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INTRODUCTION

It has been demonstrated in recent research studies
(e.g., [1]) focused on electrochemical co-deposition
of alloys containing Co and W that nucleation plays a
key role in obtaining these elements (nanoparticles,
NPs) upon the formation of galvanic coatings consist-
ing of nanostructures. Let us mention right away that
although nucleation is always an appreciably complex
kinetic process (e.g., [2, 3]), the investigation of the
tendency of the formation of these structures from
NPs may primarily depend on using a correct model
for calculating the thermodynamic functions.

This study aims to discuss the possibility of assess-
ing the NP size by finding the functional relationship
between the thermodynamic parameters. We believe
that this is of prime interest in the elaboration of the
theory of processes related to nanonucleation (in par-
ticular, in electrochemistry). Nanonucleation is
broadly understood both as a process of electrodepo-
sition of NPs and etching nanodots (nanoholes).

Let us provide explanatory estimations from [1],
which in particular allow one to assess the relevance of
this theoretical study. Weston et al. [1] applied the
model that was used in the Cahn–Hilliard–Hillert
(CHH) theory [4–10] to interpret the fabrication of
nanocrystalline coatings from an intermetallic com-
pound with a composition close to that of Co3W.
According to this model, the size of the nanostruc-
tures being separated (NPs or concentration f luctua-
tions that correspond to the NP size) is assessed using

the formula derived in the CHH theory and is written
as (the notation is taken from [1]):

(1)

where λ is the wavelength corresponding to the NP
size and is estimated as ~(6–10) × 10–9 m. The magni-
tude of λ is related to the macroscopic properties of the
coating, such as its microhardness (in the well-known
interpretation of the Hall–Petch relations).

Parameter K can be denoted as a gradient energy
term (the details are provided below) that is deter-
mined by the value ~(10–8–10–10) J/m and Gxx is the
specific energy due to the change in chemical potential
as the NP phase is separated. According to [1], this
parameter strongly depends on the ratio between the
Co and W concentrations in the coating. This specific
energy can vary over a broad range, e.g., ~(1–10) ×
109 J/m3. The alteration in NP size can be related to
changes in the Gxx parameter, which needs to be substan-
tially varied to interpret the experimental data. The latter
statement is one of the conclusions drawn in [1].

Weston et al. [1] further demonstrated that at a cer-
tain tungsten concentration in the deposited layer, the
NP size decreases abruptly, which is supposed to cor-
respond to formula (1). The Gxx parameter is expected
to change by no less than an order of magnitude.

We would like to discuss the estimation of the
parameters included in formula (1) more thoroughly.
Thus, the following reasoning can be used to estimate K:

( )≈ 1/2λ 4π ,xxK G
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the phenomenological parameter of specific surface
energy σin, which has the order of magnitude

σin ~ (0.1–1) J/m2, (2)

should be multiplied by the effective film thickness of
the surface layer Δin, for which the following approxi-
mation can be used:

Δin~ (0.1–1) × 10–7 m. (3)

Hence, the relationship

(4)
is proposed to assess the K value.

K ~ 10–8 J/m is used for further estimations [1]. If
Gxx ~ 1010 J/m3, the size of the NPs (the λ value
according to [1]) lies in the nanosized range, which
corresponds to the experimental data.

Meanwhile, the theory used in [1] is similar to the
theory of micromagnetism [11–13], where the domain
wall (DW) with size δ (a parameter identical to λ) is
determined in the Bloch–Landau–Lifshitz–Döring
(BLLD) theory as

(5)

where α ~ 10ˉ11 J/m is the exchange interaction energy
(i.e., the value smaller than K from (1) by several
orders of magnitude) and Aa is the anisotropic energy,
which is also lower than the corresponding Gxx value.
In crystalline hard magnetic materials, the anisotropic
energy can be of the order of magnitude ~105 J/m3,
while in soft magnetic and amorphous materials,
~1 J/m3. The order of magnitude of the size of DW
can be easily estimated: it is greater than the size of λ
(i.e., a nanoparticle) by several orders of magnitude
and corresponds to the microsized scale. Except for
the numeric magnitude, both theories utilize at least
the same calculation formulas and, therefore, the
same mathematical models.

Hence, this work, looking ahead towards the fur-
ther studies of this series, was broadly aimed at build-
ing the appreciably simple mathematical models to
describe the nucleation phenomena; the parameters
included in the final formulas need to be experimen-
tally accessible. One of the major requirements for the
theory described below is the possibility to obtain ana-
lytical expressions for the size of an equilibrium
nanoparticle, which is a crucial condition for the prac-
tical prediction of coating properties upon electrode-
position. This will allow us to find and expand the area
of application of the theory and obtain new results.

We suggest using the following order of presenting
the material to achieve this goal:

(1) To ascertain the relationship between the earlier
nucleation theory with the CHH theory [4–10] pro-
posed in [1];

in inσK Δ∼

( )≈ 1/2
aδ α ,LL A

(2) To discuss the example of the theory variant
close to the CHH theory but taking into account the
case when the shape of an NP approaches a cylinder
shape; and

(3) To study the possibility of wider use of the sim-
plified variant of the theory similar to the CHH theory
for the problem of phase transitions in the case when
the shape of the resulting NPs is noncylinder.

We suggest that the key result of the study should be
determining the role of each theoretical model in the
problem of investigating an electrochemical NP,
which emerges during the formation of galvanic coat-
ings, similar to the case discussed in [1].

In the first part of the study, we will discuss the old
variants of the nucleation theory in the ideology pro-
posed by J.W. Gibbs.

The main focus is placed on generalizing the results
of these theories; some new conclusions have been
drawn in our opinion. The main idea is to demonstrate
the relationship between the previous theories and the
Landau theory of phase transitions that has been fur-
ther developed into the Ginzburg–Landau–
Abrikosov (GLA) theory.

In our next articles we intend to report the results of
the original studies of the author that are primarily
based on the chiral models used in modern statistical
physics, the theory of micromagnetism, and the the-
ory of elementary particles. In particular, this will
allow considering only the two-dimensional models.
A simplified version of the theory will be proposed to
study the higher dimensional models.

BRIEF HISTORY: THE CURRENT STATE
OF THE PROBLEM AND THE LINE

OF RESEARCH IN NUCLEATION THEORY
Let us provide a brief scheme showing how the

nucleation theory has been developed in a simplified
table that makes no claims to thoroughly cover this
topic, in the same order as it is given in the text of this
article.

This scheme of development of the nucleation the-
ory is far from complete (according to the citation) and
is appreciably simplified. However, a number of the
most interesting ideas of nucleation theory in the
author’s opinion are presented in the references sec-
tion. In this case, it is by no means a comprehensive
bibliography but just shows the overall tendency of
theory development (and only from the author’s point
of view). References to other modern directions of
nucleation theory are provided below.

However, if one makes a rougher classification, all
theoretical studies could be subdivided into two parts:

(1) Thehe thermodynamic theory that studies the
stage of generating the critical equilibrium size of a
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nanoparticle nucleation center (in our classification it
is mostly items 1, 2, 4, 5, and partially 6);

(2) The kinetic theory of growth of a new phase
after a critical size is achieved (in our classification, it
is 1, 3, and partially 6).

Only the first part (the processes of formation of
particles of a critical size) will be studied in this article.

The key result of the kinetic theories is that after a
nucleation center of a critical size is formed, its growth
slows (at a different rate in different theories). Other
critical nucleation centers are typically formed during
this period of time. Therefore, the energy relationships
emerging during the description of the first stage of
nucleation are of interest for the electrochemical
deposition discussed in this article. We will not take
into account the coalescence processes and all the
variants of the kinetics of absorption of smaller nucle-
ation centers by larger ones. Let us assume that in the
experimental situation under discussion [1] everything
takes place in the Δr region where an NP is formed
(Fig. 1).

Khachaturyan [10] demonstrated that the develop-
ment of a quasi-periodic concentration instability can
be suppressed. This statement was subsequently
proved by the calculations made by Binder [36, 37].

In this study, we will not focus on the questions
related to proving the possibility of the quasi-periodic-
ity of the NP segregations, although they often play a
crucial role. Let us discuss the dependence between
the NP size and the thermodynamic parameters; the
questions related to quasi-periodicity need to be dis-
cussed separately, since more complex models need to
be developed in this case.

The formation of nanocrystalline structures is
often determined by nucleation kinetics, with the ther-

modynamics of the nucleation process being only an
elementary component. However, a simplified con-
sideration can be used for the nucleation process
(hereinafter, referred to as steady-state). In this case, if
the most plausible size of NPs determined from the
simple thermodynamic relations can be generated, the
nucleation kinetics can be regarded as a chain
sequence of processes. First, an NP nucleation center
is formed in a f luctuating manner. This very nucle-
ation center typically grows to reach the equilibrium
size rc. After it passes over the so-called equilibrium
energy barrier, it can continue growing (its growth is
described with a series of Markovian processes or, in a
simplified manner, by the Frenkel–Zeldovich equa-
tion [2, 3, 22–24]); however, this growth will slow.
The Einstein–Fokker–Planck equation [23] can be
used to describe the kinetics in the simplest case.

The so-called process of steady-state nucleation is
known to often take place in electrochemistry [1–3].
As a model, it ends at the stage when an NP with size
r ~ rc is formed. The size of NPs and their relationship
with the energy parameters can be derived based on
the quasi-equlibrium thermodynamics. The further
manipulations are reduced to the following semi-qual-
itative reasoning [19] according to which the dimen-
sionless rate of a steady-state f low of the formation of
the most plausible nucleation centers will be written as

(6)

where ΔEc is the activation energy of the formation of
an equilibrium nucleation center. The dimension of this
activation energy is [J] per elementary particle (or degree
of freedom). Hence, the dimensionless parameter

(7)

{ }−Δ∼ cexp ,J E kT

= Δ cG E kT

Table

1. The thermodynamic nucleation theory (TNT) J.W. Gibbs theory [14]
Theories proposed by M. Volmer, A. Weber, T. Erdey–Gruz,
R. Becker, and W. Döring [15–18]
Theory proposed by Ja.I. Frenkel [19]

2. The phenomenological theory of phase transi-
tions

Landau’s theory [11, 20, 21].
Ginzburg–Landau (GL)
theory: GLA theory

3. The kinetic methods for calculating the nucle-
ation time

Methods proposed by A.N. Kolmogoroff (W. Johnson, R. Mel) and 
methods proposed by Ya.B. Zeldovich [22–26]; methods proposed by 
I.M. Lifshits ,V.V. Slezov, and S. Wagner [27]

4. The theory of spinodal decomposition as 
applied to the nucleation theory

The theory proposed by J.W. Cahn, D.J.E. Hilliard, M. Hillert [4–9] 
and development of the theory by A.G. Khachaturyan [10]

5. Statistical nucleation theory for the case of a 
classical (continual) nonlinear two-dimensional 
model (the Heisenberg sigma models)

The instanton theory developed by A.A. Belavin and A.M. Polyakov 
[28] (as well as G. Woo [29]) and used by S.A. Baranov et al. [30–33] 
for nucleation and the theory of micromagnetism

6. Directions and other variants of the nucleation 
theory

F.F. Abraham; K. Binder; J.D. Gunton, J.S. Langer; S.R. Martin; 
O. Penrose; T.L. Hill; R. Kaishev; D. Kashchiev et al. [34–49]
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is known as the Gibbs number and characterizes the
rate of equilibrium nucleation.

The preexponential factor, which contains the so-
called Zeldovich factor and a combination of other
constants [2, 3, 14–19, 22, 23], as well as the possible
entropy component, is omitted in formula (6). All the
preexponential kinetic coefficients are clearly import-
ant, and a number of studies have focused on their cal-
culation. However, it is always possible (and should be
done) to single out this exponential component of the
process related to an important physical parameter,
the activation energy, when analyzing an experimental
situation.

In this study, the solution of the problem will be
reduced to calculating the change in the free energy
needed for the formation of an NP, which actually, up
to a constant, coincides with the activation energy and
is a part of (6) and (7). However, this definition of the
activation energy is not unequivocal. Therefore, we
will subsequently often speak, instead of the activation
energy ΔEc, about the change in the free energy of the
ΔGc(N) system (related to a certain physical model)
required for the formation of an NP of size rc, which is
prescribed in an abstract multidimensional (2, 3…N-
dimensional) space.

Hence, the range of problems to be solved has been
outlined: estimation of the most plausible radius rc of
an NP and the activation energy ΔEc (or changes in the
free energy of the ΔGc(N) system depending on the
thermodynamic parameters that are determined or
calculated for this specific system). Let us start the dis-
cussion with the conventional Gibbs theory. We will
demonstrate that it does not contradict the CHH the-
ory and, therefore, the GLA theory.

DEVELOPMENT OF SOME REPRESENTATION 
UNDER THE GIBBS NUCLEATION THEORY

Historically, a number of researchers, who lived in
different time periods and studied different thermody-
namic and kinetic processes, have made an equal con-
tribution to the classical approach to the problem of
nucleation. The fundamental ideas have been devel-
oped by Gibbs (e.g., [14]). Volmer, Becker, Döring,
and Frenkel subsequently developed these ideas to a
different extent [15–19]. This list of scientists associ-
ated with the classical nucleation theory can be con-
tinued; thus, let us denote this theory as the classical
nucleation theory (CNT).

Below we will extrapolate the CNT to an abstract
multidimensional space by assuming it to be a topo-
logical projection when taking into account the coor-
dination spheres following the first one. Simultane-
ously, we will demonstrate that the CNT and the
CHH theory at least do not contradict one another
using fairly simple examples. Let us note that during
the formation of a spherical nucleation center of radius
rN in three-dimensional space (the so-called droplet

model, which will be discussed below), the change in
the Gibbs free energy GN (N =3) consists of the differ-
ence between two energies: the positive surface energy
G3P and the negative volumetric energy G3V (which
reduces the potential barrier for the formation of
nanoparticles) [14–19]:

(8)
where γ3 is the surface energy depending on surface
tension, which usually varies within the range of
~(0.1–1) J/m2. The μ3 value is the gain in the differ-
ence between chemical potentials resulting from
nucleation (J/m3). Equating the derivative of G3 with
respect to variable r to zero will yield the r3c value:

(9)
where for our situation, kN = 3 = 2.

Substitution of r3c from Eq. (9) into Eq. (8) allows
one to calculate the dependence between the activa-
tion energy and γ3 and μ3 [14–19]:

(10)

This parameter acts as the energy barrier (Fig. 2) in the
CNT. Let us mention that ΔG3 is determined as one-
third of the surface energy GP3 [2, 3, 14–19]:

(11)
Hence, in the CNT it is sufficient to know the surface
energy value GP and determine which portion of it
generates ΔG (it will be demonstrated below that in the
multidimensional CNT model this is reduced to a
multiplier factor, which is related to the dimension of
the model geometry). If the nascent NP has a shape of

( )2 3
3 3 3 3 34π γ 4 3 π μ ,P VG G G r r= − = −

3 3 3 3γ μ ,cr k=

( ) ( )3 2
3 3 316π 3 γ μ .GΔ =

3 3 3.PG GΔ =

Fig. 1. Qualitative appearance of relative changes in distri-
bution function (normalized to equilibrium distribution
function) depending on NP size, where rc are most proba-
ble NP values of radius (corresponding to λ from Eq. (1)
[1–3]). Inset in top right-hand corner shows diagram of
changes in radii of formed nanoparticles depending on num-
ber of all NPs (along Y axis) in space of their radius r, with
maximum lying near rc. Particles smaller than rc either reach
this size or are destroyed. Particles larger than rc are of no
interest, since particles of size rc emerge in abundance.
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a faceted crystal instead of spherical shape, this can be
taken into account under the droplet model by adding
the known multiplier factors Θ in (10) or (11) (e.g.,
[3]). Three-dimensional nucleation on a substrate,
when the nanoparticle volume and surface area
depend on a single parameter, the contact angle, is
also discussed. In this case, it is sufficient to add the
multiplier factor Φ (e.g., [3]) in Eq. (11). It has been
proved [3, 41–45] that a combination of these cofac-
tors allows one to make allowance for all similar cases
of nucleation (we will specify the other cases below).

Let us discuss the two-dimensional situation as an
example, when the surface energy is set on a circle (it
is determined by the γ2 value with dimension J/m),
while the increment of chemical potential μ2 has the
dimension J/m2. Formal multiplication by the effec-
tive thickness of a film being formed yields these val-
ues from the parameters used in the case of three-
dimensional nucleation. Let us also mention that two-
dimensional nucleation often takes place as heteroge-
neous nucleation on the surface [3, 41–47], making it
necessary to make a correction (in particular, for the
surface tension energy). However, we refrain from
making the notation too cumbersome (e.g., see [3,
41–47] for more detail); thus, the following formulas
will be obtained for the two-dimensional Gibbs free
energy G2, similar to the previous case:

(12)

( )

= −
=

Δ = =

2
2 2 2

2 2 2 2 2
2

2 2 2 2

2π γ π μ ;
γ μ , where  = 1;

and 2 π γ μ .
c

P

G r r
r k k

G G

The generalized result can be obtained by intro-
ducing the concept of a multi-dimensional system.
The corresponding formulas (see below) can be used
and the phenomenological parameters (γn as the spe-
cific surface area that is also related to the surface ten-
sion; and μn, the specific change in the internal
energy) can be determined for this purpose. These
parameters need to be additionally defined because of
the changes in the space dimension. Without getting
into details, let us report the result, namely, how the rnc
and ΔGn depend on the space dimension introduced.
The nanoparticle radius (when the multimeric Gibbs
free energy has an extremum) is determined as

(13)

while the energy barrier

(14)

where the physical meaning of GnP is the surface
energy and

Spinodal decomposition is known to be an almost
activationless process [2], indicating that ΔGn
decreases.

The important threshold case also follows from
these formulas. Hence, in the one-dimensional space,
the system cannot be divided into a finite number of
sections corresponding to new phases. Division into
new phases in the one-dimensional case takes place
endlessly [22], which corresponds to

since k1 = 0.
The generalized relationship for factor k(i) can be

obtained for the convex surfaces in the droplet model
from the general principle of the CNT (the functional
dependence of γ on coordinate r is neglected here):

which makes it possible to estimate the energy barrier
ΔG if the surface energy and the introduced value k(i)
are known:

The following result can be expected for electro-
chemistry: in ΔGn, the degree of dependence on the
increment of the chemical potential can differ from
the results derived from formulas (8)–(12). According
to [3, 16, 17, 41, 42], these values can be correspond-
ingly proportional to the cathode overpotential ηk.
Then, the following relationship can be observed
depending on the dimensionality of the system:

(15)

( ) ( ) ( )1 γ μ , 1 ,nc n n nr n k n= − = −

,n nPG G nΔ =

( ) ( ) 1γ μ .n n
nP n nG −

∼

1 0,cr =

( ) ( )
( )

∼

'
,

'
S r r

k i
V r

( )[ ]1 .i PG G k iΔ +∼

( ) ( ) 111 μ 1 η ,
k

nn
n nG −−Δ ∼ ∼

Fig. 2. Schematic representation of energy barrier in region
of nanoparticle formation for three-dimensional theory.
This scheme is also valid for two-dimensional theory.
Dashed curve shows quadratic dependence for barrier
ΔG2, which is accurate for homogeneous two-dimensional
nucleation [3]). Inset in top right-hand corner shows sche-
matic diagram of surface (ascending) and volumetric
(descending) energies that result in formation of this
energy barrier ΔG (this schematic diagram is valid for any
space dimensionality ).

ΔG3 G

0
rc

ΔG

r3c r
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which was studied experimentally for n = 2 and 3,
according to formulas (8)–(12) (e.g., [3, 17, 41]).

Some other general conclusions follow from
Eqs. (13) and (14). Hence, if the short-range environ-
ment involves the coordination spheres following the
first one, the NP radius tends to infinity, while the
energy barrier required for the formation of a nanopar-
ticle tends to zero. These conclusions support the
validity of the ideas that the CNT is based on.

Since ΔG (see Eq. (14)) depends on the surface
energy GP and a geometry factor (e.g., ki and Θ or Φ),
determination of the activation energy is reduced
(under the CNT) to studying the surface tension [43–46].
In this context, let us explain how to attain formal
agreement between formulas (1)–(5), which are
derived from the CHH (or BLLD) theory and, for
example, formula (9) or (12), derived from the CNT.
Let us discuss the situation with appreciably small NPs
when the dependence between surface tension and the
NP size is expected to manifest itself. (As some depen-
dences of this kind were previously discussed in [43–
47], we will not thoroughly analyze this dependence.)
Let us make the simplest assumption about changes in
surface tension as the NP decreases, namely,

(16)

where  is the introduced dimensionless
parameter and Δin is the thickness of the surface layer
(see Eq. (3)) (the CNT is inapplicable if rrel < 1 but is
conjugated with the CHH theory as demonstrated
below). Then, a formula similar to (8) and (12), with-
out allowance for the factor of space dimensionality
kn, will be written as

(17)

and the transition to formulas (1)–(5) follows from the
CHH theory:

(18)

which is valid if

(19)
Hence, there is a formal coincidence between the

CHH theory and the CNT. The suggested consider-
ation is not accurate, since one should also take into
account the derivative of γeff when finding the mini-
mum of the Gibbs free energy G. One of the variants of
the theory was discussed in [45]. The dependence
between the surface tension and particle size was
found using the Gibbs–Tolman–König–Buff equa-
tion. The resulting equilibrium size of the NP was
obtained in the following form:

The physical meaning of this formula can be inter-
preted as follows. If a particle is larger than Δin, its size
corresponds to the result obtained using the CNT. If a

≈eff relγ γ ,r

= Δ >rel in 1cr r

≈ ≈ Δeff inγ μ γ μ,c cr r

( )≈ Δ 1/2CHH
inγ μ ,cr

→ Δ ≡ Δin in inσ γ;K μ → CHH.G

( )( )CNT CNT1 δ .c c T cr r F r+∼

particle is smaller than Δin, the rc corresponds to a cer-
tain parameter δT. Rekhviashvili et al. [45] demon-
strated that F is the analytical function from which the
δT parameter corresponding to the so-called Tolman
length can be singled out by series expansion. Com-
parison to the result obtained using the CHH theory
enables determining the physical meaning of this
length. The δT length agrees well with the size λ or δLL.
We will discuss the theories that initially did not
involve singling out the surface layer in NPs in more
detail; the question about the consistency between the
activation energy in the CHH theory and CNT will be
reported as a conclusion.

THE THEORY DEVELOPED BY LANDAU 
(GINZBURG–LANDAU–ABRIKOSOV) 

AND THE THEORY BY CAHN–HILLIARD–
HILLERT WITH RESPECT TO 

NANONUCLEATION
First, we will discuss the earliest variant of the Lan-

dau theory (LT) [20, 21] and then derive formulas (1)–
(5). The first postulate of the theory consists in assum-
ing that it is possible to expand the free energy in series
with respect to a certain parameter called the order
parameter. This parameter (using the theory of sym-
metry) is supposed to characterize the phase transi-
tion. As previously mentioned in [30–32], the variant
of CNT can be regarded as the simplified variant of
the LT, where the following value is used as an order
parameter:

(20)

Of course, one can choose a different order parameter
(e.g., see [10, 20–24, 47–49]); however, it is import-
ant to demonstrate that the CNT and the LT can be
mutually reduced to one another. Therefore, the fol-
lowing expression can be easily derived from the
results of the previous section for the two-dimensional
nucleation centers for the increment of Gibbs free
energy (see details in [3]):

(21a)

A similar expansion near rc is also obtained for the
three-dimensional nucleation centers, but up to terms
of the order  (see details in [3]), which is usually
simplified as

(21b)

where  
(Let us emphasize once again that in the general case

there will be a term with the power  As
mentioned previously, formula (21a) is accurate for two-
dimensional nucleation centers if complications asso-
ciated with heterogeneous nucleation are not taken
into account. We note that expansion can be per-

( ) ( )= − 2 22
TTNη .c cr r r

( ) ( )Δ = − −
2 2 2 2

2 2
2 2 22π γ π γ .c c c cG r r r r r

3ηL

( ) ( ) ( )3 3 3

2 2 2
3 1 ,c c c c cG A r A r r rΔ − −∼

( ) ( )3

2
34π 3 γ ,c cA r= ( )3

2
1 34πγ .c cA r=

−
3 3

3 3( ) ( ) .)c cr r r



130

SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY  Vol. 53  No. 2  2017

BARANOV

formed for other parameters as well, or the thermody-
namic function can simply be postulated.

The next (second) postulate of the LT makes allow-
ance for the dependence between thermodynamic
energy and thermodynamic functions (temperature,
pressure, etc.) by reducing this relationship to the
dependences of the serial expansion coefficients on
these parameters at a certain order parameter [20, 21].
Another linear term with respect to the order parame-
ter should also be added to the interaction with the
external field.

First, let us discuss in more detail the simplest, ear-
lier variant of the LT described in [20, 21]. We will
combine the fundamental views about changes in the
symmetry of a thermodynamic system upon phase
transition; although symmetry is a qualitative param-
eter, the introduced order parameter ηL allows one to
justify the shape of expanding the thermodynamic
potential with respect to it into a series:

(22)

where the serial expansion coefficients, as mentioned
previously, depend on thermodynamic functions. The
equality of some serial expansion coefficients to zero
results, in particular, from еру symmetry of the phase
obtained during the phase transition. The linear term
corresponding to E ηL in this notation is also associ-
ated with the interaction with the external field, which
will be neglected in the further discussion. It has been
demonstrated [20, 21, 48] that the LT for the func-
tional written as Eq. (22) is the phenomenological the-
ory that allows one to describe the phase transitions
using the serial expansion coefficients obtained either
experimentally or by model calculations. In our situa-
tion, as one can easily see, the number of terms in the
expansion corresponds to the dimensionality of space
n introduced earlier (hence, Eq. (21a) suggests that
expansion to  is sufficient for the two-dimensional
space; expansion to , for the three-dimensional
space, etc.). From this perspective, expansion to the
appreciably high powers  is needed to describe the
spinodal decomposition (we will demonstrate below
that this can be avoided by making the model more
complicated).

The following relationship was assumed for the
coefficient in the quadratic term  in the first variant
of the theory [20, 21]:

where Tc is the phase transition point (which is imma-
terial in our case). This was additionally substantiated
by the fact that the corresponding summand can
become indefinitely small near the phase transition
point Tc. Symmetry of the system was also used for jus-
tifying the fact that some serial expansion coefficients
in the region near the phase transition point are zero.

( ) 2 3
0 0 0, , ,η η η η ,L L L LE p T E A BΦ = Φ + + +

2ηL
3ηL

ηn
L

2ηL

( )0 ,c cA T T T−∼

Shang-Keng Ma [48] demonstrated that the first
variant of the theory [20, 21] works poorly in the
nucleation region (region  in Figs. 1, 2) if the den-
sity f luctuations in the system are too high. Identically,
the f luctuations in order parameter ηL can also be of
macroscopic size in the spinodal region, near the
phase transition point, which should be taken into
account when further developing the theory [47–49].
Allowance for the higher powers (ηL)N is equivalent of
examining a multidimensional model in the CNT.

The CHH theory is actually based on the improved
variant of theory [20, 21], the so-called GL theory.
When discussing the further generalization of the GL
theory, we use the Hamiltonian block with specific
energy density written as [48]

(23)
where the order parameter Σ is the generalized spinor
(the linear member characterizing the interaction with
the external field is omitted for the sake of simplicity).
Let us refer to this model as the GLA model. It is
important that in this Hamiltonian, there is the mac-
roscopic relationship between blocks: namely, the
term α(∇Σ)2 in its simplest form [47–55]. We will sub-
sequently speak about the kinetic energy in the GLA
theory.

Let us illustrate how formula (1) is derived using
the particular case of Hamiltonian (23). For simplic-
ity, we will confine ourselves to two terms of expansion
and introduce a parameter for further convenience,
which determines, as we will see below, the reciprocal
value of the most probable NP radius:

(24)
We also assume that the proposed expansion was car-
ried out under the Heysenberg model (i.e., the sim-
plest spin system). Next, we proceed to the generalized
variables (the angles characterizing spin coordinates)
for which the equation [28–33] can be easily derived
from the condition of action with Hamiltonian (23),
i.e., the Euler–Lagrange equation. This equation can
be reduced to

(25)

where L is the dimensionality of the spinor space (or
the number of components of the order parameter)
and the polynomial  is
an analytical function that will be further defined for
each particular case. Equation (25) is derived from the
most general principles. In it, angle θ is represented as
the axial angle [48], e.g., in three-dimensional space.

Equation (25) for two-dimensional space will be
discussed in detail in another study. Below, we confine
ourselves to one-dimensional space; i.e., the case
when L = 1 (see Eq. (25)), which corresponds to the
CHH theory. We obtain an equation similar to that for

rΔ�

( ) ( )2 2 4
1 1α ..,H A CΣ = ∇Σ + Σ + Σ +

2
1 α .a A=

( ) ( )( ) ( )
( ) ( ){ } ( ){ }[ ]

+ −
− =

θ'' ρ 1 ρ θ' ρ
,ρ ,cos θ ρ ,sin θ ρ 0,

L
F a

( ) ( ){ } ( ){ }[ ],ρ ,cos θ ρ ,sin θ ρF a
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magnetic spin (the one-dimensional case) reported in
[11, 53–56]:

(26)

If Eq. (26) is integrated for the boundary conditions
that mean spin flip, solutions identical to those in [11]
can be obtained depending on their specification:

(27a)

However, depending on which function
 was selected, this result

can be represented in the form (as in [13] or [50–56]):

(27b)

(which is not of crucial significance for our problem).
In order to simplify the final expression when look-

ing for a partial solution, the boundary conditions
were chosen in the manner described in [11]; i.e., it
was assumed that in the extreme case

the initial values of functions are determined as

 and .

The choice of boundary conditions in the nucleation
problem is not crucial. We not that a more general case
with different boundary conditions was discussed in
[53, 55]; the qualitative form of the solution is shown
in Fig. 3.

The model described is known as the pendulum
model of one-degree-of-freedom (MP1). For our pur-
pose, both the linearized and the nonlinear models
provide the same result for the domain wall size and,
as shown below, the activation energy. However, as
mentioned earlier, it can be demonstrated for the non-
linear model that development of a quasi-periodic
concentration instability [10, 36, 37] can be sup-
pressed.

Hence, the domain wall size (see the previous for-
mulas (1), (5), (18), and (27a)) is a key parameter for
our problem, which also determines the size of the
nucleation center:

(28)

and it fully agrees with the value obtained using for-
mula (1).

The general solution for formula (26) is also often
written as [55]:

which does not change the main result written as Eq. (28).
In the mathematical theory of nonlinear equations,
this model is very convenient, since it is an example of
an integrable nonlinear equation. Surprisingly, for our
purpose, the linearized and nonlinear MP1 yield iden-
tical physical (and fundamental) results. Looking
ahead, we note that it is very important both for the

( ) ( ) ( ){ }=θ'' ρ 2 sin 2θ ρ .a

( ){ } ){ }= −cos θ ρ tanh ρ .a

( ) ( ){ } ( ){ }[ ],ρ ,cos θ ρ ,sin θ ρF a

( ){ } ){ }=sin θ ρ tanh ρa

( )ρ ρ ,→ ∞ → −∞

( )θ ρ 0= ( ) =θ' ρ 0

( )1/2δ 1 α ,LL a A= =

( ) ( )[ ]{ }= − 0θ ρ 2 arctan exp ρ ρ ,a

size of the nucleation center and, as we demonstrate
below, for the energy barrier.

Since this physical result is so important, let us also
discuss its physical meaning for the nucleation process
according to [10], which is of methodological interest.
Since nucleation is a metastable process, it is
described, for example, as the state of a constrained
extremum on the free energy hypersurface in a multi-
dimensional space. Of course, the system can leave
this metastable state and reach the state of another
minimum by overcoming the saddle point on the free
energy hypersurface that separates these two minima
(the reverse processes are also possible). These saddle
points determine the probability of metastable pro-
cesses. From considerations of the statistical thermo-
dynamics of quasi-equilibrium processes, the proba-
bility of this process is

(29)

where Q is the extremal value of the thermodynamic
activation potential near the saddle point, which
involves both the activation energy of a unit event and
energy expenditure related to changes in the state con-
figuration. All the expenditures are determined by the
Gibbs free energy of system F near the saddle point,
which actually determines the thermodynamic activa-
tion potential. Let us assume concentration c to be the
variable with respect to which we expand the free
energy in the Landau method. According to [10], we
will obtain expansion of the thermodynamic potential
with respect to variable c and the rate of variation in c
with respect to a spatial coordinate (for the one-
dimensional case being analyzed):

(30)

We obtain the Euler equations from the extremum
conditions, in a way similar to the previous one:

(31)

{ }exp ,W Q kT−∼

( )Φ = +2 2
1α ' .c A c

( )= 1'' α ,c A c

Fig. 3. Qualitative solution in form of domain wall repre-
sented as energy vectors for visual clarity.
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which can be derived from Eq. (26) by expanding
 because the linear model and MP1 yield

the same results.
The solution to Eq. (31) yields formulas (1), (5),

and (18), as well as formula (28) derived above. Kats-
nel’son and Olemskoi [52] called this case a system
with a scalar order parameter. This system clearly has
the same solution as the one-dimensional spin system
(26) with the order parameter depending on the value
L = 1.

Formulas (1), (5), (18), and (28) can also be
derived using a simpler method [51]. If we assume the
following type of expansion (not analytical, the one
having a simple pole at ηL = 0) for a certain model
energy functional (the reasoning behind this expan-
sion can be found in the Appendix):

(32)
then, after finding the extremum, we will obtain the
order parameter:

(33)
In conclusion, let us discuss the important ques-

tion about the energy barrier that we have in the CHH
or LGA models. We use the solution to Eq. (26) to cal-
culate it: it is substituted into the corresponding Ham-
iltonian and the target energy is calculated using the
formula

(34)

Meanwhile, the concept of domain wall energy can
be introduced for this energy barrier using equivalent
reasoning. The domain wall energy can be calculated
as follows (see details in [13, 50, 51]):

(35)

In the CHH theory described at the very beginning of
this article, the energy barrier is also determined from
Eqs. (34) and (35). We note that a formula similar to
Eqs. (34) and (35) can be derived from Eq. (32) using
the solution to Eq. (33). Hence, we provide this for-
mula once again in the notation assumed above and it
will be used in the following form:

(36)
Here, the energy barrier is the geometric mean of two
competing energies. Formulas similar to (35) are
derived in some other models, in particular, for the
two-dimensional theory, thus confirming its impor-
tance in the nucleation theory.

In the theory of micromagnetism, the models
yielding Eq. (35) (and Eq. (28)) have been generalized
and made more complex (e.g., [50, 55, 56]). For one

( ){ }sin 2θ ρ

( )11 2 α η η ,L LAΦ = +

( )1/2
1η α .L A=

{ } ( )
∞

−∞

⎡ ⎤Δ = + =⎣ ⎦∫
1/22 2

1 11 2 αθ' sin θ ρ α .LLE A d A

( )
−

Δ = θ∫
π/2

1/22
1 1

π/2

α 2 cos θ = α .LLE A d A

( )1/2
CHH 1α .E AΔ ∼

coordination variable (in our terminology, in the one-
dimensional case), all these complications allow one
to integrate the resulting differential equations. They
do not cause any fundamental changes in the results
that would be substantial for our problem. However,
they can be useful for many particular applications,
including the nucleation problem.

Hence, if the electrostatic interaction with the
energy density

(37)

where E is the electric field strength (E ~ ηk), is dis-
cussed as anisotropy, then when it is higher than
anisotropy, the nanoparticle size is determined by the
following formula [50, 56]:

(38)

Since this result is very important (Eqs. (35), (28)),
let us discuss the role of the energy barrier in the CNT
and the CHH theory below, in the results and discus-
sion section.

DISCUSSION OF THE RESULTS OBTAINED 
BY APPLYING THE THEORY

TO ELECTROCHEMICAL NUCLEATION

Weston et al. [1] demonstrated that the NP radius
calculated (with allowance for the estimations for the
competing energy parameters K and Gxx) using the
CHH theory agrees with the experimental data.
Hence, it is fair to assume that the CHH theory satis-
factorily describes the available experimental data on
the electrochemical codeposition of the alloys con-
taining Co and W.

The studies mentioned above explain the role of
the CNT and its limiting passage to the CHH theory,
which is possible even under an experimental situation
of electrochemical deposition. However, we believe
that the choice of a preferred theory should also be
based to a significant extent on studying the kinetics of
the deposition process. We mean the fact that, at first
sight, estimations of the energy barriers in these theo-
ries (the CNT and the CHH theory) seem to be differ-
ent.

According to the well-known ideas put forward by
Erdey–Gruz and Volmer, the rate of nanoparticle for-
mation should be related to the difference in the
chemical potential denoted as μ in the CNT and as A1
in the CHH theory. According to [17], these values can
be proportional to the cathode overpotential. Hence,
one needs to study the dependences of the rate of NP
kinetic deposition and cathode overpotential ηk. Hav-
ing determined these dependences, one could deter-
mine the validity of a certain model. However, a dis-
cussion of the possibility of implementing these exper-
iments lies beyond the scope of this paper.

( )2 ,ew E∼

( )1/2δ α 1 η .e e kw= ∼
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We now turn to comparing the prediction of the
theoretical models and the experiment. As noted in
[1], it is sufficient to demonstrate that calculation of
the size of the NP radius, with allowance for the rea-
sonably estimated values included in the formulas
from the CHH theory used there, agrees with the
experimental data obtained in those studies. However,
let us not forget that according to the LGA theory (and
the equivalent CHH theory), manifestations of the
features depending on changes in chemical potential
and, therefore, on cathode overpotential ηk are shown
in the final section of this study, which should affect
different models.

Today, we believe that there are no reliable data
about these abnormal dependences between the rate of
formation of nucleation centers and cathode overvolt-
age ηk. A possible reason for this is that the classical
experiments (e.g., [17]) are related to optical detec-
tion, or any other type of imaging, of a nanoparticle.
Hence, one can believe that there is a good chance that
nanoparticles have differentiated their surface from
their volume; i.e., their further growth occurs accord-
ing to the principles of the CNT, which has been
detected in the classical experiments [17, 41].

However, in connection with these conclusions, it
would be interesting to demonstrate that there is no
contradiction between the formulas for activation
energy in the CNT and the CHH theory, as well as in
the one-dimensional case of GLA. Indeed, the activa-
tion energy in the CNT can be determined, to an order
of magnitude, by the energy that is needed for the
aggregation of the particles and corresponds to the
chemical potential μ multiplied (for the linear case) by
the defect size, which, according to Eq. (18), is esti-
mated as

(39)
In this case, the final formula can be easily derived:

(40)
which corresponds to the formulas in the CHH and
LGA theories (e.g., compare with Eq. (35)).

The following conclusion can be drawn from the
modern views of the theory of phase transitions with
respect to the process of electrochemical nucleation.
The long-range field emerging as an electrostatic field
of the surface layer will always destroy the long-wave
fluctuations. Therefore, the chemical nucleation pro-
cess is described well by the classical models (i.e.,
those corresponding to the CNT). This statement will
be thoroughly confirmed in our next study (see also
[30–33]).

CONCLUSIONS
The classical thermodynamic nucleation theory

(TNT) is broadly discussed in this study. When
nanoparticles are small and it is impossible to differen-

( )≈ Δ 1 2CHH
inγ μ .cr

( )Δ Δ∼

1 2
inγμ ,G

tiate between the surface and bulk portions of the
nanoparticles, this theory should be replaced by the
GL theory. Cahn, Hilliard, and Hillert (CHH) [4–9]
developed this theory with respect to nanonucleation,
while Khachaturyan [10] further developed it. Some
other researchers have made a significant contribution
to the theory [34–58].

The CNT and the CHH theory were shown not to
contradict to one another; in the model discussed in
this study, they can be represented by mathematical
expressions for the rc parameter of the same form
(Eqs. (1), (5), (18), (28), and (33)). Therefore, the
regions where the CNT and CHH (BLLD) theory
coincide have been found.

In our opinion, an important methodological con-
dition has been obtained, stating that isolation of the
surface portion of energy is not required and it can be
replaced (generalized) by the expansion of the Gibbs
free energy of the system into a series with respect to
some parameters, in accordance with the Landau
theory. Generalization of the Landau theory for the
situation referred to as the GLA model, is exactly
equivalent to the CHH theory under a certain approx-
imation.

Indeed, the long-range field always exists during
the electrochemical processes as a near-electrode
layer. It will always destroy a certain type of system
fluctuations characterizing any type of phase transi-
tions. Therefore, electronucleation in electrochemis-
try is bound to behave in a classical manner close to
the descriptions in the CNT. However, we believe
(and this will be demonstrated in the next articles) that
the latter statement is not so perfect as there are some
limitations resulting from the modern fluctuation the-
ory of phase transitions.

Phase transitions in the modern fluctuation theory
of phase transitions are classified with respect to space
dimensionality (n, according to the denotations
already used in our article) and the number of compo-
nents of the order parameter (L, according to the
denotations already used in our article). Transitions
with the same dimensionality of the order parameters
belong to the same universality class. The phase tran-
sitions possessing completely different physical prop-
erties can enter this universality class. Nucleation is
usually attributed to the universality class that corre-
sponds to the Ising model with n = 3 and L = 1. There
is a need to discuss other models as well.

The CHH (BLLD) theory should be extrapolated
to the cases when L = 2 and 3, which will be done in
our further studies. This will allow us to be more spe-
cific about the application areas for each theory.

APPENDIX
The size of quantum NPs (case A) and classical

NPs (case B) can be calculated using a scheme similar
to Eqs. (32) and (33), which is proposed at the end of



134

SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY  Vol. 53  No. 2  2017

BARANOV

this article and utilizes the generalized nonanalytic
expansion of Gibbs free energy with respect to the
order parameter. We will further describe this proce-
dure more thoroughly. For now, let us present the key
methodological examples of the calculation that sup-
ports this procedure for different examples.

(1A) First, we would like to demonstrate the quan-
tum case, which allows us to determine the size of a
hydrogen atom and estimate the ionization energy of a
hydrogen atom [59, 60]. The Schrödinger Hamilto-
nian for an electron of a hydrogen atom is written as

(A1)

where ∆r is the Laplace operator. In order to solve the
problem, one needs to determine the eigenvalues and
eigenfunctions of the Hamiltonian operator.

The solution of the problem can be significantly
simplified by representing the total atom energy as a
generalized sum (identical to Eq. (33)), where the
terms of the series depend on its size aa. From the
physical considerations, this series is written as follows
(below we will explain the physical meaning of each
term):

(A2)

where for a hydrogen atom, Aa = h2/2me, Ba = e2, h is
the Planck constant, and me and e are electron mass
and charge, respectively. Let us explain how this for-
mula was derived.

The h2/[2me(aa)] value corresponds to the kinetic
energy of an electron. We use Heisenberg’s uncer-
tainty principle and obtain for the electron momen-
tum that

(A3)

note that the kinetic energy in classical physics is
determined from the expression

(A4)

The electrostatic potential energy of an electron in the
field of an atomic nucleus is determined by the second
term in (A2):

(A5)

As one can see from (A2), the total energy consists of
two competing summands. The first summand
(kinetic energy) increases the system’s energy due to
the quantum effect of increasing the electron momen-
tum when an attempt is made to reduce its localization
by prescribing atom size aa.

The second summand corresponds to the electro-
static attraction between an electron and the nucleus;
it is supposed to reduce the energy of an atom when its
size aa is reduced.

= − Δ −
2 2

e

,
2 r
h eH
m r

( ) ( )= −2
a a a a a ,E A a B a

∼ a ,p h a

( )= 2
k e2 .E p m

= − 2
a .PE e a

The minimal Ea, which is used to calculate the aa
value, is determined from

(A6)

It can be found easily by solving Eq. (A6) that

 (A7)

the Bohr radius of a hydrogen atom. By using it, we will
also easily determine the ionization energy of a hydro-
gen atom:

(A8)

(2A) Let us discuss the problem about the possibil-
ity of confining a quantum particle (we denote the lin-
ear dimension of confinement as aj) to a shallow
potential well with the characteristic dimension scale
λ and depth U0. In this case, the kinetic energy of an
electron, according to the uncertainty principle, can
be as high as

(A9)

Let us use the previous formulas to write the total
energy of a localized electron in a potential well as a
generalized sum, where the terms of the series depend
on the dimensions of the confinement of electron aj
(which can be either smaller or greater than λ):

(A10)

where λ is the dimensionality of the potential under
study (the system where an electron is located, which
can be an ultrathin wire, a plane, or a 3D crystal).
Hence, the potential energy is modulated with a
dimensionless factor (λ/aj)L. It is clear that the region
with characteristic dimension λ will make a significant
contribution to localization. In order to make this
parameter dimensionless, one needs to correlate it
with the localization parameter of electron aj that we
need to find.

Similar to the first case under study, the total
energy consists of the two competing summands. The
first summand (the kinetic energy) increases the
energy of the system due to the quantum effect of
increasing the electron momentum when an attempt
to reduce its localization is made, while the second
summand tries to localize the electron within the
potential well.

The case of a one-dimensional potential is of the
greatest interest, when L = 1 (for L = 2, one needs to
solve the Schrödinger equation [60], while for L = 3,
there is no localization under this model). By using the
test for the extrema of the energy (identically to how it
was used in (A6), we find a very simple and illustrative
formula:

(A11)

( ) ( )∂ ∂ = − + =3 2
a a a a a a2 0.E a A a B a

( ) −= = ×2 2 10
a e 0.528 10 ,a h m e m
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22
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i.e., if Ek(λ) > U0, the localization radius will be greater
than dimension λ, and vice versa.

For the sake of completeness, let us provide the for-
mula for localization at L = 2 [60]:

(A12)

whose radius increases exponentially as the kinetic
energy of a particle rises.

(B) For the classical situation of calculating the size
of an NP (or a DW), we used the term of the exchange
interaction energy written as the formula

(A13)

A similar analytical dependence was used in Eq. (33).
Since this formula is important, let us describe how

it was derived in more detail than it was done in [51]
(the constant α = 1 will be used further for the sake of
simplicity).

The two nearest spins in a classical Heysenberg fer-
romagnet rotated by a small angle with respect to one
another increase the exchange interaction energy by
~(–cosϕ).

In our case, if one examines the continual thresh-
old of the Heysenberg model of a lattice, the interspin
angle, when passing from one to the second neighbor-
ing spin, can be expanded into a series:

(A14)

We are interested only in the functional dependence of
this energy set in Eq. (A14) on the size of the NP or
DW, i.e., on aex. Let us make allowance only for the
fact that the increment of energy, which makes a con-
tribution when varying the energy for the two nearest
spins, changes by an order of magnitude:

(A15)

If the interspin distance in the lattice is b, the angular vari-
able ϕ can be roughly substituted using the formula

(A16)

The direction of the spin f lip in the continual
model occurs after all the layers rotate by angle π (in
this case, the spins f lip in the opposite direction to one
another). The number of rotation layers is estimated as

(A17)

Now, by multiplying (A16) by (A17) and using
(A15), we obtain the first term of formula (33) (and
(A13)) for the exchange interaction energy. In our
case, it looks as follows:

(A18)

The numerical coefficient π/2 is higher than the
accuracy of the method used to derive the formula.

This reasoning is valid if the size of an NP or a DW
is much greater than value a that is equal to the inter-

( ) ( ){ }= ∼ k 02 λexp λ ,ja L E U

( )=ex exα .E a

( )2cos φ 1 φ 2 .− ≈ − −

( )2φ 2 .

( )≈ 22
exφ .b a

( )exπ .a b

( )≈ex ex .E b a

atomic distance in the crystal. Only in this case we
proceed to the continual approximation, where the
quick rotation of the two nearest spins by angle ~π is
substituted by a slow rotation of the system by the dis-
tance aex.
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