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Abstract⎯An analysis is carried out on the electromagnetic radiation of an uncharged drop oscillating in an
electrostatic field using nonlinear asymptotic calculations for two small parameters (the value of a dimension-
less stationary deformation of an initially spherical drop and the amplitude of its capillary oscillations). In the
external electrostatic field, on the top of the drop, electric charges with the opposite signs are formed, to
which the “effective” charges located on the drop’s symmetry axis are added relatively. Since the distance
between those “effective” charges is about the length of the drop’s radius, they form a dipole, which at the
distances much longer than the sizes of the drop creates a similar electric field as the drop itself. During the
oscillation of the drop surface, the dipole will also oscillate, which will generate the electromagnetic waves of
the dipole type.
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INTRODUCTION
The dipole radiation of the electromagnetic waves

of oscillating charged drops, discovered on a small
parameter in a quadratic asymptotic calculation,
repeatedly became the object of a theoretical study [1,
2] in the context of the problems of radiolocation of
clouds [3]. The very problem of the electromagnetic
radiation of the oscillating charged cloud drops was
first mentioned in [4] and specified in [5, 6]. However,
as it turned out, the authors in [4–6] revealed just an
extremely small quadrupole radiation detectable in
linear calculations. The dipole radiation emitted by
the charged drop, which is fixed in nonlinear asymp-
totic calculations of the second order of smallness, is
far more intense (by 14–15 orders of magnitude).

In [7], by analogy with [4–6], in the first order of
smallness by the amplitude of oscillations, the inten-
sity of the quadrupole radiation of an uncharged drop
oscillating in the external uniform electrostatic field is
calculated. In this case, the radiation is caused by the
accelerated motion of the charges induced by the
external electrostatic field during the oscillations of
the drop surface. Its intensity is extremely small as in
[4–6], and this radiation cannot be fixed by means of
radiolocation (the integral radiation emitted by the
clouds is meant).

Further, in the nonlinear asymptotic calculations
of higher orders of smallness than the first, we calcu-
late the intensity of the dipole electromagnetic radia-

tion emitted by the uncharged drop oscillating in the
external electrostatic field.

STATEMENT OF THE PROBLEM
Let us consider the problem on the electromagnetic

radiation of the uncharged drop of an ideal, incom-
pressible, ideally conducting liquid with density ρ and
surface tension coefficient σ oscillating in a uniform
electrostatic field with intensity . Let us accept that
the drop is in vacuum, and its volume is determined by
that of a sphere with radius R. Under the effect of the
external electrostatic field, in the drop, electrical
charges are induced: negative charge on its half turned
toward the field, and positive charge on the opposite
half, which form the dipole moment [8], p. 19. The
drop thus extends into a spheroid with r = r(θ), whose
symmetry axis is collinear to the external field. The
square of the eccentricity of the spheroid e2 will be
assumed to be a small parameter e2  1.

A capillary wave motion will exist on the drop sur-
face, this time generated by the thermal motion of the
water molecules [9] and causing the distortion ξ(θ, ϕ, t)
of the spheroidal form, which is equilibrium in the
field. For simplicity, let us accept that this disturbance
is axisymmetric (this simplification will not affect the
general consideration). The ratio  is the
second small parameter of the problem designated as
ε. The induced charges will be distributed over the
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drop surface disturbed by the capillary wave motion.
The equation of the drop surface will be as follows:

(1)

All calculations of the problem will be performed in
a spherical system of coordinates (r, θ, ϕ) with the
beginning in the center of the drop masses in dimen-
sionless variables, in which R = ρ = σ = 1.

The motion in the drop will be assumed as poten-
tial with potential , so that the field of rates of
the wave f low in the liquid of the drop will be deter-
mined as . In dimensionless vari-
ables the potential  will have the same order of
smallness as the amplitude of oscillations of the drop
surface  (because the disturbance
ξ(θ, t) is generated by the capillary wave motion).
Also, we shall introduce the electric potential 
of the field of the charges induced in the drop.

The mathematical formulation of the problem on
the electromagnetic radiation emitted by the
uncharged drop oscillating in the external electrostatic
field has the form

(2)

(3)

(4)

(5)

where (5) Φs(t) is the constant value of the electric
potential of the drop along its surface;

 is the hydrodynamic pressure;

P0 is the constant pressure inside the drop in the equi-
librium state; Patm is the constant pressure outside of

the drop in the equilibrium state;  is
the electric field pressure; is the capil-
lary pressure; and  is the unit normal vector to a
disturbed surface of the drop:

(6)

In (6), r(θ, t) is determined by (1).
Let us add the integral conditions to the written-

out system, namely, the invariability of the total vol-
ume of the drop (the consequence of the incompress-
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ibility of the liquid), the immobility of its center of
mass, and the uncharged state of the drop:

(7)

(8)

Let us expand the sought values by the orders of small-
ness of the dimensionless amplitude of oscillations ε:

(9)

where  is the electric potential in the vicinity of
the equilibrium uncharged spheroid found in the
external electrostatic field and  is the electric
potential of the induced charges of the disturbed
spheroid. The upper index designates the order of
smallness on ε.

Inserting expansion (9) into (2)–(8), we shall
determine the problems of the zeroth and first orders.

THE PROBLEM OF THE ZEROTH ORDER
To find the equilibrium surface of the drop and the

electric potential in the vicinity of the undis-
turbed surface of the drop, we shall give the mathe-
matical formulation of the problem of the zeroth order
of smallness in ε:

(10)

where  is the unit normal vector to the undis-
turbed surface of a spheroidal drop, which is deter-
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mined by ratio (6) on the surface of the undisturbed
spheroid.

After solving problem (10), the same as was done in
[7, 10], we shall obtain the expression for the form of
the equilibrium surface of the drop that coincides with
accuracy to the eccentricity squared e2 with the equa-
tion of the extended spheroid in the following form:

(11)

where the eccentricity is connected with the intensity

of the electrostatic field by the ratio .

The potential  in an approximation linear in
e2 is easy to find. It can be found both by transition
from the known expression [8, p. 41] for the electric
potential of the extended conducting ellipsoid in a
uniform external field (mentioned in [8], p. 41 in sphe-
roidal coordinates) and also using a direct solution of
a relative electrostatic problem (9) in a spherical sys-
tem of coordinates by the perturbation method [11]:

(12)

where  are Legendre polynomials [12].

The solution of the problems of the first order of
smallness in ε. In the problem under study, there are
two small parameters, namely, the eccentricity of the
equilibrium surface of the drop e and the amplitude ε
of its oscillations. It is also noteworthy that E0 ∼ e. In
further calculations of the drop oscillations, we must
take into account the terms with an order of smallness
of ∼ε; the terms of ∼eε (which consider the interaction
of disturbance ξ with the intensity of the electrostatic
field E0); the terms of ∼e2ε, which consider the inter-
action of disturbance with the deviation of the equilib-
rium surface of the drop from a sphere; and the terms
of  which consider the interaction of distur-
bance with the field and deviation of the equilibrium
surface of the drop from sphere.

Because of the linearity of Eqs. (2) and (3), both
the hydrodynamic potential  and each of the
components of the electric potential  must sat-
isfy them. The solutions of (2) and (3) for  and

 that meet the requirements of the boundary
conditions of (4) and the disturbance of the equilib-
rium form of the drop surface ξ(θ, t) will be written as
follows:
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(13)

(14)

(15)

where the order of smallness is indicated by the degree
of ε.

The solution of the problem for the electric potential
(in the first order of smallness in ε). Let us choose the
boundary problem of the first order in ε to determine
the electric potential . The system of equa-
tions to determine coefficient Fn in solution (14) is
obtained from (4) and (5) by grouping the terms ∼ε:

(16)

Here  is the correction of the first order of small-
ness to the potential value of the surface of the drop.

Inserting the expansions (14) and(15) into (16), we
get the expressions for coefficients Fn(t) in the follow-
ing form:

Finally, inserting the obtained expression into (14),
we find the expansion for the electric potential

 in the following form:
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(17)

The solution of hydrodynamic part of the problem (in
the first order of smallness in ε). The derivation of evo-
lutionary equation. In the first order of smallness in ε,
to determine the coefficients Dn and Mn in solutions of
(13) and (15) from (5) and (7), we obtain

these expressions allow us to get the ratios between the
coefficients Mn(t) and Dn(t):
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 are the Clebsch–Gordan coefficients [12], dif-
ferent from zero only when the indices satisfy the rela-
tions  and m + k + n is even.

In addition to the relations between the coeffi-
cients, we shall also obtain a nonuniform differential
equation to find the coefficient Mn(t) at n ≥ 0:

Getting rid of the nonuniformity, setting to zero the
right part of the evolutionary equation, and accepting
that the amplitudes Mn(t) depend on time t harmoni-
cally , we shall obtain the expression for the
frequency of oscillations of the nth mode (written in
dimensional form)

(18)

which qualitatively coincides with that obtained in [13]
but having asymptotics more adequate to the real situ-
ation; ωn is the frequency of intrinsic oscillations of the
surface of the uncharged spheroidal drop in the uni-
form electrostatic field.
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Fig. 1. Dependences of the frequency of electromagnetic radiation (a) of the main mode of the uncharged spherical drop (curve 1),
of the frequency of electromagnetic radiation of the spheroidal drop (curve 2), and of the artificially created frequency of electro-
magnetic radiation of the spheroidal drop (the numerical coefficient at the eccentricity is 1.74) (curve 3) which oscillates on the
main mode in the external field on the electrostatic field intensity calculated at j = 2, μ = 0.1, σ = 73 dyne/cm, ρ = 1 g/cm3, R =
10 μm; (b) of the unit uncharged spheroidal drop (curve 1) and modified frequency (curve 2) oscillating on the main mode on
the radius of the equal-sized drop calculated at the values of other physical values (see Fig. 1a) and E0 = 40 kV/cm.
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In Fig. 1a, straight line 1 designates the frequency
of the main mode of the uncharged spherical drop,
and curve 2 shows the dependence of the frequency
of oscillations of the main mode of the spheroidal
drop on the intensity of the electrostatic field (the
dependence is realized through the eccentricity and
is determined by the dimensional expression

 [14]). Curve 3 denotes the frequency
of the main mode of the uncharged spheroidal drop
artificially adjusted to the real situation: it is known
that, at , the frequency goes to zero,
and the drop is subjected to instability with respect to
the polarization charge [15]. To turn the frequency
squared (18) to zero, let us place the adjustable param-
eter 1.74 in front of e2 in square brackets. This
approach is certainly rough for the theoretical study,
but it allows us to bring into agreement the calculation
and experimental data [15]. The precise calculation is
carried out in a linear approximation in e2, and its
results are applicable just at small e2 (where E0 ≈ 50–
60 kV/cm).

If the frequency of oscillations of the uncharged
spheroidal drop in a uniform electrostatic field
depends on the radius of the equal spherical drop in
the region of E0 = 40 kV/cm, then dependences 2 and
3 will have a similar appearance, qualitatively and
quantitatively, as is seen from Fig. 1b. If we plot similar
dependences at E0 = 1 kV/cm, they will coincide
within the limits of thickness of the line.

The solution of a nonuniform evolutionary equa-
tion are the harmonic functions of time t with the
coefficients

where an and bn are real constants which are deter-
mined from the initial conditions, and “c.c.” are the
terms that are complex conjugate to the written ones.
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Thus, on the basis of (1), (11), and (15) for the form
of surface of the oscillating uncharged drop in the
external uniform electrostatic field, we obtain the fol-
lowing analytic expression:

(19)

Thus, the form of the disturbed surface of a sphe-
roidal drop in the external field is written in the first
order of smallness in the dimensionless amplitude of
oscillations ε and in the linear approximation in the
eccentricity squared e2.

VALUES OF POLARIZATION CHARGES

The values of polarization charges of each of the
halves of the disturbed surface of the drop r(θ, t) are
determined by the following equations:

(20)

Here q+ is the positive and q– is the negative polarizing
charges, and r(θ, t) is determined by (1).

Let us study the positively charged half of the drop,
writing the induced charge in (20) and expressing it
through the surface charge density

 on the
disturbed surface of the drop r(θ, t) in the following
form:
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Fig. 2. Dependence of the value of the positive polarization
charge of drop q+ on time calculated at E0 = 1000 V/cm
(∼8 × 10–3 E0cr) and other physical values indicated in Fig. 1.
Curve 1 corresponds to the initial excitation of the equilib-
rium form of the drop surface in the linear approximation in ε
of the form εP2(μ); curve 2, ; curve 3,

.
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(21)

we take into account that   +

.

Inserting into (21) the expansion for the electric
potential from (12) and the normal vector for the dis-
turbed surface of the drop to the accuracy of the terms
∼ε taking into account (14) and (17), we find the value
of the positive charge on the disturbed surface of the
drop r(θ, t):

 (21a)

The expressions for the coefficients G1(n) and G2(n)
will be placed in Appendix 1 (because of space limita-
tion). It is seen that part of expression (26), which
depends on time, contains the terms ∼ ε and ∼εe2. It is
also noteworthy that E0 ∼ e.

Figure 2 illustrates the dependences of q+ on time
according to (21a). As is seen, the value of the induced
charge periodically changes with time. In the calcula-
tions, for precision, the eccentricity of the uncharged
drop in the external electrostatic field was accepted as

the definite relation  [14].
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Similarly, for the second half of the spheroidal
drop, the value of the negative polarization charge will
differ from (21a) just by the sign.

THE MODEL OF THE OSCILLATING DIPOLE
Thus, the uncharged drop polarized in the external

electrostatic field can be represented as a system of two
polarized charges equal in magnitudes but opposite in
signs (which change in value during the oscillations of
the surface of the drop), shifted for some distance
smaller than the drop diameter relative to each other.
It is reasonable to introduce into the study the “effec-
tive” centers with the positive and negative charges,
which are determined by the following relations:

These centers will be located along the symmetry
axis of the drop (because of the symmetry of oscilla-
tions), and during the oscillations of its surface, they
will also oscillate. Note that their oscillations will
occur in antiphase relative to each other (the centers
will come close to each other and move away from one
another). In other words, we shall get the “effective”
dipole [8]

(22)
which will oscillate and simultaneously radiate elec-
tromagnetic waves.

The intensity of the dipole is determined by the
known expression [16], p. 213

(23)

According to (23), the analytic expression for the
power of the electromagnetic radiation of a unit drop
with consideration of (22) is easy to obtain. For this,
we need only the analytic expression for the vector of
displacement of the center of the induced charge (e.g.,
positive) of the spheroidal drop . The general form
of it is as follows:

The radial unit vector  of a spherical system of
coordinates is related to those of the Cartesian system
of coordinates:

(24)
Since the vector of intensity of the electric field is

directed along the z axis, the displacement of the cen-
ter of the charge of the drop in the plane x, y does not
occur:
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Fig. 3. Dependence of displacement of the center of posi-
tive polarization charge of the drop Rqz on time and phys-
ical values accepted in Fig. 2. Curves 1—3 correspond to
the same accepted values as in Fig. 2.
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Taking into account (24), we shall write the projec-
tion of the displacement vector of the center of a posi-
tive polarization charge along the z axis in the form

(25)

After the integration of a half spheroid S1, it is easy to
find

Inserting into this expression the value of the
induced charge (21a), we shall obtain a resultant
expression for the displacement of the center of the
positive induced charge of the uncharged spheroidal
drop along the z axis in the first order of smallness with
respect to the disturbance of the surface and the
eccentricity squared:

(26)

Coefficients G3(n) and G4(n) are shown in Appendix 2.
It is seen that the part of (26) that depends on time
contains the terms ∼ε and ∼εe2.

Figure 3 shows the dependences of Rqz(t) for the
positive induced charge according to (26). It is seen
that Rqz periodically changes with time.
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Similarly, for the second half of the spheroidal
drop, we shall obtain the solution for the displacement
of the center of the negative polarization charge,
which differs just by the sign.

In order to obtain numerical estimates of the radi-
ation intensity, let us preset the initial conditions in the
form of the initial deformation of the equilibrium
spheroidal form of the drop and the equality to zero of
the initial speed of movement of the surface:

 (27)

where hj are the coefficients determining the partial
contribution of the jth oscillation mode in the total
initial disturbance and  is the set of values of the
numbers of the initially disturbed oscillation modes.

Satisfying the initial conditions of (27), for the real
constants of an and bn, we shall get the following val-
ues:

 ( ),

where δj,n is the Kronecker symbol.
As a result, we shall write the amplitudes of the first

order of smallness in the expression for the form of the
surface of the oscillating drop as follows:

.

Using the dimensional variables in the obtained
expression, we shall derive on the basis of (23) the
resultant expression for the intensity of the electro-
magnetic radiation of the uncharged spheroidal drop
that oscillates in the external electrostatic field.
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(28)

The expressions for the coefficients  

and  are in Appendix 3.
It is easy to see from (28) that the expression for the

intensity is substantially nonlinear, namely, there are
two small parameters in the problem, ε and e2 (note
that E0 ∼ e). As a result, (28) contains the products of
small parameters up to ∼ε5e10.

Using (28) makes it possible to estimate the value
of intensity of the electromagnetic radiation of various
liquid-drop systems of artificial and natural origin,
e.g., convective clouds.

A possible source of the electromagnetic radiation
is connected with oscillations of the main mode of the
finite amplitude of droplets that are met most often in
clouds from 3 to 30 μm. Concentration n of such drops
in a cloud is ∼10 cm–3 [17], and the oscillations of the
main mode are connected with the motion of drops
relative to the medium [18]. In addition, a high ampli-
tude of oscillations of the cloud drops can be caused
for different reasons: coagulation; disintegration into
smaller drops as a result of collisions or realization of
electrostatic instability; hydrodynamic and electric
interaction with the drops f lowing nearby; aerody-
namic interaction with a developed small-scale turbu-
lence typical of the thunderstorm clouds. The ampli-
tudes of oscillations of cloud drops can reach tens of
percents of the drop radius according to the data of the
field studies [19, 20].

For the possible source of the electromagnetic
radiation connected with the oscillations of small
uncharged drops in the electrostatic field, let us esti-
mate the intensity of the background dipole electro-
magnetic radiation when the displacement of the cen-
ters of polarization charges results from the mode
excitation j = 2. For the numerical estimations at j = 2,
ε = 0.1, h2 = 1, σ = 73 dyne/cm, ρ = 1 g/cm3, R = 10 μm,
and E0 = 50 V/cm. Then, it is easy to get I ∼ 1 × 10–28 μV
from (28) at a frequency of ≈100 kHz.

It is noteworthy that contrary to the results
obtained for the intensity of the dipole radiation of the
oscillating charged drop [2], in the situation of the
uncharged drop oscillating in the uniform electrostatic
field discussed in this work, the dependence of the
intensity on the drop radius is absent (which is also

seen from the analytic expression (28) if we take into
account the dependence of frequency on the radius).
Upon variation of the drop radius, only the radiation
frequency changes.

If we accept that all drops oscillate in-phase, the
integral intensity of the electromagnetic radiation
from the cloud 10 km in diameter will be N times
higher than that of a single drop (N is the number of
drops in a cloud). In this case N ≈ 5 × 1020 is more;
hence, the radiation intensity from the cloud is Iin ∼
5 × 10–8 μV. This radiation can be dependably regis-
tered by the radio-receiving equipment [21, p. 24], see
also [3, 6]. The in-phase oscillations of a single drop
can appear in a thunderstorm cloud at an abrupt
change in the intensity of the in-cloud electric field,
which occurs at a lightning discharge [6, 22]. If the
oscillation phases are independent of each other, the
integral intensity will be  times higher than the
intensity of radiation of a single drop (N is a number of
drops in a cloud) [6].

Figure 4a illustrates the dependences of the inten-
sity of the electromagnetic radiation of a single
uncharged drop on the intensity of external electric
field calculated using (28): curve 1 is the frequency of
oscillations in the expression for the intensity (28)
determined using (18); curve 2 is the frequency of
oscillations determined using the modified expression
which goes to zero at a critical intensity of the field
(curve 3 in Fig. 1). Figure 4 demonstrates that, in the
region of small values of intensity, with an increase in
the latter, the radiation intensity rapidly increases.
Curve 1 goes somewhat beyond the region of its appli-
cability, which is determined by condition e2  1, but
its extrapolation is presented for illustrative purposes.
In the area of strong fields, if we determine the fre-
quency using the modified expression and curve 2 is
valid, with an increase in the intensity, the radiation
intensity reaches its maximum (at E0 ∼ 80 kV/cm),
and then it starts to decrease (see curve 2, Fig. 4a),
since at a critical value of the field the oscillation fre-
quency approaches zero.

Figure 4 shows the curves which refer (for illustra-
tive purposes) to the critical (for realization of the
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Fig. 4. Dependences of intensity of electromagnetic radiation of a unit uncharged drop oscillating in an electrostatic field (a) cal-
culated according to (28) (curve 1) and intensities of electromagnetic radiation of the unit uncharged drop with the modified fre-
quency (the coefficient at eccentricity is 1.74) (curve 2) calculated using the same values as in Fig. 1; (b) the same dependence,
but calculated in the region of small values of intensity.
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electrical instability of the drop) values of the field
intensity. In reality, it seems reasonable to study
uncharged cloud drops only in weak fields [23]. How-
ever, we can also take into account that the presence of
weak charges on drops will not significantly strengthen
the intensity of their electromagnetic radiation and
will expand the study into the region of strong fields.

Figure 5 shows the dependence of the radiation
intensity on the density of the liquid and the value of
its surface tension coefficient (it should be emphasized
that according to (28) the radiation intensity depends
on the density of the liquid and the value of the surface
tension coefficient not only through the frequency but
also through the eccentricity).
SURFACE ENGINEERING AND APP

Fig. 5. Dependence of radiation intensity (the units of
measurement are 10–28 μV) of a unit uncharged drop on
the value of surface tension coefficient σ (the units of mea-
surement are dyne/cm) and density of liquid ρ (the units of
measurement are g/cm3) calculated at E0 = 1000 V/cm
and the same other values.
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CONCLUSIONS

The electromagnetic radiation of an uncharged
drop of a conducting liquid oscillating in an electro-
static field is determined by the radiation of the
charges that move at a growing rate and that are
induced in the drop by the external electrostatic field.
Comparing the charges with opposite signs, which are
induced at the opposite halves of the drop, and the
“effective” charges at the drop axis, we obtain an
oscillating dipole, whose moment is modified during
oscillations. Using the dipole radiation, we can model
the radiation of the uncharged drop that oscillates in
the electrostatic field. The radiation itself is revealed in
the nonlinear asymptotic calculations, and it is dipole
unlike quadrupole radiation, which is detected in the
linear calculations and is by 1014–1015 times less
intense than the dipole one, and which actually does
not affect the total intensity.

APPENDIX 1

 The analytic expressions for the coefficients G1(n)
and G2(n) in (21a):
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APPENDIX 2
 The expressions for the coefficients G3(n) and

G4(n) in (26):

APPENDIX 3

Analytic expressions for the coefficients 

 and  in (28):
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