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INTRODUCTION

The problem of an equilibrium shape of a charged
drop in an external uniform electrostatic field in the
process of its electrostatic disintegration into subsid�
iary drops is of interest both scientifically and practi�
cally, due to the multiple applications of this process,
e.g., in atmosphere physics in thunderstorm clouds
[1], in engineering and various technologies [2], in
instrumentation technology, e.g., in liquid mass�spec�
trometry as a major object [3], and liquid–metal ion
source as a parasite phenomenon [4].

It is known [5–7] that an immobile uncharged
drop in an external uniform electrostatic field with
intensity E0 acquires an equilibrium shape of a spher�
oid elongated along a field with eccentricity

 where R is the initial radius of a
spherical drop and σ is the coefficient of the surface
tension of the liquid. The question is what happens to
the form of the drop if the latter has also charge Q? In
this case, both free and polarized charges will be on the
drop, and the latter changes its sign in the area of the
equator of the drop. From common physical concepts
it is clear that the drop will become pear�shaped, bulg�
ing on the end of the drop where the sign of the polar�
ization charge coincides with that of the free charge
and thinning on the opposite end of the drop where the
signs of the polarization and intrinsic charges are
opposite. The degree of the pear shape will depend on
the ratio between the values of the polarization and
intrinsic charges; i.e., it will be small at a high value of

e0 9E0
2R/16πσ≡ ,

the intrinsic charge and at a low polarization charge or,
vice versa, at a high polarization charge and low intrin�
sic one. The degree of the pear shape will be great at
comparable values of the intrinsic and polarization
charges. Note that the free charge on the drop in the
presence of an arbitrary small external electrostatic

field that determines one direction ( ) as preferential
will make the two halves of the drop repulse from each
other. In the absence of a free charge, only the polar�
ization charge remains on the drop with different signs
on different halves, and the field makes the drop elon�
gate. Thus, the physical mechanisms that affect the
elongation of a spherical drop into a spheroid are dif�
ferent from the polarized and intrinsic charges

EQUILIBRIAL SHAPE 
OF THE CHARGED DROP 

IN THE ELECTROSTATIC FIELD

Let us have a charged drop in a uniform electro�
static field. Assuming that the shape of the drop is
close to an elongated spheroid, let us calculate its
eccentricity on the basis of a minimality of potential
energy as in [5] for an uncharged drop.

First, let us accept that we are given an uncharged
drop in an external uniform electrostatic field. The
temperatures of the drop and the environment are
constant, and the bulk of the liquid phase remains
unchanged. According to the aforementioned, the
drop takes an equilibrium spheroidal form with e0
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eccentricity. The energy of the forces of surface ten�
sion of the drop will be as follows [5]:

(1)

The energy of the uncharged immobile drop in E0
field equals [5]:

(2)

where, according to the aforementioned,

 The sum of U
σ
 and UE gives the

total free energy of the system. Taking a derivative on
e0 from this sum and setting it to zero, on the basis of
the principle of minimum of free energy, we shall find
the above expression of e0, using E0, R and σ. This was
done in [5] for the first time.

Now let us locate an electrical charge Q on the
drop. As was mentioned above, the elongation of the
drop will increase. Assuming the pear�shaped defor�
mation to be small, much smaller than the initial sphe�
roidal shape, let us accept that the drop during the cal�
culations within an accuracy of the order of eccentric�
ity squared will have a spheroidal shape with
eccentricity e. Free energy then will increase by [7]:

(3)

where e > e0. Further on, in (1) and (2), we approxi�
mately assume that e0 ≈ e, and add to (1) and (2) the
energy of charge Q (3). Then, based on the principle of
the minimality of free energy of the new system we
shall determine, as was done above, e as follows:

(4)

Introducing the dimensionless parameters of the field
Λ2 and the charge W 2,

we shall rewrite (4) as follows:

(5)

During the derivation of (5) we have made only one
assumption, namely, that of the smallness of the pear�
shaped deformation. According to what was men�
tioned above, the pear�shaped deformation is small at
low charges and strong fields and, vice versa, large at
high charges and weak fields. This occurs in the elec�
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trostatic suspension, which is a necessary element of
the holding arrangements during the verification of the
accuracy of the Rayleigh criterion [8, 9]. The pear�
shaped deformation that is proportional to the third
degree of eccentricity of the spheroidal component of
the drop shape [10] is also small in its absolute value,
when the eccentricity itself is small, i.e., at low charges
and weak fields.

THE RESULTS AND DISCUSSION

Figures 1a–1c shows dependence (5). The field
and charge parameters are assumed to change inde�
pendently. Figure 1a shows that at high values of the
charge and field parameters, the eccentricity rapidly
reaches peak values. However, at such values of the
parameters the pear�shaped deformation of the drop is
considerable and expression (5) is inapplicable.
Dependence (5) at small values of the field parameter
and during the change of the charge parameter in the
formally admissible full range is illustrated in Fig. 1b.
The situation with small charges and fields when the
pear�shaped deformation is small and expression (5) is
valid is shown in Fig. 1c.

However, the charge and field parameters for the
limit of stability with respect to the superposition of
their own and induced charges are connected between
each other by the following relation [11]:

(6)

where the analytical expression for the eccentricity is
determined according to (5). The relation (6) is pre�
cisely fulfilled for two terminal points W2 = 1; Λ2 = 0
and W2 = 0; Λ2 = 2.6, while in the intermediate points
it is fulfilled only approximately, for an accuracy of the
constant multiplier of ≈1. The graph of this depen�
dence is shown in Fig. 2.

During the derivation of expression (6), the drop
was assumed to be immobile in the electrostatic and
gravitational fields. The acceleration of the gravita�

tional field  was considered to be connected with the
charge of the drop and the value of the field:

where ρ is the mass density of the liquid.
On fulfilling the conditions W2 ≥ 1 and Λ2 = 0, a

strongly charged spherical drop undergoes electro�
static instability. It is the major mode of its oscillations
that is exposed to instability, its amplitude starts grow�
ing uncontrollably, and the drop elongates into a
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spheroid, throwing off extra charge from its two ends
by way of emission about two hundred (smaller by two
orders of magnitude than the initial one) strongly
charged drops [12–14].

On the fulfillment of conditions W2 = 0 and Λ2 ≥ 2.6,
the uncharged drop in the uniform electrostatic field
undergoes electrostatic instability [15–17]. The pat�
terns of its realization are about the same as of the

charged drop [16, 17]; however, the initial equilibrium
form is not spherical, but rather spheroidal with

eccentricity  [5, 15–17].

Figure 2 shows that dependence (6) is almost lin�
ear, but the angles of inclination of the tangent line to
the curve (6) at W 2 ~ 1 and Λ2 ~ 2.6 are different.

To estimate on the basis of the order of value, let us
substitute dependence (6) for a straight�line one,
which passes via two end points:

(7)

where k is the tangent of the angle of inclination of the
line (7). Let us express Λ2 from (7) and insert into (5).
We shall obtain an expression for the square of eccen�
tricity at the threshold of stability:

Let us insert into this expression the value of 1/k and
obtain e2 ≈ 0.466. In fact, dependence (6) differs from
the line, and the absolute value of the angle tangent of
the inclination of the tangent to curve (6) at W 2 ~ 1
will exceed the absolute value by more than 1/2.6; at
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Fig. 1. Dependence of the eccentricity square of a charged drop in the electric field on the value of the dimensionless charge and
field parameters built on assumption that they change independently: (a) is the general view; (b) is a strongly charged drop in a
weak field; (c) low charges and weak fields when pear�shaped deformation is small.
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Fig. 2. Connection between charge and field parameters at
stability limit.
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Λ2 ~ 2.6 it will be less. To find the analytical depen�
dence between the absolute value of the tangent angle
of inclination of tangent and parameters of W2 and Λ2

according to (6) considering (5) is fairly problematic
because of the awkwardness of the required mathe�
matical operations. Therefore, let us find the absolute
values of the angular tangents of inclination of tangent
in two terminal points graphically, using Fig. 2. All
other values will be in between.

At W2 ≈ 1, the absolute value of the angle tangent
of inclination of the tangent to curve (6) is about
(1/1.9) ≈ 0.53 and of the eccentricity square is e2 ≈
0.34. At Λ2 ~ 2.6, the absolute value of the angle tan�
gent of inclination of the tangent to curve (6) is about
(0.59/2.6) ≈ 0.23 and the eccentricity square is e2 ≈
0.78. The above speculations and estimations are cer�
tainly approximate, but in the absence of other estima�
tions they can be used as the starting points of future
investigations.

THE VERIFICATION 
OF THE RAYLIEGH CRITERION 

OF THE ELECTROSTATIC INSTABILITY 
OF A STRONGLY CHARGED SPHERICAL 

DROP OF AN IDEAL CONDUCTING LIQUID

Critical conditions of the realization of the insta�
bility of an isolated drop of an ideal electroconducting
incompressible liquid in regard to its own charge was
theoretically precisely deduced by Rayleigh in the

form of the relation of W ≡  ≥ 1 at the
end of the 19th century. In the 20th century and at the
beginning of the 21st century, this criterion was repeat�
edly experimentally verified using various laboratory
devices, namely, a vertical electrostatic field between
flat plates (i.e., using an electrostatic suspension of the
type that Millikan used in the experiments on deter�
mining the charge on the electron) [18]; in a nonuni�
form electric field periodically changing in time
between the electrodes of a complex geometry (the
combination of rings, cylindrical and spherical sur�
faces) [19]; in a combined electric suspension with
electrostatic and periodically changing electric fields
between three plate electrodes [20]; in an air stream
[21]; and in an electrodynamic suspension based on
two�ring electrodes [9, 22]. Experiments were carried
out on drops in a wide range of sizes: hundreds of
micrometers [18, 21, 23], tens of micrometers
[19, 20], and units of micrometers [9, 22]. In all cases,
the validity of the Rayleigh criterion was supported. It
is noteworthy that the highest accuracy of the experi�
ments was reached in [20], where the Rayleigh crite�
rion was confirmed to an accuracy of 4%, and in
[9, 22], where the accuracy was about 5%.

Q2
/16πσR3( )

ELECTROSTATIC SUSPENSION

Let us assume that W 2 ~ 1 is in the electrostatic
field of a vanishing low intensity, the action of whose
force on the drop can be neglected, and it can be con�
sidered that the field simply gives direction. The situa�
tion is typical for electrostatic suspensions that are
used to verify the validity of the Rayleigh criterion, and
according to the obtained results it is possible to esti�
mate admissible error during their use.

If at the initial moment of time, the charged drop is
virtually given a spheroidal form, then the value of the
critical charge for realization of the electrostatic insta�
bility will depend on the eccentricity square of the drop
[13]. The relevant dependence of the charge parameter
on the eccentricity square is shown in Fig. 3 [13].

For the ease of further calculations, so as not to
depend on the drop sizes and the value of the surface
tension, let us proceed to the dimensionless variables
in which R = σ = ρ = 1. In this case, the criterion of
the electrostatic instability with respect to its own
charge is as follows:

Let us now consider the situation of W2 ~ 1 and
Λ2 ~ 1 – W2. According to the aforementioned, the
eccentricity square of a strongly charged drop in a
weak electrostatic field is e2 ≈ 0.34. Using Fig. 3, let us
find the critical value of the charge parameter at such
a value of the eccentricity square W2 = 0.92. Hence, it
is easy to find the value of the critical charge of the drop,
which can be measured in the electrostatic suspension
Q ≈ 0.959. That is, the error with respect to the true crit�
ical charge will be ~4%. It is this very error that is
observed during accurate measurements of [9, 18, 22].

It is noteworthy that the offered model of disinte�
gration of a strongly charged drop explains the fact of
decrease in the critical charge of the drop during sev�
eral successive disintegrations [9]. Indeed, during
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Fig. 3. Dependence of critical value of charge parameter of
spheroidal drop on square of its eccentricity.
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Rayleigh disintegration the drop loses ≈23% of its
charge and ≈5% of its mass [14, 20]. With the remain�
ing charge, the drop returns to a stable spheroidal
shape, since it is in the electrostatic field and has an
electric charge; however, its eccentricity will be
smaller than that of the initial drop due to the lower
charge. In order that the drop comes in view of a
microscope (of an experimentalist) one must increase
the intensity of the electrostatic field. In accordance
with the abovementioned (according to Fig. 2), it will
shift down the curve in Fig. 2. Its eccentricity will then
increase, and a smaller charge will be required for the
drop disintegration, according to Fig. 3. This can be
repeated several times. In [9], this experimental fact
was explained by a decrease in the value of the surface
tension of the liquid. This explanation should be rec�
ognized to be fairly feeble.

It is noteworthy that after several successive disin�
tegrations the charge of the drop will decrease consid�
erably, and the external electric field that is necessary
to keep the drop immobile together with the induced
charge will increase. Hence, pear�shaped deformation
will become substantial, and the above speculations
will turn out to be invalid.

CONCLUSIONS

The present calculations show that the equilibrium
shape of a charged drop in a uniform electrostatic field
in calculations that are linear with respect to the sta�
tionary deviation from a sphere can be considered as
an elongated spheroid in two extreme cases, i.e., when
a drop with a strong charge is in a weak field and a drop
with a weak charge is in a strong field. The eccentricity
in these two cases differs greatly. On the threshold of a
stability loss of a strongly charged drop in a uniform
electrostatical field, the eccentricity of the drop
remains terminal.
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