 10–2 0.978 × 10–3

a6 0.158 × 10–2 0.114 × 10–2 0.765 × 10–3

a7 0.128 × 10–2 0.929 × 10–3 0.622 × 10–3

a8 0.530 × 10–3 0.382 × 10–3 0.255 × 10–3

a9 0.454 × 10–3 0.328 × 10–3 0.220 × 10–3

a10 0.756 × 10–5 0.445 × 10–5 0.271 × 10–5

a11 0.156 × 10–6 0.879 × 10–7 0.533 × 10–7

a12 0.372 × 10–8 0.211 × 10–8 0.128 × 10–8

a13 0.984 × 10–10 0.563 × 10–10 0.344 × 10–10

a14 0.278 × 10–11 0.161 × 10–11 0.990 × 10–12

a15 0.825 × 10–13 0.484 × 10–13 0.299 × 10–13

a16 0.245 × 10–14 0.146 × 10–14 0.903 × 10–15
should be in terms of general physical concepts, but,
instead, to the opposite side, to the region of the weak
field. This means that on the half of the drop that is
SURFACE ENGINEERING AND APP

Fig. 8. Equilibrium shapes of the drop surface calculated at
L = 10, b = 0.29, a = 50, Q = 0 (in dimensional units ϕ0 = 33,
39, and 41 kV, correspondingly, for R = 1 mm, σ = 23 dyn/cm).
Solid line represents ϕ0 = 72.5, dashed line represents ϕ0 =
85.7, and dash-and-dot line represents ϕ0 = 90.1.
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turned to the rod, the sign of the charge is opposite to
the self-charge of the drop, whereas on the other half
of the drop, the charge has a similar sign. Instability is
realized in the area where the surface density of the net
charge is maximum. As a result, it is where the emis-
sion protrusion and the jet form.

An important distinction ought to be noted. The
present calculation deals with the equilibrium drops,
and in [6] the drops are certainly unstable: the electro-
static field intensity in [6] is beyond the critical point
for realization of electrostatic instability of both a drop
and a jet emitted by the latter [14, 19, 20, 22–23].

CONCLUSIONS
It was found that with the thickness of the rod

(which serves as an electrode and creates a potential
near the charged drop) taken into account, a marked
distortion of the equilibrium shape of the charged drop
results. The distortion of the equilibrium shape of the
surface of the conducting charged drop of ideal liquid
in a non-uniform electrostatic field of the rod is
described by a superposition of several first polynomi-
als of Legendre with amplitudes, which are described
by the expressions derived in this study.
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